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Abstract
Machine learned large-scale retrieval systems re-
quire a large amount of training data representing
query-item relevance. However, collecting users’
explicit feedback is costly. In this paper, we pro-
pose to leverage user logs and implicit feedback
as auxiliary objectives to improve relevance mod-
eling in retrieval systems. Specifically, we adopt a
two-tower neural net architecture to model query-
item relevance given both collaborative and con-
tent information. By introducing auxiliary tasks
trained with much richer implicit user feedback
data, we improve the quality and resolution for
the learned representations of queries and items.
Applying these learned representations to an in-
dustrial retrieval system has delivered significant
improvements.

1. Introduction
In this paper, we propose a novel transfer learning model
architecture for large-scale retrieval systems. The retrieval
problem is defined as follows: given a query and a large
set of candidate items, retrieve the top-k most relevant can-
didates. Retrieval systems are useful in many real-world
applications such as search (Shen et al., 2014) and recom-
mendation (Covington et al., 2016; Yi et al., 2018; He et al.,
2014). The recent efforts on building large-scale retrieval
systems mostly focus on the following two aspects:
• Better representation learning. Many machine learn-

ing models have been developed to learn the mapping
of queries and candidate items to an embedding space
(Koren et al., 2009; Krichene et al., 2019). These mod-
els leverage various features such as collaborative and
content information (Wang et al., 2012).

• Efficient retrieval algorithms. Given learned represen-
tations, efficient algorithms are proposed to retrieve
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the top-k relevant items given the similarity (distance)
metric associated with the embedding space (Broder,
1997; Guo et al., 2016).

However, it is challenging to design and develop real-world
large-scale retrieval systems for many reasons:
• Sparse relevance data. It is costly to collect users’ true

opinions regarding item relevance. Often, researchers
and engineers design human-eval templates with Likert
scale questions for relevance (Chang et al., 2015), and
solicit feedback via crowd-sourcing platforms (e.g.,
Amazon Mechnical Turk).
• Noisy feedback. In addition, user feedback is often

highly subjective and biased, due to human bias in
designing the human-eval templates, as well as the
subjectivity in providing feedback.

• Multi-modality feature space. We need to learn rele-
vance in a feature space generated from multiple modal-
ities, e.g., query content features, candidate content
features, context features, and graph features from con-
nections between query and candidate (Wang et al.,
2012; Page et al., 1999; Cui et al., 2010).

In this paper, we propose to learn relevance by leverag-
ing both users’ explicit answers on relevance and users’
implicit feedback such as clicks and other types of user
engagement. Specifically, we develop a transfer-learning
framework which first learns the effective query and can-
didate item representations using a large quantity of users’
implicit feedback, and then refines these representations us-
ing users’ explicit feedback collected from survey responses.
The proposed model architecture is depicted in Figure 2.

Our proposed model is based on a two-tower deep neural
network (DNN) commonly deployed in large-scale retrieval
systems (Krichene et al., 2019). This model architecture,
as depicted in Figure 1, is capable of learning effective
representations from multiple modalities of features. These
representations can be subsequently served using highly
efficient nearest neighbor search systems (Guo et al., 2016).

To transfer the knowledge learned from implicit feedback to
explicit feedback, we extend the two-tower model by adopt-
ing a shared-bottom architecture which has been widely
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Figure 1. A two-tower DNN model. Figure 2. Our proposed two-tower shared-bottom model.

used in the context of multi-task learning (Caruana, 1997).
Specifically, the final loss includes training objectives for
both the implicit and explicit feedback tasks. These two
tasks share some hidden layers, and each task has its own
independent sub-tower. At serving time, only the represen-
tations learned for explicit feedback are used and evaluated.

Our experiments on an industrial large-scale retrieval system
have shown that by transferring knowledge from rich im-
plicit feedback, we can significantly improve the prediction
accuracy of sparse relevance feedback.

In summary, our contributions are as follows:
• We propose a transfer learning framework which lever-

ages rich implicit feedback in order to learn better
representations for sparse explicit feedback.

• We design a novel model architecture which optimizes
two training objectives sequentially.

• We evaluate our model on a real-world large-scale
retrieval system and demonstrate significant improve-
ments.

The rest of this paper is organized as follows: Section 2
discusses related work in building large-scale retrieval sys-
tems. Section 3 introduces our problem and training objec-
tives. Section 4 describes our proposed approach. Section
5 reports the experimental results on a large-scale retrieval
system. Finally, in Section 6, we conclude with our findings.

2. Related Work
In this section, we first introduce some state-of-the-art in-
dustrial retrieval systems, and then discuss the application
of multi-task learning and transfer learning techniques in
retrieval and recommendation tasks.

2.1. Industry-scale Retrieval Systems

Retrieval systems are widely used in large-scale applications
such as search (Shen et al., 2014) and recommendation
(Covington et al., 2016; Yi et al., 2018; He et al., 2014).
In recent years, the industry has moved from reverse index

based solutions (Brin & Page, 1998), to machine learned
retrieval systems. Collaborative-filtering based systems (Hu
et al., 2008; Beutel et al., 2017) have been very popular and
successful until very recently, when they were surpassed by
various neural network based retrieval models (Liu et al.,
2017; Yi et al., 2018; Beutel et al., 2018).

A retrieval system involves two key components: represen-
tation learning and efficient indexing algorithms (Manning
et al., 2010). Many large-scale industrial retrieval systems
have seen success of using two-tower DNN models to learn
separate representations for query and candidate items (He
et al., 2017; Yang et al., 2018; Krichene et al., 2019).

2.2. Multi-task Learning and Transfer Learning for
Retrieval and Recommendation Systems

There has also been work on multi-task retrieval systems for
context-aware retrieval applications based on tensor factor-
ization (Zhao et al., 2015). Unfortunatelly, due to limitations
on model capacity and serving time constraints, the model
cannot be easily adapted to learn complex feature representa-
tions from multiple feature sources. Many multi-task DNN
based recommendation systems (Covington et al., 2016; Ma
et al., 2018) are designed for ranking problems where only
a small subset of high quality candidates are scored. These
full-blown ranking solutions cannot be easily applied to
retrieval problems, where we try to identify thousands of
candidates from a large corpus with millions to hundreds of
millions of candidate items.

Inspired by these works, we propose a novel framework to
combine the benefits of both worlds: (1) the computation
efficiency of a two-tower model architecture; and (2) the
improved model capability of a multi-task DNN architecture
(Caruana, 1997). This enables us to transfer the learning
from rich implicit feedback to help sparse explicit feedback
tasks. Our work is closely related to transfer learning (Pan
& Yang, 2009; Raina et al., 2007; Pan et al., 2011; 2010)
and weakly supervised learning (Oquab et al., 2015; Han
et al., 2014; Papandreou et al., 2015; Zhou, 2017).
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3. Problem Description
In this section, we formalize the retrieval problem, and
introduce our training data and training objectives.

3.1. The Retrieval Problem

The retrieval problem is defined as follows. Given a query
and a corpus of candidate items, return the top-k relevant
items. Let {xi}Ni=1 ⊂ X and {yj}Mj=1 ⊂ Y , respectively, be
the feature vectors of queries and candidates in feature space
X and Y , where N and M , respectively, denote the number
of queries and candidates. We model the retrieval system
as a parameterized scoring function s(·, ·;θ) : X ×Y 7→ R,
where θ denotes the model parameters. Items with top-k
scores s(x,y;θ) are selected for a given query at inference
time. We assume the training data is a set of query and item
pairs {(xt,yt)}Tt=1, where yt is the candidate associated
with xt which has either explicit or implicit users’ feedback,
and T � MN in practice. Our goal is to fit the scoring
function based on these T examples.

3.2. Training with User Feedback

When training a machine learning based retrieval system, the
ideal way is to use users’ explicit feedback which reflects the
relevance of an item to a query. However, asking for users’
explicit feedback is costly; hence, many existing systems
use implicit feedback from user logs, such as clicks.

In this paper, we study retrieval systems with both explicit
and implicit feedback, where implicit feedback is abundant
and explicit feedback is relatively sparse.

3.3. Joint Optimization with Auxiliary Objectives

The goal of our retrieval problem is to learn better repre-
sentations of queries and candidates such that the similarity
between a query candidate pair closely approximates rele-
vance. Therefore, our main training objective is to minimize
the differences between the predicted relevance and the
ground truth.

To facilitate representation learning, we introduce an aux-
iliary objective which captures user engagement on items,
such as clicks of an item, purchase of a product for shopping
retrieval, or views of a movie for movie recommendation.

Formally, we aim to jointly learn two objectives sexp(·, ·;θ)
and simp(·, ·;θ′) while sharing part of the parameters be-
tween θ and θ′. We assume some of the examples (xt,yt)
are in set E with explicit feedback, and others are in
set I with implicit feedback. In addition, each example
(xt,yt) ∈ E is associated with label lt ∈ R representing
user’ explicit feedback, e.g., response to the relevance sur-
vey. Note that E and I are not mutually exclusive as some
examples can have both implicit and explicit feedback. We

use regression loss to fit users’ explicit feedback on example
set in E . One example loss is the mean squared error (MSE):

Lexp(θ; E) =
1

|E|
∑

(xt,yt)∈E

(sexp(xt,yt;θ)− lt)
2
, (1)

where | · | represents the cardinality. On the other hand,
we treat the modeling of implicit feedback as a multi-class
classification task over the full corpus of items, and use the
softmax formulation to model the probability of choosing
item y, namely

P(y | x;θ′) =
exp (simp(x,y;θ

′))∑M
j=1 exp (simp(x,yj ;θ′))

.

The maximum likelihood estimation (MLE) can be formu-
lated as

Limp(θ
′; I) = − 1

|I|
∑

(xt,yt)∈I

log (P(yt | xt;θ
′)) . (2)

With loss multipliers w and w′, we jointly optimize the
losses in (1) and (2) by optimizing

L(θ,θ′) = w · Lexp(θ; E) + w′ · Limp(θ
′; I).

4. Model Architecture
In this section, we describe our proposed framework to learn
relevance for large-scale retrieval problems. We extend
the two-tower model architecture by introducing a shared-
bottom model architecture on both towers.

4.1. Two-tower Model Architecture

Figure 1 provides a high-level illustration of the two-tower
DNN model architecture. Given a pair of query and item rep-
resented by feature vectors x ∈ X ,y ∈ Y , respectively, the
left and right tower provides two DNN based parameterized
embedding functions u : X ×Rd 7→ Rk, v : Y ×Rd 7→ Rk

which encode features of query and item to a k-dimensional
embedding space. The scoring function is then computed as
the dot product between the query and item embeddings at
the top layer, i.e.,

s(x,y;θ) = 〈u(x,θ), v(y,θ)〉.

4.2. Shared-bottom Architecture for Transfer Learning

To enable multi-task learning, we extend the two-tower
model by adopting the shared-bottom architecture. Specif-
ically, we introduce two sub-towers on top of the bottom
hidden layers, one for the explicit-feedback task and the
other for the implicit-feedback task. The outputs of bottom
hidden layers are fed in parallel to the two sub-towers. The
bottom hidden layers are shared between the two sub-towers
(Caruana, 1997), and are referred to as shared-bottom layers.
The final model architecture is depicted in Figure 2.



Improving Relevance Prediction with Transfer Learning in Large Scale Retrieval Systems

4.3. Training and Serving Schema

During training, we first train the model for the auxiliary
user engagement objective, which uses the cross entropy
loss. Having learned the shared representations, we fine-
tune the model for the main relevance objective, which uses
the squared loss. To prevent potential over-fitting caused by
the sparse relevance data, we apply stop gradients for the
relevance objective on the shared-bottom layers.

For serving, we only need to store and serve the top layer of
the two relevance sub-towers to predict the relevance.

5. Evaluation
In this section, we describe the experiments of our proposed
framework on one of Google’s large-scale retrieval systems
for relevant item recommendations, e.g., apps.

5.1. Experiment Setup

Our system contains several millions of candidates. Our
training data contains hundreds of thousands of explicit
feedback from relevance survey, and billions of implicit
feedback from user logs.

We randomly split the data into 90% for training and 10% for
evaluation. Model performance was measured on the eval
set by the Root Mean Square Error (RMSE) for relevance
prediction. The model was implemented in Tensorflow,
of which the output relevance embeddings for queries and
candidates were served for retrieval. The hyper-parameters
including model size, learning rate, and training steps were
carefully tuned for the best model performance.

5.2. Experiment Results

We study the effects of applying transfer learning to rele-
vance prediction. The following experiment results suggest
that transfer learning significantly improves the prediction
quality of sparse relevance task and helps avoid over-fitting.

Table 1 reports relevance RMSE (the lower the better) for
different combinations of training objectives and feature
types. We see that using implicit feedback leads to a signifi-
cant improvement as compared to using explicit feedback
only. Also, using collaborative information together with
content information performs better than the model which
uses collaborative information alone.

Table 2 reports relevance RMSE for various model sizes on
two sets of training objectives. As a close approximation to
the model size, we report the number of multiplications. For
models trained with sparse explicit feedback only, increas-
ing the model sizes causes over-fitting and consequently
degrades the model performance. In contrast, for models
trained with implicit feedback, increasing the model size im-

proves the model performance. This suggests that implicit
feedback regularizes the model and prevents over-fitting.

Training Objectives Feature Used Relevance RMSE
Explicit Feedback Only Collaborative Only 0.3583
Explicit Feedback Only Collaborative + Content 0.3464

Explicit + Implicit Feedback Collaborative Only 0.2837
Explicit + Implicit Feedback Collaborative + Content 0.2673

Table 1. Eval RMSE on relevance with different sets of training
objectives and feature information.

Training Objectives Number of Multiplications Relevance RMSE
Explicit Feedback Only 51K 0.3447
Explicit Feedback Only 68K 0.3464

Explicit + Implicit Feedback 176K 0.2775
Explicit + Implicit Feedback 802K 0.2673

Table 2. Eval RMSE on relevance with varying model sizes.

5.3. Discussions and Future Work

The success of transfer learning hinges on a proper param-
eterization of both the auxiliary and main tasks. On one
hand, we need sufficient capacity to learn a high-quality
representation from a large amount of auxiliary data. On
the other hand, we want to limit the capacity for the main
task to avoid over-fitting to its sparse labels. As a result,
our proposed model architecture is slightly different from
the traditional pre-trained and fine-tuning model (Hinton &
Salakhutdinov, 2006). Besides shared layers, each task has
its own hidden layers with different capacities. In addition,
we apply a two-stage training with stop gradients to avoid
potential issues caused by the extreme data skew between
the main task and auxiliary task.

Our experiences have motivated us to continue our work in
the following directions:
• We will consider multiple types of user implicit feed-

back using different multi-task learning frameworks,
such as Multi-gate Mixture-of-Expert (Ma et al., 2018)
and Sub-Network Routing (Ma et al., 2019). We will
continue to explore new model architectures to com-
bine transfer learning with multi-task learning.

• The auxiliary task requires hyper-parameter tuning to
learn the optimal representation for the main task. We
will explore AutoML (Pham et al., 2018) techniques
to automate the learning of proper parameterizations
across tasks for both the query and the candidate towers.

6. Conclusion
In this paper, we propose a novel model architecture to learn
better query and candidate representations via transfer learn-
ing. We extend the two-tower neural network approach to
enhance sparse task learning by leveraging auxiliary tasks
with rich implicit feedback. By introducing auxiliary objec-
tives and jointly learning this model using implicit feedback,
we observe a significant improvement for relevance predic-
tion on one of Google’s large-scale retrieval systems.
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