
Energy Dissipation with Plug-and-Play Priors

Hendrik Sommerhoff1 Andreas Kolb1 Michael Moeller2

1Computer Graphics Group, University of Siegen
2Computer Vision Group, University of Siegen

{hendrik.sommerhoff, andreas.kolb, michael.moeller}@uni-siegen.de

Abstract

Neural networks have reached outstanding performance for solving various ill-
posed inverse problems in imaging. However, drawbacks of end-to-end learning
approaches in comparison to classical variational methods are the requirement of
expensive retraining for even slightly different problem statements and the lack of
provable error bounds during inference. Recent works tackled the first problem
by using networks trained for Gaussian image denoising as generic plug-and-play
regularizers in energy minimization algorithms. Even though this obtains state-
of-the-art results on many tasks, heavy restrictions on the network architecture
have to be made if provable convergence of the underlying fixed point iteration is a
requirement. More recent work has proposed to train networks to output descent
directions with respect to a given energy function with a provable guarantee of
convergence to a minimizer of that energy. However, each problem and energy
requires the training of a separate network. In this paper we consider the combi-
nation of both approaches by projecting the outputs of a plug-and-play denoising
network onto the cone of descent directions to a given energy. This way, a single
pre-trained network can be used for a wide variety of reconstruction tasks. Our
results show improvements compared to classical energy minimization methods
while still having provable convergence guarantees.

1 Introduction

In many image processing tasks an observed image f is modeled as the result of the transformation
of a clean image û under a known (linear) operator A and unknown noise ξ,

f = Aû+ ξ. (1)

In most cases, the problem of reconstructing û from f and A is ill-posed and can thus not be solved
by a simple inversion of A, giving rise to the field of regularization theory with iterative or variational
methods, see e.g. [2] for an overview. In recent years neural networks were very successful in
learning a direct mapping G(f) ≈ û for a variety of problems such as deblurring [32, 28], denoising
[34], super-resolution [8], demosaicing [9] and MRI- or CT-reconstruction [33, 14]. Even though this
works well in practice, there are rarely any guarantees on the behaviour of neural networks on unseen
data, making them difficult to use in safety-critical applications. Moreover, for each problem and
type of noise a separate network has to be trained.

In contrast, classical variational methods try to find the solution by the minimization of a suitable
energy function of the form

û = argminuHf (u) + αR(u) (2)

where Hf is a data fidelity term, for example commonly chosen as Hf (u) = 1
2 ||Au − f ||

2, and
R is a regularization function that models prior knowledge about the solution, e.g. the popular
total variation (TV) regularization, R(u) = ‖∇u‖1, [24]. While minimizers of (2) come with
many desirable theoretical guarantees, regularizations like the TV often cannot perfectly capture the
complex structure of the space of natural images.
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Figure 1: Example for a diverging algorithmic scheme using (6) with Hf = 0 and a DnCNN
denoising network G (for blind denoising). Pixel values are clipped to [0,1] for visualization. Image
from the FACES dataset https://faces.mpdl.mpg.de.

To combine the advantages of powerful feed-forward networks and model-based approaches like
(2), authors have considered various hybrid models like learning regularizers (e.g. [23, 1, 11, 5]),
designing networks architectures that resemble the structure of minimization algorithms or differential
equations, e.g. [25, 36, 15, 6], interleaving networks with classical optimization steps [16, 17], or
using the parametrization of networks as a regularization for (2), see e.g. [29, 12].

A particularly flexible approach arises from [7, 37, 30, 13], where proximal operators with respect to
the regularizer are replaced by arbitrary denoising operators, with recent works focusing on the use of
denoising networks [18, 4, 35]. While such approaches allow to tackle different inverse problems with
the same neural network, the derivation of theoretical guarantees - even in terms of the convergence
of the resulting algorithmic scheme - remains difficult, see [3, 27] or some discussion in [20], unless
the denoiser satisfies particular properties [22].

2 Provably dissipating model-based energies with plug-and-play priors

The starting point of the above-mentioned algorithmic schemes that utilize denoising networks to
regularize model-based inverse problems are methods for the minimization of (2). While most works
focus on primal-dual / ADMM approaches, their convergence analysis is quite delicate even in a
setting in which one still minimizes (nonconvex) energies, such that we turn to two simpler methods,
gradient descent and proximal gradient methods,

uk+1 = uk − τ
(
∇Hf (u

k) + α∇R(uk)
)
, (3)

uk+1 = proxτR(u
k − τ∇Hf (u

k)), (4)

where proxτR(v) = argminu
1
2‖u− v‖

2+ τR(u). Following the idea of [7, 37, 30, 13], considering
either a gradient descent or a proximal step on the regularization as a generic denoising operation
gives rise to the following two algorithmic schemes,

uk+1 =
1

2
ρ(uk; 2τ) +

1

2
G(uk), (5)

uk+1 = G(ρ(uk; τ)), (6)

where G denotes any kind of denoiser, e.g. a convolutional neural network, and we define ρ(uk; τ) =
uk − τ∇Hf (u

k) for the sake of brevity of notation. We refer to [20] for a more detailed derivation.

Algorithmic schemes like (5) or (6) combine the model-based flexibility of energy minimization
methods (i.e. explicit modelling of Hf ) with the expressive power of deep neural networks G.

Unfortunately – despite their success in various practical applications – schemes like (5) or (6) remain
dangerous to be used: Figure 1 shows the result of running the iteration (6) with Hf = 0 on a noisy
input image f = u0 for 100 and 800 iterations using a DnCNN [34] preimplemented in Matlab as the
denoiser G. As we can see the image gets completely distorted. Even more strikingly, the range of
the image increased from values in [0, 1] to an interval of [−185, 218] within the first 1000 iterations.
Clearly, the algorithmic scheme diverges.

A natural condition for the provable convergence of a scheme like (6) (at least along subsequences)
would be a 1-Lipschitz continuous operator G. There has been previous work on computing upper
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bounds for the best Lipschitz constant of a network and using it to enforce a user defined Lipschitz
constant L during training time [10, 26, 19] but we found that enforcing non-expansiveness drastically
decreased the denoising performance. The problem of computing the best Lipschitz constant, in hope
of improving those results, was recently proved to be NP-hard [31] and thus is infeasible.

Therefore, we adapt the recent idea proposed in [21] to safeguard neural networks by forcing them
to predict a descent direction to a given model-based energy, such that it can be used within a line
search algorithm to guarantee convergence. More precisely, at any given estimate u and model-based
energy E the authors use the Euclidean projection onto the half space

C(γ,∇E(u)) = {d|〈d,∇E(u)〉 ≥ γ||∇E(u)||} , γ > 0 (7)

as the last layer of their network. Even though the resulting algorithm converges to the minimizer of
E, experiments showed significantly higher peaks of the PSNR value in early iterations compared to
classical gradient descent on E. Intuitively, the descent direction proposed by the network pushes the
iteration closer towards the distribution of the training data than a usual gradient descent step.

While the approach of [21] has to train a separate network for each inverse problem and each type of
noise, we investigate the combination of the flexible algorithmic schemes (5) and (6) with the idea
from [21] to project onto the half-space of descent directions to safeguard the underlying algorithm.

In the following G will always refer to a generic denoising network, like DnCNN [34]. We assume
that E(u) = Hf (u) + R(u) is a continuously differentiable, strictly convex and coercive energy
function. As a first step, we simply rewrite the algorithmic schemes (5) and (6) in such a way that
they resemble a gradient descent iteration, i.e.,

uk+1 = uk −
(
uk − 1

2
ρ(uk; 2τ)− 1

2
G(uk)

)
, (8)

uk+1 = uk −
(
uk − G(ρ(uk; τ))

)
, (9)

such that we can interpret uk − 1
2ρ(u

k; 2τ)− 1
2G(u

k) or uk − G(ρ(uk; τ)) as "update directions" of
the respective algorithmic schemes. Because the plain iterations (8) and (9) can easily be divergent,
we safeguard them by projecting them onto the half-space of descent directions C(γ,∇E(uk)), i.e.,

dk = projC(γ,∇E(uk))

(
uk − αρ(uk; 2τ)− (1− α)G(uk)

)
, (conv)

or dk = projC(γ,∇E(uk))

(
uk − G(ρ(uk; τ))

)
. (prox)

Note that we replaced the averaging of the gradient descent and denoising step in (8) by an abitrary
convex combination using a parameter α to determine the respective influence of the data term and
the denoising more flexibly. After computing the above directions dk, we update our iterates using

uk+1 = uk − tkdk (10)

with a step size tk chosen based on a backtracking line-search mechanism similar to [21]. Under
weak additional conditions, the latter guarantees the convergence of the proposed scheme to the
minimizer of E. Such a minimizer could of course be determined by any classical algorithm, but we
hope for (10) to yield a better path towards the true minimizer, and consider a discrepancy principle
for stopping the iteration before convergence. More precisely, we terminate (10) as soon as

Hf (u
k) ≤ βHf (û) (11)

forHf (û) being an estimate on the (data-term-dependent measure of the) noise level of the considered
problem, and β being a scaling factor (typically close to 1).

3 Results

We tested our implementation with the image reconstruction tasks of Gaussian deblurring with
standard deviation 1 and 4× single image super resolution. In both cases we added Gaussian noise
with standard deviation 0.02 to the corrupted image. We chose the PyTorch implementation1 of
DnCNN [34] pre-trained on a noise level of 0.1 as our denoising network.

Our surrogate energy uses a TV regularization with Huber-norm instead of the `1-norm. As our
data term we choose Hf (u) = 1

2 ||Au − f ||
2 with A either being the blurring or downsampling

1https://github.com/SaoYan/DnCNN-PyTorch
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Figure 2: Exemplary PSNR values per iteration for the deblurring and super resolution experiments.

operator. The best hyperparameters for all methods were found with a grid search. In all experiments,
for scheme (conv), α = 0 was the best choice for any τ , indicating that the gradient descent step
on the data term does not yield much additional information, assumably because the projection
onto C(γ,∇E(u)) which depends on the gradient of the data term anyway. When using (prox), we
empirically found τ = 30 to be the best choice. For the projection onto the half-space of descent
directions, we we used γ = 5 for both methods for deblurring, and γ = 50 in (conv) and γ = 1 in
(prox) for super resolution. For fairness, the classical gradient descent was also implemented using
backtracking line search.

Figure 2 shows the reconstruction quality of the current iterate compared to ground truth over a
span of 500 iterations. The PSNR quickly peaks before slowly converging to the fixed point of
the surrogate energy which is consistent with the results of [21]. Notably, the convex combination
method peaks earlier but not as high as the prox method. Tables 1 and 2 show results using early
stopping using a discrepancy principle. On all test images our prox scheme beats gradient descent.

Method Camerman House Peppers Starfish Butterfly Plane Bird Lena Barbara Boat Man Couple
conv, β = 1 27.47 32.76 29.08 29.45 30.45 27.53 28.45 32.52 25.21 30.04 30.78 29.84

conv, β = 0.9 28.40 33.32 30.57 29.79 31.21 28.58 29.30 33.49 25.58* 30.79 31.34 30.50
conv, best 28.44 33.36 30.67 29.86 31.23 28.62 29.32 33.76 25.61 30.84 31.41 30.62

prox, β = 1 28.01 32.17 27.72 29.44 29.96 27.46 29.14 32.73 25.85 30.71 30.78 30.50
prox, β = 0.9 29.47 34.21 31.05 31.33 32.17 29.12 30.05 34.16 25.64* 31.64 31.87 31.41

prox, best 29.48 34.33 31.40 31.33 32.18 29.16 30.05 34.30 26.88 31.66 31.88 31.42
GD, best 28.19 32.90 30.15 29.55 30.76 28.23 28.95 33.24 25.63 30.64 31.18 30.48

Table 1: PSNR values for deblurring for varying images and stopping criteria. The algorithm was
stopped when Hf (u

k) < βHf (û). best refers to the highest PSNR over 500 iterations and a "*"
means that the stopping criterion was not triggered such that the last iteration was used instead.

Method Cameraman House Peppers Starfish Butterfly Plane Bird Lena Barbara Boat Man Couple
conv, β = 1 21.56 24.10 22.13 22.06 22.20 20.74 20.85 24.88 21.97 25.22 26.35 24.94

conv, β = 0.9 21.56 24.10 22.13 22.06 22.20 21.27 21.37 28.36 23.40 25.31 26.48 25.02
conv, best 23.00 27.50 23.67 23.60 23.53 22.34 22.50 28.49 23.45 25.32 26.56 25.06

prox, β = 1 23.43 28.57 24.61 24.41 24.98 22.86 23.27 29.21 23.60 25.87 26.88 25.39
prox, β = 0.9 23.50 28.78 24.62 24.54 25.09 22.91 23.35 29.38 23.67 25.96 27.05 25.40

prox, best 23.52 28.87 24.72 24.58 25.18 22.93 23.46 29.45 23.72 26.00 27.16 25.53
GD, best 22.21 26.55 22.94 23.01 21.85 21.87 21.40 27.65 23.22 24.94 26.08 24.82

Table 2: PSNR values for super resolution for varying images and stopping criteria. The algorithm
was stopped when Hf (u

k) < βHf (û). best refers to the highest PSNR over 500 iterations.

4 Conclusion

We combine deep learning and energy minimization methods for solving inverse problems in image
reconstruction into a provably convergent algorithmic scheme. Still, our approach is able to gener-
alize to different problems with a single denoising network and without the need to retrain if that
problem changes. We were able to reach better results than the energy minimization baseline in our
experiments, and are happy to elaborate on the above aspects in the NeurIPS workshop.
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