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ABSTRACT

Data assimilation (DA) plays a pivotal role in numerical weather prediction by
systematically integrating sparse observations with model forecasts to estimate opti-
mal atmospheric initial conditions for forthcoming forecasts. Traditional Bayesian
DA methods adopt a Gaussian background prior as a practical compromise for the
curse of dimensionality in atmospheric systems, which simplifies the nonlinear
nature of atmospheric dynamics and can result in biased estimates. To address this
limitation, we propose a novel generative DA method, LO-SDA. First, a variational
autoencoder is trained to learn compact latent representations that disentangle com-
plex atmospheric correlations. Within this latent space, a background-conditioned
diffusion model is employed to directly learn the conditional distribution from data,
thereby generalizing and removing assumptions in the Gaussian prior in traditional
DA methods. Most importantly, we employ latent optimization during the reverse
process of the diffusion model to ensure strict consistency between the generated
states and sparse observations. Idealized experiments demonstrate that LO-SDA not
only outperforms score-based DA methods based on diffusion posterior sampling
but also surpasses traditional DA approaches. To our knowledge, this is the first
time that a diffusion-based DA method demonstrates the potential to outperform
traditional approaches on high-dimensional global atmospheric systems. These
findings suggest that long-standing reliance on Gaussian priors—a foundational
assumption in operational atmospheric DA—may no longer be necessary in light
of advances in generative modeling.

1 INTRODUCTION

In numerical weather prediction, data assimilation (DA) is essential for generating accurate initial
conditions that directly determine forecast skill (Lorenc, 1986; Gustafsson et al., 2018; Asch et al.,
2016). Modern DA methods estimate the optimal atmospheric state xxx within a Bayesian framework
by combining sparse observations yyy with model forecasts xxxb (also known as background fields) (Asch
et al., 2016; Rabier & Liu, 2003; Carrassi et al., 2018; Le Dimet & Talagrand, 1986). Specifically, DA
aims to estimate the Bayesian posterior distribution p(xxx|xxxb, yyy). Given that forecasts and observations
are typically conditionally independent, the posterior simplifies to p(xxx|xxxb, yyy) ∝ p(yyy|xxx)p(xxx|xxxb).

Traditional DA methods typically assume both the prior p(xxx | xxxb) and the likelihood p(yyy|xxx) follow
Gaussian distributions to simplify the inference process (Bannister, 2017). While this assumption is
relatively reasonable for observation errors, it breaks down for background uncertainty, which often
becomes non-Gaussian after undergoing nonlinear model evolution. Furthermore, this assumption
makes traditional DA methods rely on the background error covariance matrix B to define the solution
space for assimilation (Bannister, 2008a). Nevertheless, B often spans more than 1012 degrees of
freedom in high-resolution systems, making it extremely challenging to estimate and potentially
introducing significant additional error into the assimilation process (Bannister, 2017; 2008b). These
limitations have spurred generative DA frameworks.

Generative DA models perform posterior inference using score functions, offering a promising
alternative to traditional approaches by relaxing the need for Gaussian assumptions (Rozet & Louppe,
2023b;a; Qu et al., 2024; Huang et al., 2024; Manshausen et al., 2025). However, existing approaches
face notable limitations, both in practical implementation and theoretical understanding. For instance,
DiffDA (Huang et al., 2024) conditions the diffusion model on the background and incorporates
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observations through a repainting strategy, but their method underperforms in sparse observation
settings and cannot effectively handle nonlinear observation operators such as satellite radiative
transfer. Qu et al. (2024) encode background and multi-modal observations into a unified guidance
signal, though their reliance on specific observation distribution assumptions restricts generalization
to complex DA scenarios. Moreover, Rozet & Louppe (2023b;a) and Manshausen et al. (2025) treat
observations as guidance during the reverse process, ignoring the background prior. While these
work well when observations are dense and clean, they often fail under sparse or noisy conditions,
where background information becomes essential. These limitations underscore the necessity of a
unified framework that jointly leverages both background information and observational guidance in
generative DA.

To this end, we propose the Latent Optimization Score-based Data Assimilation (LO-SDA) framework,
which seeks to establish a novel bridge between score-based models and the principles of variational
DA for a more fundamental and reliable formulation of generative DA. First, we train a variational
autoencoder (VAE) to learn a compact latent representation of the high-dimensional atmospheric
states, capturing nonlinear dependencies among variables and enabling more efficient probabilistic
modeling. Second, we train a score-based model to learn the background conditioned prior in latent
space p(zzz|zzzb), where zzz represents the latent representation of model state xxx. Third, inspired by
recent work on inverse problems in diffusion models (Song et al., 2024), we adapt its alternating
latent optimization scheme to the context of Data Assimilation. This strategy iteratively enforces
observational constraints during guided diffusion sampling. In our framework, the diffusion-estimated
prior offers a more expressive and less biased analysis than traditional Gaussian assumptions (Figure 1
(a)). Critically, we employ an iterative latent optimization scheme that enforces strict analysis-
observation consistency. As illustrated in Figure 1 (b), this iterative process distinguishes our work
from single-step guidance methods like DPS. Each optimization step can be viewed as an attempt to
minimize the observation-error cost. This multi-step maximization of the posterior likelihood is the
key mechanism shared with variational DA that explains its superior performance.

Our contributions are outlined as follows:

• We establish a theoretical connection between latent optimization and variational DA,
reformulating the iterative process as a generative analogue to traditional cost function
minimization.

• We demonstrate for the first time that a score-based DA framework can surpass traditional
DA approaches, and even match a state-of-the-art latent variational method (L3DVAR) on a
high-dimensional global assimilation task.

• By iteratively enforcing observational constraints, our method produces more accurate and
consistent analyses than common single-step guidance approaches and traditional DA.

2 RELATED WORK

The variational assimilation methods. Variational assimilation is a representative class of traditional
DA methods and is widely used in operational numerical weather prediction systems. In the three-
dimensional case, it seeks to maximize the posterior likelihood (Asch et al., 2016; Rabier & Liu,
2003; Carrassi et al., 2018):

xxxa = argmax
xxx

p(xxx|xxxb, yyy) = argmax
xxx

p(xxx|xxxb)p(yyy|xxx), (1)

where the assumption of independence between observation errors and background errors is applied.
By assuming that the prior distribution p(xxx|xxxb) and the observation likelihood p(yyy|xxx) follow Gaussian
distributions, three-dimensional variational DA (3DVar) is equivalent to minimizing the following
cost function:

J(xxx) =
1

2
(xxx− xxxb)

T B−1(xxx− xxxb) +
1

2
(yyy −H(xxx))T R−1(yyy −H(xxx)) . (2)

where B and R denote the covariance matrices of background and observation errors, respectively,
andH is the observation operator that maps model states to observation space. As noted by Bannister
(2008a; 2017), B plays a central role in variational DA by shaping the feasible solution space
and promoting physical consistency in the resulting analysis. In practice, the high-dimensional
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Figure 1: Comparison between LOSDA and other DA approaches. (a) Prior estimation: The true
background conditional prior p(xxx|xxxb) (blue dashed) is approximated as Gaussian in traditional DA
(green), while LOSDA directly estimates it through diffusion modeling (red). By incorporating
observation likelihood p(yyy|xxx), LOSDA achieves posterior estimation p(xxx|xxxb, yyy) closer to the ground
truth. (b) Observation integration methods: Top - Diffusion Posterior Sampling (DPS) updates
denoised xxxt via observation error gradient guidance (single-step consistency). Bottom - LOSDA’s
optimization approach directly minimizes observation error for optimal denoised xxxt (strict multi-step
consistency). Our framework enforces tighter observation constraints than gradient-based DPS.

B is commonly simplified via a control variable transformation that approximately diagonalizes
it (Descombes et al., 2015). Although this facilitates its inversion, the simplified B may fail to capture
the evolving physical consistency of atmospheric states, leading to suboptimal assimilation outcomes.

The latent assimilation methods. Recently, latent data assimilation (LDA) (Cheng et al., 2024;
Melinc & Zaplotnik, 2024; Peyron et al., 2021; Amendola et al., 2021; Zheng et al.; Fan et al.,
2025a;b;c) has been proposed to apply traditional DA methods with Gaussian priors in a compact
latent space learned via autoencoders. For example, the latent formulation of the widely used
3DVar—referred to as L3DVar—optimizes the following loss function:

J(zzz) =
1

2
(zzz − zzzb)

T B−1
z (zzz − zzzb) +

1

2
(yyy −H(D(zzz))T R−1(yyy −H(D(zzz))). (3)

where zzz and Bz denote the latent state and the background error covariance matrix in the latent
space, respectively. Several studies have found that Bz is inherently near-diagonal, as the latent
space effectively captures correlations among atmospheric variables. Consequently, LDA can adopt a
diagonal Bz , greatly simplifying its implementation (Melinc & Zaplotnik, 2024; Zheng et al.; Fan
et al., 2025a). Fan et al. (2025a) further showed that performing variational assimilation in latent
space can outperform its model-space counterpart. Nevertheless, most latent DA methods remains
constrained by the Gaussian prior assumption. To overcome this limitation, our work also leverages
latent representations of high-dimensional atmospheric states, but replaces the Gaussian prior with a
more expressive, data-driven distribution modeled by a latent score-based model.

3 METHOD

3.1 PRELIMINARY

Score-based model. The score-based model, a promising class of the generative models (Dhariwal
& Nichol, 2024; Ho et al., 2022), offering high-quality generation and excellent model conver-
gence (Song et al., 2021a; Huang et al., 2021; Kingma et al., 2021). It comprises a forward process
and a reverse process (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al., 2021b). In the forward
process, the original data distribution is transformed into a known prior, by gradually injecting
noise. Such a process is governed by a stochastic differential equation (SDE) and a corresponding
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reverse-time SDE (Song et al., 2021b),

dxxx = f(xxx, t)dt+ g(t)dwww (4)

dxxx = [f(xxx, t)− g(t)2∇xxx log pt(xxx)]dt+ g(t)dw̄ww, (5)

where the reverse SDE transforms the prior distribution back into the data distribution by gradually
removing the noise. Here, www and w̄ww both represent the standard Wiener processes (Gaussian white
noise), with f(xxx, t) the drift coefficient and g(t) the diffusion coefficient of xxx(t). Accordingly, the
perturbation kernel from xxx0 to xxxt takes form p(xxxt|xxx) ∼ N (µ(t), σ2(t)III), where µ(t), σ2(t) can be
determined by the f(xxx, t) and g(t). In this work, we take the widely used variance-preserving SDE
and the cosine schedule for µ(t) (Rozet & Louppe, 2023b). In the generative diffusion model, the
score function ∇xxx log pt(xxx) can be estimated by a neural network with parameter θθθ via minimizing
the denoising score matching loss Lt ≡ Ep(xxxt)||sssθθθ(xxx, t) −∇xxx log pt(xxx|xxx0)||2, which theoretically
guarantees sssθθθ(xxx, t) ≈ ∇xxx log pt(xxx) (Song et al., 2021b). Once we have a trained sθ(xxx, t), the
trajectory from the prior distribution to the real data distribution can be determined following
Equation 5.

Score-based data assimilation. Data assimilation under this framework reformulates the Bayesian
posterior as a composite scoring process:

∇xxxt
log p(xt|xb,y) = ∇xxxt

log p(x|xb) +∇xxxτ
log p(y|xt) (6)

The prior term leverages the diffusion model’s capacity to capture complex spatial correlations,
bypassing the oversimplified Gaussian assumptions in the conventional DA methods. The constraint
term enforces observation consistency through conditional guidance. In the DPS paradigm (Chung
et al., 2023), the observation term is supposed to follow Gaussian distribution,

p(y|xt) ∼ N (H(x̃xx0(xxxt)),RRR) (7)

where the posterior mean x̃xx0 derives from Tweedie’s formula (Ho et al., 2020; Sohl-Dickstein et al.,
2015):

x̃xx0(xxxt) =
xxxt + σ(t)2sssθθθ(xxxt,xxxb)

µ(t)
. (8)

3.2 LATENT SCORE-BASED DATA ASSIMILATION

Due to the computational challenges in high-dimensional systems, LDA (Cheng et al., 2024; Melinc
& Zaplotnik, 2024; Peyron et al., 2021; Amendola et al., 2021; Fan et al., 2025a) is proposed to
leverage VAEs for compressing physical fields into low-dimensional manifolds (Kingma et al.,
2013; Doersch, 2016) and performing efficient optimization in this reduced space. Specifically, the
traditional 3DVar formulation (Equation 1) is adapted to the latent space with cost function described
by Equation 3. The gradient descent iteratively optimizes the latent representation of the analysis field.
The optimized latent is then decoded to reconstruct the assimilated state. Although LDA alleviates
non-linearity challenges, its retention of Gaussian assumptions for latent background distributions
imposes theoretical limitations as above-discussed, particularly in capturing the multiscale complexity
characteristic of real atmospheric states (Fan et al., 2025a). In this work, we train a score-based
model in the latent space to model the background conditional distribution. Additionally, we integrate
observations through guidance sampling in the latent space. Mathematically, the latent score modeling
for DA can be expressed as:

∇zzzt
log p(zt|zb,y) = ∇zzzt

log p(z|zb) +∇zzzt
log p(y|zt)

= sssθθθ(zzzt, zzzb) +∇zzzt
log p(y|zt). (11)

For the guidance term, we implemented the latent counterpart of DPS guidance where the observation
term preserves Gaussian distributions p(y|zt) ∼ N (H(D(ẑzz0(zzzt)),RRR). Similar to Equation 8, ẑzz0
is the posterior mean. D(·) denotes the decoder of VAE. While Algorithm 1 outlines the sampling
process using DPS guidance, its single-step gradient update mechanism may provide insufficient
constraint enforcement, potentially compromising observation consistency in high-dimensional
scenarios.
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Algorithm 1 Comparison of DPS Guidance and Latent Optimization for Score-Based Data Assimila-
tion

1: Input: Pretrained score function sθ(zt, zb) = ∇zt
log p(zt|zb), pretrained VAE (encoder E(·),

decoder D(·)), observation distribution p(y|zt), observations y.
2: for t = 1 to 0 do
3: Solve reverse SDE with zzzt+1 and score function ∇ztp(zt|zb): z̃t ← SolutionAtTime(t)
4: if t ∈ C then
5: Calculate posterior mean: ẑzz0=

z̃t+σ2(t)∇zzzt log p(zzzt|zzzb)

µ(t)

6: DPS guidance
7: Perform diffusion posterior sampling:

zt = z̃t + ζ∇zt log p(y|zt)

= z̃t −
1

2
ζ∇z̃t(yyy −H(D(ẑzz0))

TRRR−1(yyy −H(D(ẑzz0)) (9)

8: Latent Optimization
9: With initial value z0 = ẑ0

10: Repeat

zi+1 = zi + ζ∇zi log p(y|zi)

= zi − 1

2
ζ∇zi(yyy −H(D(zzzi))TRRR−1(yyy −H(D(zzzi)) (10)

11: Until Convergence to ẑ0(y)
12: Go back to the noising manifold by resampling: zzzt ∼ p(zt|z̃t, ẑ0(y),y)

13: else
14: zzzt = z̃zzt
15: end if
16: end for
17: Return: The decoded optimized latent variables D(z0)

3.3 LATENT OPTIMIZATION TECHNIQUES

To perform strict observation consistency, we aim to integrate variational optimization (Equation 2
and Equation 3) used in traditional DA. Inspired by inverse problem solving techniques (Song et al.,
2024) within diffusion models, a two-stage latent optimization strategy is proposed: Hard-Constrained
Optimization: (1) Solving ẑzz0(yyy) = argminz(y −H(D(z)))TRRR−1(y −H(D(z))) to ensure strict
observation consistency, (2) Projecting the optimized latent back to the noisy data manifold using the
reverse process. Since the ẑzz0(yyy) = (zzzt − σ(t)ε)/µ(t) can be viewed as the estimated mean of latent
zzzt with the observation single yyy, one have that

p(zzzt|ẑzz0(yyy), yyy) ∼ N
(
µ(t)ẑzz0(yyy), σ

2(t)III
)
, (12)

from the forward process. When we map the ẑzz0(yyy) back to noise data manifold, we
need the distributions p(zt|z̃t, ẑ0(y),y). By Bayesian formula, p(zt|z̃t, ẑ0(y),y) ∝
p(z̃t|zt, ẑ0(y),y)p(zzzt|ẑzz0(yyy), yyy). The posterior distribution p(z̃t|zt, ẑ0(y),y) is assumed as Gaus-
sian distribution with variance λ2

t and the p(zzzt|ẑzz0(yyy), yyy) is supposed to provide the prior of its mean.
Thus, it is accordingly derived (see Appendix):

p(zt|z̃t, ẑ0(y),y) = N
(
λ2
tµ(t)ẑ0(y) + σ2(t)z̃t

λ2
t + σ2(t)

,
λ2
tσ

2(t)

λ2
t + σ2(t)

I

)
. (13)

Following Song et al. (2024), we choose the variance λ2
t schedule as λ2

t =

λ
(

1−µ2(t−∆t)
µ2(t)

)(
1− µ2(t)

µ2(t−∆t)

)
with a hyperparameter λ. This approach integrates varia-

tional optimization within the diffusion sampling framework (Algorithm 1), where latent variables
are iteratively refined at multiple diffusion steps, preserving highly observation consistency.

We now formalize the theoretical connection between the latent optimization technique and the
principles of variational DA. The analysis field in variational DA is obtained by minimizing a cost
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Figure 2: Comparative visualization of t850 analysis fields across assimilation methods under 1%
idealized observation (valid at 2019-01-03 00:00 UTC). Top row (left to right): ERA5 ground truth,
background field, and background error. Middle row: Assimilation results from (a) proposed LO-
SDA method, (b) DPS framework, and (c) Repaint approach. Bottom row: Corresponding absolute
error fields relative to ERA5 truth. The reduced error magnitude (lighter hues) in LO-SDA results
demonstrates our method’s superior error reduction capability compared to alternative approaches.

function (Equation 2) that balances a background term against an observation term. Instead of
enforcing an approximated Gaussian prior via a term like (z − zb)

⊤B−1
z (z − zb), our framework

leverages the diffusion model itself as a powerful, data-driven generative prior, which serves the role
of the background term. For the observation term, in contrast to single-step guidance methods like
DPS, our latent optimization step (Equation 10) iteratively seeks a state ẑ0(y) that minimizes the
observation-error cost, ∥y−H(D(zi))∥2. This objective is functionally equivalent to the observation
term in the variational cost function, explicitly pulling the solution towards strict data consistency.
The subsequent resampling step (Line 12 in Algorithm 1), z′

t ∼ p(zt|z̃t, ẑ0(y),y) This step projects
the observation-consistent state back onto the complex, non-Gaussian manifold learned by the model,
ensuring physical plausibility.

Accordingly, the LO-SDA framework effectively splits the variational optimization into an iterative
procedure of alternating optimization (for the observation term) and projection (for the background
term). This deep, optimization-based similarity not only motivates our approach but also provides
a compelling explanation for its outstanding performance, as it marries the rigorous observation
constraint of variational methods with the expressive power of a learned, non-Gaussian prior.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS AND EVALUATIONS

Dataset and metrics. We conduct our experiments on the ERA5 reanalysis dataset (Hersbach et al.,
2020), a global atmospheric data product maintained by the European Centre for Medium-Range
Weather Forecasts (ECMWF). Our study utilizes 5 upper-air atmospheric variables (geopotential,
temperature, specific humidity, zonal wind, and meridional wind) across 13 pressure levels (50hPa,
100hPa, 150hPa, 200hPa, 250hPa, 300hPa, 400hPa, 500hPa, 600hPa, 700hPa, 850hPa, 925hPa, and
1000hPa), combined with 4 surface variables (10-meter zonal component of wind (u10), 10-meter
meridional component of wind (v10), 2-meter temperature (msl) and mean sea level pressure (msl)),
forming a total of 69 meteorological variables. The pressure-level variables follow the standardized
ERA5 naming convention (e.g., t850 denotes temperature at 850 hPa). We use a subset spanning
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Table 1: Quantitative performance comparison of different methods under 1% and 5% observations.

Ratio Model MSE MAE WRMSE
msl u10 u700 v500 z500 t850

48h background 0.0505 0.1178 98.7265 1.2727 1.9953 2.4217 89.2752 0.9310

1% observation

3DVAR 0.0483 0.1138 81.6384 1.2235 1.9850 2.4298 62.9377 0.8797
L3DVAR 0.0474 0.1105 62.1054 1.1862 1.9797 2.3392 53.0902 0.8975
Repaint 0.0592 0.1311 114.3672 1.4167 2.1059 2.5664 104.1351 1.0363

DPS 0.0545 0.1247 95.9850 1.3286 2.0220 2.3981 85.5673 1.0269
LO-SDA(ours) 0.0472 0.1101 62.4505 1.1836 1.8981 2.2439 53.6468 0.9243

5% observation

3DVAR 0.0430 0.0982 63.2562 1.1661 1.8765 2.2365 45.8574 0.7849
L3DVAR 0.0315 0.0903 45.8037 0.9350 1.7166 1.9400 38.6411 0.8024
Repaint 0.0496 0.1219 106.3938 1.2934 1.9889 2.3622 95.9167 0.9856

DPS 0.0486 0.1199 93.2470 1.2673 1.9585 2.3271 85.3329 0.9891
LO-SDA(ours) 0.0309 0.0851 42.3498 0.8992 1.5873 1.7894 32.8990 0.8094

1979-2018 for training and evaluations. For evaluations, the assimilation quality is assessed by
direct comparison with ERA5 reference fields. Three metrics quantifying performance are overall
mean square error (MSE), mean absolute error (MAE), and the latitude-weighted root mean square
error (WRMSE) (see Appendix), which is a statistical metric widely used in geospatial analysis and
atmospheric science (Rasp et al., 2020; 2024). The validation procedure conducts assimilation cycles
at 00:00 UTC for each day throughout 2019. For each test case, we calculate the above three metrics.
Final performance scores represent the annual average of these daily metrics, ensuring statistically
significant results across all seasons and synoptic conditions.

Experimental setting. The Fengwu AI forecasting model (Chen et al., 2023) (6-hour temporal
resolution) is integrated into our DA framework to produce the background field. These fields are
generated through an 8-step autoregressive forecasting procedure, initialized with ERA5 conditions
from 48 hours prior to the target assimilation lead time. To simulate realistic observing system
characteristics, we create synthetic observations by randomly masking the ERA5 truth data at two
sparsity levels (95% and 99%), mimicking typical satellite coverage constraints. The 1.40625°
(128× 256 grid) spatial resolution is employed, yielding input arrays of size 69× 128× 256.

The background conditional diffusion model. We present a unified framework for conditional
physics field modeling through variational autoencoding and latent diffusion. Our architecture begins
with a window-attention transformer VAE (Han et al., 2024) that compresses high-dimensional
fields (69 × 128 × 256) to compact latent representations (69 × 32 × 64). Trained for 80 epochs
using AdamW (Loshchilov et al., 2017) with batch size 32, the VAE employs a hybrid learning rate
schedule: linear warmup to 2×10−4 over 10,000 iterations followed by cosine decay, achieving 0.0067
reconstruction MSE as detailed in Appendix. The latent diffusion process then learns conditional
distributions p(zzz|zzzb) through a 28-layer transformer backbone (Peebles & Xie, 2023) with 1152-
dimensional hidden states, (2,2) patch embedding, and 16-head cross-attention for background latent
zzzb conditioning. For diffusion setting, the variance-preserving SDE (Song et al., 2021b) with cosine
noise scheduling. Optimized via AdamW (Loshchilov et al., 2017) at constant 1 × 10−4 learning
rate (batch size 32), the model converges stably over 100k training steps. Sampling employs a
modified Predictor-Corrector scheme combining 128-step prediction with 2 iterations of Langevin
correction (Song et al., 2021b). See the Appendix for more comprehensive resource usage.

Baselines. For diffusion-based experiments, we incorporate observations through two baseline
methods: a latent-space implementation of the repainting technique from DiffDA (Huang et al., 2024)
and the latent version of DPS described in Algorithm 1. The latent repaint implementation follows:

zzzobst ∼ N (µ(t)E(xxx∗), σ2(t)III), z̃zzt ← SolutionAtTime(t) (14)

zzzt−1 = E
(
m⊙D(zzzobst ) + (1−m)⊙D(z̃zzt)

)
(15)

where zobst is noised latent with E(xxx∗) is the encoded ERA5 ground truth latent. zzzt is the sampled
prior latent at diffusion time t. We finally combine the decoded observed and prior latents in model
space using a masking matrix m, with ⊙ denoting element-wise multiplication.

Moreover, we compare against not only the conventional 3DVar but also its powerful latent-space
counterpart, L3DVAR, which represents the state-of-the-art for machine learning based variational
methods.
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Table 2: Quantitative performance comparison under a 1% observation setting, with varying observa-
tion errors modeled as Gaussian noise. The standard deviations are set to 0.02, 0.05, and 0.10 relative
to the ERA5 climatological standard deviation.

Ratio Model MSE MAE WRMSE
msl u10 u700 v500 z500 t850

48h background 0.0505 0.1178 98.7265 1.2727 1.9953 2.4217 89.2752 0.9310

std = 0.02
3DVAR 0.0484 0.1141 82.4252 1.2243 1.9805 2.4202 67.3522 0.8679

L3DVAR 0.0475 0.1109 63.0360 1.1935 1.9900 2.3496 53.6535 0.9054
LO-SDA(ours) 0.0470 0.1109 64.7142 1.1940 2.0618 2.2888 55.3858 0.9354

std = 0.05
3DVAR 0.0485 0.1158 85.4325 1.2246 1.9643 2.3893 77.8867 0.8845

L3DVAR 0.0481 0.1132 72.2672 1.1852 1.9515 2.3199 63.6825 0.9143
LO-SDA(ours) 0.0479 0.1127 68.0784 1.1989 1.9104 2.2641 58.1329 0.9542

std = 0.10
3DVAR 0.0495 0.1173 91.2331 1.2291 1.9493 2.3636 84.4765 0.9101

L3DVAR 0.0489 0.1147 83.1325 1.1954 1.9448 2.3275 75.3260 0.9341
LO-SDA(ours) 0.0498 0.1188 82.0772 1.2408 1.9602 2.3194 69.4214 1.0308

4.2 RESULTS

Table 1 presents our key results (see Appendix for statistical significance analysis), which demonstrate
a notable improvement for generative data assimilation. When compared to traditional 3DVAR data
assimilation, LO-SDA exhibits significantly improved accuracy. The most critical comparison is
against L3DVAR, a state-of-the-art, machine learning-driven variational method. Even under the
highly sparse 1% observation setting, LO-SDA achieves performance that is statistically comparable
to this highly optimized baseline. This result demonstrates, for the first time, that a score-based
framework can achieve comparable performance to SOTA machine learning driven variational
DA (L3DVAR) at the global atmospheric scale. Furthermore, this performance advantage widens
as observational density increases. At 5% observation coverage, LO-SDA decisively surpasses
L3DVAR, delivering a 14.86% improvement for z500 WRMSE. This superior scalability highlights
the effectiveness of our approach in leveraging denser observational constraints, a key requirement
for operational systems. Beyond the idealized settings, we evaluate LO-SDA with a real-world
observation distribution of approximately 0.6% coverage (see Appendix for more details). This
evaluation demonstrates that our framework’s performance is comparable to L3DVAR even under
highly sparse, realistic conditions.

This success can be attributed to the generative variational principles in our framework, which
fundamentally distinguish LO-SDA from other diffusion-based approaches. While methods like DPS
rely on a single-step gradient correction, LO-SDA’s iterative optimization enforces rigorous data
consistency, as theoretically motivated in Algorithm 1. The advantage of this iterative strategy is
further demonstrated by the comparison with other diffusion-based methods: under 1% observations,
LO-SDA improves upon DPS and Repaint by 13.39% and 20.27% in overall MSE, respectively. This
empirically validates our hypothesis that integrating variational-like optimization is key to unlocking
the full potential of diffusion models for DA.

LO-SDA also demonstrates that generative modeling can transcend traditional Gaussian assump-
tions without compromising accuracy. This advancement stems from a novel hybrid approach: a
background-conditioned diffusion model replaces the restrictive prior, while iterative latent opti-
mization integrates the flexibility of generative modeling with the rigorous observation-consistency
requirements of operational DA. These findings establish score-based models as a well-established
and highly competitive paradigm for the future of DA.

4.3 ABLATION STUDIES

Observation Error Robustness. To evaluate the robustness of LO-SDA under realistic observational
conditions, we conduct experiments with simulated observation errors by injecting additive Gaussian
noise with standard deviations of 2%, 5%, and 10% of the ERA5 climatological standard deviation.
As evidenced by the quantitative results in Table 2, our framework maintains consistent performance
across various noise levels, demonstrating remarkable error tolerance.
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Table 3: Comparison of latent optimization frequencies (skip=2, 4, 8) in reverse diffusion sampling
under sparse observation settings (1% and 5%).

Ratio Frequency MSE MAE WRMSE
msl u10 u700 v500 z500 t850

48h background 0.0505 0.1178 98.7265 1.2727 1.9953 2.4217 89.2752 0.9310

1% observation
skip=2 0.0472 0.1101 62.4505 1.1836 1.8981 2.2439 53.6468 0.9243
skip=4 0.0518 0.1162 70.2005 1.2648 1.9677 2.33571 59.6587 0.9611
skip=8 0.0549 0.1205 74.2434 1.3258 2.0143 2.4029 62.7748 0.9840

5% observation
skip=2 0.0309 0.0851 42.3498 0.8992 1.5873 1.7894 32.8990 0.8094
skip=4 0.0370 0.0939 49.5966 0.9892 1.6697 1.8892 41.5379 0.8538
skip=8 0.0415 0.1001 54.9766 1.0740 1.7544 2.0039 45.8147 0.8890

Latent Optimization Frequency Analysis. To empirically validate the theoretical connection (see
Section 3.3) and demonstrate its impact on our framework’s effectiveness, we conduct an ablation
study on the latent optimization frequency by adjusting the skip interval parameter. Table 3 reveals
a systematic performance degradation as the skip interval increases (i.e., fewer optimization steps).
Specifically, under sparse 5% observation conditions, the overall MSE increases by 19.74% and
34.30% for skip intervals of 4 and 8, respectively, compared to the baseline configuration with
skip=2. This degradation aligns with our theoretical insight: frequent latent optimization ensures
proper integration of observations into the diffusion process, analogous to how iterative refinement in
variational DA minimizes the analysis cost function.

4.4 COMPUTATIONAL EFFICIENCY

The variational methods like 3DVAR and L3DVAR (in the latent space) are highly efficient (5
and 10 seconds per assimilation, respectively). A standard diffusion sampler without optimization
takes approximately 100 seconds. Table 3 reveals the trade-off between assimilation accuracy and
computational efficiency. The cost increases linearly as the optimization becomes more frequent
(i.e., as the skip interval decreases). The two-skip configuration requires about 5 minutes (∼300
seconds). While this represents a significant computational demand, LO-SDA is the first diffusion-
based framework that validates a paradigm shift from well-established variational techniques to more
powerful, data-driven generative approaches.

5 CONCLUSION

The proposed LO-SDA framework presents a significant advancement in data assimilation by in-
troducing a generative approach that effectively overcomes the limitations of traditional Gaussian
assumptions. We reformulate the iterative latent optimization technique as a generative analogue to
traditional cost function minimization, where an optimization step enforces observation consistency
and a resampling step enforces a powerful, data-driven prior. The practical impact of this connection
is significant: experimental results show that LO-SDA is the first score-based framework to close the
performance gap to a state-of-the-art latent variational method (L3DVAR), surpassing it by 14.86%
in z500 WRMSE under 5% observation coverage.

While this work introduces a novel approach that makes generative DA surpass variational DA,
the nature of latent optimization, which requires multiple model evaluations per assimilation step,
presents a significant computational cost compared to single-step methods. Despite the limitation,
LO-SDA marks a paradigm shift in atmospheric DA. It serves as evidence that generative models,
when integrated with variational principles, can effectively replace traditional Gaussian assumptions
and significantly improve performance. By combining the flexibility of deep generative models
with the rigorous constraints required in operational DA, LO-SDA represents a key step toward
next-generation data assimilation systems. Future work should focus on improving computational
efficiency and expanding the framework’s applicability to more diverse and realistic atmospheric
conditions.
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A USE OF LLMS STATEMENT

A large language model was used to assist with grammar and language refinement in this manuscript.

B WRMSE

The latitude-weighted root mean square error (WRMSE) is a statistical metric widely used in
geospatial analysis and atmospheric science. Given the estimate x̂h,w,c and the truth xh,w,c, the
WRMSE is defined as,

WRMSE(c) =

√√√√ 1

H ·W
∑
h,w

H
cos(αh,w)∑H

h′=1 cos(αh′,w)
(xh,w,c − x̂h,w,c)2 . (16)

Here H and W represent the number of grid points in the longitudinal and latitudinal directions,
respectively, and αh,w is the latitude of point (h,w).

C THE VAE TRAINING AND RESULTS

Model structure and training We utilize a transformer-based variational autoencoder framework
(VAEformer) to effectively reduce the dimensionality of atmospheric data, mapping high-dimensional
fields to a compact latent representation Han et al. (2024). The architecture incorporates window-
based attention mechanisms Liu et al. (2021) to efficiently model atmospheric circulation patterns.
Following the "vit_large" design paradigm, our implementation features identical encoder and decoder
structures employing 4×4 patch embeddings with matching stride, a 1024-dimensional latent space,
and a 24-layer transformer network utilizing window attention. The model was trained on ERA5
reanalysis data spanning 1979-2016, with the subsequent two-year period (2016-2018) serving as
validation, over the course of 60 training epochs.

Results Our trained VAE achieves 0.0067 overall MSE and 0.0486 overall MAE. The varibles
WRMSE are presented in Table 4.

Table 4: The VAE training results on WRMSE

u10 v10 t2m msl z50 z100 z150 z200 z250 z300
0.54832 0.50501 0.82944 34.002 75.529 55.645 42.436 38.426 35.963 35.008

z400 z500 z600 z700 z850 z925 z1000 q50 q100 q150
31.623 28.4 25.948 24.563 23.415 24.37 27.266 9.64E-09 6.35E-08 4.90E-07

q200 q250 q300 q400 q500 q600 q700 q850 q925 q1000
3.04E-06 1.02E-05 2.47E-05 7.81E-05 1.68E-04 2.73E-04 4.01E-04 6.02E-04 5.95E-04 4.69E-04

u50 u100 u150 u200 u250 u300 u400 u500 u600 u700
0.91052 1.1085 1.3769 1.5108 1.5418 1.5148 1.3712 1.2184 1.1193 1.0552

u850 u925 u1000 v50 v100 v150 v200 v250 v300 v400
0.95107 0.78308 0.60413 0.80967 0.91698 1.1081 1.2589 1.3588 1.3544 1.2148

v500 v600 v700 v850 v925 v1000 t50 t100 t150 t200
1.0672 0.96791 0.90445 0.84409 0.71597 0.55351 0.59292 0.64698 0.47627 0.39086

t250 t300 t400 t500 t600 t700 t850 t925 t1000
0.39115 0.41718 0.47806 0.48918 0.50497 0.5381 0.64627 0.61494 0.66865

D RESAMPLING

Here we provide a derivation of Equation 13. Assume we have two independent Gaussian distribu-
tions:

pa(x) = N (x;µa, σ
2
a) (17)

pb(x) = N (x;µb, σ
2
b ) (18)

13
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The product distribution pc(x) = pa(x)pb(x) is also Gaussian with parameters:

µc =
µa/σ

2
a + µb/σ

2
b

1/σ2
a + 1/σ2

b

(19)

σ2
c =

1

1/σ2
a + 1/σ2

b

(20)

Proof:

pc(x) ∝ exp

(
− (x− µa)

2

2σ2
a

)
exp

(
− (x− µb)

2

2σ2
b

)
= exp

(
−1

2

(
1

σ2
a

+
1

σ2
b

)
x2 + x

(
µa

σ2
a

+
µb

σ2
b

)
+ C

)
(21)

where C contains terms independent of x. Completing the square, we obtain:

pc(x) ∝ exp

(
− (x− µc)

2

2σ2
c

)
(22)

with µc and σ2
c as defined above.

Now consider the conditional distribution in Equation 13, where:
p(zt|ẑ0(y),y) ∼ N

(
µ(t)ẑ0(y), σ

2(t)I
)

(23)

p(z̃t|zt, ẑ0(y),y) ∼ N (zt, λ
2
tI) (24)

The posterior distribution is given by:
p(zt = a|z̃t, ẑ0(y),y) ∝ p(z̃t|zt = a)p(zt = a|ẑ0(y),y)

∝ exp

(
−∥a− z̃t∥2

2λ2
t

)
exp

(
−∥a− µ(t)ẑ0(y)∥2

2σ2(t)

)
∝ exp

(
−1

2

(
1

λ2
t

+
1

σ2(t)

)
∥a∥2 +

〈
a,

z̃t
λ2
t

+
µ(t)ẑ0(y)

σ2(t)

〉)
(25)

Applying the product formula for Gaussians, we obtain:

p(zt|z̃t, ẑ0(y),y) ∼ N
(
λ2
tµ(t)ẑ0(y) + σ2(t)z̃t

λ2
t + σ2(t)

,
λ2
tσ

2(t)

λ2
t + σ2(t)

I

)
(26)

E REAL-WORLD OBSERVATIONS

To evaluate our framework under real-world conditions, we employ the Global Data Assimilation
System (GDAS) prepbufr dataset, which incorporates multi-source observations. For this study, only
surface and radiosonde observations are utilized. These observations are first interpolated onto the
model state grid, and any multiple observations at a single grid point are averaged. High-elevation
surface observations are vertically interpolated and reclassified as upper-air data. A quality control
procedure is further applied to remove observations with large deviations. Observations are dropped if
their deviation from the ERA5 reference exceeds 0.05 of the ERA5 climatological standard deviation.
We perform data assimilation daily at 00:00 UTC throughout 2017, using a 48-hour background
field. As shown in Table 5, the results indicate that LO-SDA achieves performance comparable to
L3DVAR, and slightly outperforms the traditional 3DVAR when using real observations.

F STATISTICAL SIGNIFICANCE

To rigorously evaluate the statistical significance of our results, we present the mean errors and
standard deviations across the whole test dataset in Table 6. This analysis confirms our main
conclusions: the performance of LO-SDA is statistically comparable to the state-of-the-art L3DVAR
method, particularly under 1% observation. Conversely, LO-SDA demonstrates a clear and statistically
significant advantage over both traditional 3DVAR and other diffusion-based approaches (DPS and
Repaint), as evidenced by the consistently lower mean errors and non-overlapping standard deviations.
Notably, LO-SDA also exhibits greater stability, with smaller error variances than other generative
methods, suggesting more robust performance across diverse atmospheric conditions.
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Table 5: Assimilation performance on real-world observation across various methods.

MSE MAE WRMSE
msl u10 u700 v500 z500 t850

48h background 0.0475 0.1158 98.7910 1.2588 1.9692 2.4061 89.2800 0.9232

3DVAR 0.0472 0.1150 87.1536 1.2532 1.9646 2.3950 83.8241 0.9068
L3DVAR 0.0467 0.1143 84.8751 1.2376 1.9597 2.3778 78.1842 0.8962

LO-SDA(ours) 0.0469 0.1140 81.4013 1.2128 1.9891 2.3657 77.1881 0.9914

Table 6: The statistical significance analysis of different methods under 1% and 5% observations.

Ratio Model WRMSE
msl u10 u700 v500 z500 t850

1% observation

3DVAR 81.6384 ± 5.1771 1.2235 ± 0.0509 1.9850 ± 0.0755 2.4298 ± 0.1022 62.9377 ± 4.5379 0.8797 ± 0.0304
L3DVAR 62.1054 ± 3.2258 1.1862 ± 0.0435 1.9797 ± 0.0682 2.3392 ± 0.0928 53.0902 ± 2.8705 0.8975 ± 0.0289
Repaint 114.3672 ± 6.3959 1.4167 ± 0.0525 2.1059 ± 0.0716 2.5664 ± 0.1081 104.1351 ± 7.2029 1.0363 ± 0.03345

DPS 95.9850 ± 5.4456 1.3286 ± 0.0453 2.0220 ± 0.0764 2.3981 ± 0.0887 85.5673 ± 11.1945 1.0269 ± 0.0412
LO-SDA(ours) 62.4505 ± 3.0864 1.1836 ± 0.0387 1.8981 ± 0.0597 2.2439 ± 0.0836 53.6468 ± 2.6033 0.9243 ± 0.0274

5% observation

3DVAR 63.2562 ± 3.5630 1.1661 ± 0.0484 1.8765 ± 0.0864 2.2365 ± 0.1173 45.8574 ± 2.5304 0.7849 ± 0.0259
L3DVAR 45.8037 ± 1.6854 0.9350 ± 0.0308 1.7166 ± 0.0533 1.9400 ± 0.0713 38.6411 ± 1.6761 0.8024 ± 0.0242
Repaint 106.3938 ± 5.9038 1.2934 ± 0.0455 1.9889 ± 0.0648 2.3622 ± 0.0975 95.9167 ± 6.7577 0.9856 ± 0.0315

DPS 93.2470 ± 4.0291 1.2673 ± 0.0429 1.9585 ± 0.0657 2.3271 ± 0.0910 85.3329 ± 9.0282 0.9891 ±0.0331
LO-SDA(ours) 42.3498 ± 1.5015 0.8992 ± 0.2159 1.5873 ± 0.0445 1.7894 ± 0.0615 32.8990 ± 1.3194 0.8094 ± 0.2179

G MORE VISUALIZATION.

We provide additional visualization results comparing different assimilation methods under 5%
observation. In all appendix figures, the top row (left to right) displays the ERA5 ground truth,
background field, and background error. The middle row shows assimilation results from (a) our
proposed LO-SDA method, (b) the DPS framework, and (c) the Repaint approach, while the bottom
row presents the corresponding absolute error fields relative to ERA5 truth. The significantly lighter
error magnitudes in the LO-SDA results highlight our method’s superior error reduction capability
compared to alternative approaches.
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Figure 3: Visulaization of u500 at a 2019-08-26-06:00 UTC.

Figure 4: Visulaization of z500 at a 2019-05-18-06:00 UTC.
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Figure 5: Visulaization of q700 at a 2019-02-02-06:00 UTC.

Figure 6: Visulaization of msl at a 2019-04-07-06:00 UTC.
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