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ABSTRACT

Miscalibration – a mismatch between a model’s confidence and its correctness – of
Deep Neural Networks (DNNs) makes their predictions hard for downstream com-
ponents to trust. Ideally, we want networks to be accurate, calibrated and confident.
Temperature scaling, the most popular calibration approach, will calibrate a DNN
without affecting its accuracy, but it will also make its correct predictions under-
confident. In this paper, we show that replacing the widely used cross-entropy
loss with focal loss allows us to learn models that are already very well calibrated.
When combined with temperature scaling, focal loss, whilst preserving accuracy
and yielding state-of-the-art calibrated models, also preserves the confidence of
the model’s correct predictions, which is extremely desirable for downstream tasks.
We provide a thorough analysis of the factors causing miscalibration, and use the
insights we glean from this to theoretically justify the empirically excellent perfor-
mance of focal loss. We perform extensive experiments on a variety of computer
vision (CIFAR-10/100) and NLP (SST, 20 Newsgroup) datasets, and with a wide
variety of different network architectures, and show that our approach achieves
state-of-the-art accuracy and calibration in almost all cases.

1 INTRODUCTION

Deep neural networks have dominated computer vision and machine learning in recent years, and
this has led to their widespread deployment in real-world systems (Cao et al., 2018; Chen et al., 2018;
Kamilaris and Prenafeta-Boldú, 2018; Ker et al., 2018; Wang et al., 2018). State-of-the-art networks
achieve high levels of accuracy for many tasks. However, many current multi-class classification
networks in particular are poorly calibrated, in the sense that the probability values that they associate
with the class labels they predict for different test samples overestimate the likelihoods of those
class labels being correct in the real world. This is a major problem, since if networks are routinely
overconfident, then downstream components cannot trust their predictions. The underlying cause is
hypothesised to be that these networks’ high capacity leaves them vulnerable to overfitting on the
negative log-likelihood (NLL) loss they conventionally use during training (Guo* et al., 2017).

Given the importance of this problem, numerous suggestions for how to address it have been proposed.
Much work has been inspired by early approaches from the pre-deep learning era such as Platt
scaling (Platt, 1999), histogram binning (Zadrozny and Elkan, 2001), isotonic regression (Zadrozny
and Elkan, 2002), and Bayesian binning and averaging (Naeini et al., 2015; Naeini and Cooper, 2016).
As deep learning has become more dominant, works have begun to directly target the calibration of
deep networks. For example, Guo et al. (Guo* et al., 2017) have popularised a modern variant of
Platt scaling known as temperature scaling, which works by dividing a network’s logits by a scalar
T > 0 (learnt on a validation subset) prior to performing softmax. Temperature scaling has the
desirable property that it can improve the calibration of a network without in any way affecting its
accuracy. Mozafari et al. (Mozafari et al., 2018) noted the downsides of using cross-entropy loss with
temperature scaling, and proposed an alternative loss called Attended-NLL that helps temperature
scaling achieve better calibration. More recently, Shrikumar and Kundaje (Shrikumar and Kundaje,
2019) have proposed an extension to temperature scaling that adds class-specific bias parameters
to help eliminate systematic bias when performing domain adaptation. Separately, Hendrycks et
al. (Hendrycks et al., 2019) have studied the effects of pre-training (vs. training from scratch) on
model robustness and uncertainty: they make the interesting observation that because long periods of
training can cause a network to become miscalibrated, tuning a pre-trained network, which facilitates
faster convergence, can seemingly lead to a more calibrated model. Notably, since their approach
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complements temperature scaling, the two techniques can also be used together to achieve even better
calibration overall.

Whilst temperature scaling’s simplicity and effectiveness have made it a popular and state-of-the-art
network calibration technique, it does have downsides. For example, whilst it scales the logits to
reduce the network’s confidence in incorrect predictions, this also slightly reduces the network’s
confidence in predictions that were actually correct. By contrast, Kumar et al. (Kumar et al., 2018)
eschew temperature scaling altogether in favour of minimising a differentiable proxy for calibration
error at training time, called Maximum Mean Calibration Error (MMCE). However, they also use
temperature scaling as a post-processing step to obtain better results than cross-entropy followed by
temperature scaling (Guo* et al., 2017).

In this paper, we propose a technique for improving network calibration that works by replacing the
cross-entropy loss conventionally used when training multi-class classification networks with the
focal loss proposed by Lin et al. (Lin et al., 2017) for dense object detection. Since focal loss, as
shown in §4, is dependent on a hyperparameter, γ, which needs to be cross-validated, we also provide
a theoretically justified way to choose γ automatically for each sample and show it to outperform all
the baseline models.

Informally, the intuition behind using focal loss is to direct the network’s attention during training
towards samples for which it is currently predicting a low probability value for the correct class, since
trying to reduce the NLL on samples for which it is currently predicting a high probability value for
the correct class is liable to lead to NLL overfitting, and thereby miscalibration (Guo* et al., 2017).
More formally, we show in §4 that focal loss can be seen as implicitly regularising the weights of
the network by causing the gradient norm to be lower than it would have been with cross-entropy
loss as training proceeds, which we would theoretically expect to reduce overfitting and improve
the calibration of the network. In §5, we perform extensive experiments on a variety of computer
vision (CIFAR-10/100) and NLP (20 Newsgroups/SST) datasets, and with a wide variety of different
network architectures (e.g. ResNet-110/50, Wide-ResNet, DenseNet), to show that this is indeed the
case.

Our experiments show that in almost all cases, DNNs trained with focal loss are more calibrated
than those trained with cross-entropy loss, MMCE, and Brier loss Brier (1950). Moreover, since
our approach, like that of (Hendrycks et al., 2019), is complementary to the temperature scaling,
significant improvements in calibration over temperature scaling alone, and state-of-the-art results,
can be achieved by training with focal loss and then performing temperature scaling.

2 PROBLEM SETUP

Let D = 〈(xi, yi)〉Ni=1 denote a dataset consisting of samples from a joint distribution D(X ,Y),
where for each sample i, xi ∈ X is the input and yi ∈ Y = {1, 2, ...,K} is the ground-truth class
label. Let p̂i,y = fθ(y|xi) be the probability that a neural network f with model parameters θ predicts
for a class y on a given input xi. The class that f predicts for xi is computed as ŷi = argmaxy∈Y p̂i,y ,
and the predicted confidence as p̂i = maxy∈Y p̂i,y. Note that the confidence, by definition, does
not depend on the ground-truth label. The network is said to be perfectly calibrated when, for each
sample (xi, yi) ∈ D, the confidence p̂i is equal to the model accuracy P(ŷi = yi), i.e. the probability
that the predicted class is correct. For instance, of all the samples that a perfectly calibrated neural
network classifies with a confidence of 0.8, 80% should be correctly predicted.

One of the most popular metrics used to measure model calibration is the expected calibration
error (ECE) (Naeini et al., 2015), defined as the expected absolute difference between the model’s
confidence and its accuracy, i.e. E(xi,yi)∼D

[
|P(ŷi = yi)− p̂i|

]
. Since calculating P(ŷi = yi) is

infeasible, the ECE cannot be directly computed. A workaround is to divide the interval [0, 1] into
M equispaced bins, where the ith bin is the interval

(
i−1
M , i

M

]
. Let Bi denote the set of samples

with confidence scores belonging to the ith bin. Then the accuracy Ai of this bin is computed as
Ai =

1
|Bi|

∑
j∈Bi

1 (ŷj = yj), where 1 is the indicator function, and ŷj and yj are respectively the
predicted and ground-truth labels for the jth sample. Similarly, the confidence Ci of the ith bin is
computed as Ci = 1

|Bi|
∑
j∈Bi

p̂j , i.e. Ci is the average confidence of all samples in the bin. The
ECE can be approximated as a weighted average of the absolute difference between the accuracy and
confidence of each bin:

ECE =
∑M
i=1

|Bi|
N |Ai − Ci| . (1)
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A similar metric, the maximum calibration error (MCE) (Naeini et al., 2015), is defined as the
maximum absolute difference between the confidence and accuracy of each bin:

MCE = maxi∈{1,...,M} |Ai − Ci| . (2)

A common way of visually exploring the calibration of a model is to use a reliability plot (Niculescu-
Mizil and Caruana, 2005), which plots the accuracies of the various confidence bins as a bar chart
(see Figure 2). Reliability plots not only give a quick visual indication of a model’s MCE (but not
ECE, since the numbers of samples in the different bins are not shown), but also capture whether
or not a model is under-confident or over-confident in general. For a perfectly calibrated model, the
accuracy for each bin will match the confidence, and hence all of the bars will lie on a diagonal. By
contrast, if most of the bars lie above the diagonal, meaning that the model is more accurate than it
expects, then it is said to be under-confident, and if most of the bars lie below the diagonal, then it is
said to be over-confident.

We also consider another metric which we call AdaECE (Adaptive ECE) where the bin sizes are
decided such that each bin contains the same number of samples, unlike ECE (1) where every bin
size is fixed and might contain very different number of samples (for example, Figure 2). However,
AdaECE allows better approximation of ECE as it ensures that every approximate bin has the same
sample density.

AdaECE =
∑M
i=1

|Bi|
N |Ai − Ci| where ∀i 6= j, |Bi| = |Bj |. (3)

3 WHAT CAUSES MISCALIBRATION?
We now discuss why high-capacity neural networks, despite achieving low classification errors on
well-known datasets, tend to be miscalibrated. A key empirical observation made by (Guo* et al.,
2017) was that poor calibration of such networks appears to be linked to overfitting on the negative
log-likelihood (NLL) during training. In this section, we further inspect this observation to provide
new insights, and discuss the main factors that play a role in causing the above-mentioned NLL
overfitting.

For the analysis in this section, we train a ResNet-50 network on CIFAR-10 using a training infras-
tructure PyTorch-CIFAR which is known to produce state-of-the-art accuracy. We train it for 350
epochs using Stochastic Gradient Descent (SGD), with a momentum of 0.9, and a learning rate of 0.1
for the first 150 epochs, 0.01 for the next 100 epochs and 0.001 for the last 100 epochs. We use a
mini-batch size of 128. Following standard practice, we minimise cross-entropy loss, which, for the
ith training sample, is computed as Lc = − log p̂i,yi where p̂i,yi is the probability assigned by the
network to the correct class for the ith sample.

It is interesting to note that NLL (a.k.a. cross-entropy) loss is a differentiable proxy for the actual
metric that we aim to minimise by training a model, namely the classification error. However, there
are certain differences between minimising the NLL and minimising the classification error. For
instance, the NLL is minimised when for every training sample i, p̂i,yi = 1, whereas the classification
error is minimised if for every sample i, p̂i,yi > p̂i,y for all y 6= yi. This indicates that even when the
classification error is zero, the NLL can be positive, and the optimisation algorithm could in that case
try to reduce it to zero by further increasing the value of p̂i,yi for each sample.

To study how miscalibration occurs during training, we plot the average NLL for the train and test
sets at each training epoch in Figures 1(a) and 1(b). We also plot the average NLL and the entropy of
the softmax distribution produced by the network for the correctly and incorrectly classified samples.
In Figure 1(c), we plot the classification errors on the train and test sets, along with the test set ECE.

Curse of misclassified samples: Figures 1(a) and 1(b) show that although the average train NLL
(for both correctly and incorrectly classified training samples) broadly decreases throughout training,
after the 150th epoch (where the learning rate drops by a factor of 10), there is a marked rise in the
average test NLL, indicating that the network starts to overfit on average NLL. However, the increase
in average test NLL is caused only by the incorrectly classified samples, as the average NLL for the
correctly classified samples continues to decrease even after the 150th epoch. We also observe that
after epoch 150, the test set ECE rises, indicating that the network is becoming miscalibrated. This
corroborates the observation in (Guo* et al., 2017) that miscalibration and NLL overfitting are linked.
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Figure 1: Metrics to capture how model calibration changes over training epochs in a ResNet-50
network trained on CIFAR-10.

Figure 2: Top row: reliability plots using 25 confidence bins. Bottom row: % of samples in each
bin, computed over the training set at epochs 100, 200, 300 and 350.

Peak at the wrong place: We further observe that the entropies of the softmax distributions for both
the correctly and incorrectly classified test samples decrease throughout training (in other words, the
distributions get peakier). This observation, coupled with the one we made above, indicates that for
the wrongly classified test samples, the network gradually becomes more and more confident about
its incorrect predictions. Finally, we notice that the training set classification error drops from around
20% to nearly 0% at epoch 150, and further drops to exactly 0% from epoch 250 onwards. The
network thus has a very low training set classification error throughout the period of miscalibration.

Favouring correctly classified samples: One potential explanation for the above observations is
that after the 150th training epoch, the network classifies almost all of the training samples correctly,
and hence, in order to further minimise the training NLL, it focuses on increasing the confidence
of its correct predictions, rather than focusing on the incorrectly classified samples. In order to
experimentally validate this, we use two observations. Firstly, we divide the confidence range [0, 1]
into 25 bins, and present reliability plots computed on the training set at epochs 100, 200, 300 and
350 (see the top row of Figure 2). In Figure 2, we also show the percentage of samples in each
confidence bin. It is quite clear from these plots that over time, the network gradually pushes all of
the training samples towards the highest confidence bin. Furthermore, even though the network has
achieved 100% accuracy on the training set by epoch 300, it still pushes some of the samples lying
in lower confidence bins to the highest confidence bin by epoch 350. It thus keeps on increasing
the confidence of correct predictions even after having reached perfect accuracy on the training
set. Secondly, we observe from Figure 1(c) that between training epochs 150 and 250, i.e. between
the two points where there are drops in the learning rate, the training set classification error rises
slightly, before dropping to exactly 0 after epoch 250. This further confirms our hypothesis that in
this period, the network focuses more on increasing the confidence of its correct predictions rather
than increasing the classification accuracy on the training set.
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Figure 3: Metrics to compare the calibrations of several ResNet-50 networks trained on CIFAR-10,
using either cross-entropy loss, or focal loss with γ set to 1, 2 or 3.
Weight magnification: The above-mentioned increase in confidence of the network’s predictions
can happen if the network increases its weights to increase the magnitudes of the logits. We explore
this in §4. This increase in the network’s confidence during training is a key cause of miscalibration.

4 IMPROVING CALIBRATION USING FOCAL LOSS

As discussed above, overfitting on NLL, which is observed as the network grows more confident
on all of its predictions irrespective of their correctness, is strongly related to poor calibration in
neural networks. One cause of this phenomenon is that the cross-entropy objective minimises the
difference between the softmax distribution and the ground-truth one-hot encoding over an entire
mini-batch, irrespective of how well a network classifies individual samples in the mini-batch. In
this work, we study an alternative loss function called focal loss (Lin et al., 2017), which tackles
this problem by weighting loss components generated from individual samples in a mini-batch by
how well the model classifies them. Focal loss for the ith sample in the training set is computed as
Lf = −(1 − p̂i,yi)γ log p̂i,yi , where γ ≥ 0 is a user-defined hyperparameter. Focal loss attributes
more importance to samples that the network misclassifies than to ones that are correctly classified.
In this paper, we study properties of focal loss that help in calibration.

Empirical Observations: In order to analyse the behaviour of neural networks trained on focal loss,
we use the same framework as mentioned above, and train four ResNet-50 networks on CIFAR-10,
one using cross-entropy loss, and three using focal loss with γ = 1, 2 or 3. We then observe various
metrics throughout the training period of these networks, for comparison. In Figures 3(a), (b) and (c),
we plot the average NLL over the test set, and for the correctly and incorrectly classified test samples,
respectively, at each training epoch. In Figure 3(d), we plot the softmax entropy for the misclassified
test samples. In Figures 3(e) and (f), we plot the average probability value p̂i,yi predicted for the
ground-truth class, for correctly and incorrectly classified test samples, respectively. In Figure 3(g),
we plot the test set ECE for all four models against the training epoch.

Figure 3(c) shows that in contrast to the network trained using cross-entropy, for which the NLL for
misclassified test samples increases significantly after epoch 150, the rise in NLL for the networks
trained on focal loss is much less severe. Moreover, from Figure 3(d), we notice that the softmax
entropy for misclassified test samples is consistently (if marginally) higher for focal loss than for
cross-entropy. These observations indicate that the focal loss models are less confident about their
incorrect predictions than the cross-entropy model. From Figure 3(f), we notice that the probabilities
predicted for the correct classes for misclassified test samples are slightly higher for focal loss than
for cross-entropy. Conversely, Figure 3(e) shows that the probabilities predicted for the correct
classes for correctly classified test samples are somewhat lower than for cross-entropy. (Note that
in Figure 3(b), the average test NLL values for the focal loss networks on the correctly classified
samples are also somewhat higher than for cross-entropy, which similarly indicates a slight decrease
in confidence on those samples.) Nevertheless, for all four models, average confidence on correctly
classified samples remains over 0.95 by the end of training, which is more than enough to make these
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(a) (b) Epoch 10 (c) Epoch 100 (d) Epoch 200

Figure 4: (a): g(p, γ) vs p and (b-d): histogram of the gradient norms of the last linear layer for both
cross entropy and focal loss.

predictions usable by downstream tasks. Furthermore, the classification errors on the test set for all
four models are also almost the same (refer fifth row of Table 3). Given both of these points, along
with the ECE plot in Figue 3(g), it is thus reasonable to conclude that on a practical level, the models
trained on focal loss are more calibrated, whilst retaining both their classification accuracy and the
majority of their confidence on correct predictions.

Theoretical Justification: As mentioned previously, once a model trained using cross-entropy
reaches high accuracy on the training set, the optimisation algorithm may try to further reduce the
training NLL by increasing the confidence values for the correctly classified samples, rather than
focusing on the misclassified samples. One way it could achieve this would be to increase the weights
of the network to increase the magnitudes of the logits. In fact, this hypothesis would help to explain
the observation made in (Guo* et al., 2017) that models trained using some form of weight decay are
better calibrated.

To verify this hypothesis, we plot the L2 norm of the weights of the last linear layer for all four
networks as a function of the training epoch (see Figure 3(h)). It is interesting to note that although
the norms of the weights for the models trained on focal loss are initially higher than that for the
cross-entropy model, a complete reversal in the ordering of the weight norms occurs between epochs
150 and 250. In other words, as the network starts to become miscalibrated, the weight norm for the
cross-entropy model also starts to become greater than those for the focal loss models. In practice,
the reason for this is that focal loss, by design, starts to act as a regulariser on the network’s weights
once the model has gained a certain amount of confidence in its predictions. To better understand
this, we start by considering the following proposition (see the Appendix B for a proof).

Proposition 1. For focal loss Lf and cross-entropy loss Lc, the gradients ∂Lf

∂w = ∂Lc

∂w g(p̂i,yi , γ),
where g(p̂i,yi , γ) = (1− p̂i,yi)γ − γp̂i,yi(1− p̂i,yi)γ−1 log(p̂i,yi), γ ≥ 0 is the focal loss hyperpa-

rameter, and w are the last layer network parameters. Thus,
∥∥∥∂Lf

∂w

∥∥∥ ≤ ∥∥∂Lc

∂w

∥∥ iff g(p̂i,yi , γ) ∈ [0, 1].
To visualise the behaviour of g(p, γ), we plot it against p for various values of γ in Figure 4(a). It is
quite clear that g(p, γ) lies in [0, 1) for values of p that lie above a certain threshold p0. In the interval
[0, p0), however, g(p, γ) > 1. In fact, for a given threshold p0, we can efficiently compute (using the
following proposition) a value γ∗ such that g(p, γ∗) < 1 for p > p0 (see the Appendix B for a proof).

Proposition 2. For p ≥ p0, g(p, γ) ≤ 1 for all γ ≥ γ∗ = a
b +

1
log aW−1

(
− a(1−a/b)

b log a
)
, where

a = 1− p0, b = p0 log p0 and W−1 is the Lambert-W function (Corless et al., 1996). Moreover, for
p ≥ p0 and γ ≥ γ∗, the equality g(p, γ) = 1 holds only for p = p0 and γ = γ∗.
Thus, given a p0, we can always use Proposition 2 to compute γ∗ such that (i) g(p0, γ∗) = 1, (ii) for
p < p0, g(p, γ∗) > 1, and (iii) for p > p0, g(p, γ∗) < 1.

Implicit Regularisation: For a network trained using focal loss with a fixed γ obtained using p0
such that g(p0, γ) = 1 then in the initial stages of training, when p̂i,yi < p0 in general, g(p̂i,yi , γ) > 1
and the model gains confidence on its predictions faster than it would for cross-entropy. However, as
soon as p̂i,yi crosses the threshold p0, g(p̂i,yi , γ) falls below 1 and reduces the size of the gradient
updates made to the network weights, thereby having a regularising effect on the weights. This is
why, in Figure 3(h), we find that the weight norms of the models trained with focal loss are initially
higher than that for the model trained using cross-entropy. However, as training progresses, we find
that the ordering of the weight norms reverses, as focal loss starts regularising the network weights.

Figure 4(b-d) give further insights by plotting histograms of the gradient norms of the last linear
layer (over all samples in the training set) at epochs 10, 100 and 200, respectively. At epoch 10,

6



Under review as a conference paper at ICLR 2020

the gradient norms for cross-entropy and focal loss are similar, but as training progresses, those for
cross-entropy decrease less rapidly than those for focal loss. Finally, note from Figure 4(a) that with
higher values of γ, the fall in g(p̂i,yi , γ) gets steeper. We would thus expect the weight regularisation
effect to be higher for models that use higher values of γ. This explains why, of the three models we
trained using focal loss, the one with γ = 3 outperforms (in terms of calibration) the one with γ = 2,
which in turn outperforms the model with γ = 1. Based on this observation, one might think that, in
general, a higher value of gamma would lead to a more calibrated model. However, this is not the
case, as we notice from Figure 4(a) that for γ ≥ 7, g(p̂i,yi , γ) reduces to nearly 0 for a relatively low
value of p̂i,yi (around 0.5). As a result, using values of γ that are too high will cause the gradients to
die (i.e. reduce to nearly 0) early, at a point at which the network’s predictions remain ambiguous,
thereby causing the training process to fail. To this end, we provide Proposition 2 that allows us to
efficiently get a sampled-dependent gamma in a principled manner. Experimentally we show that the
sample-dependant γ does provide the best result among all the approaches we compare with. We also
provide an empirical analysis of focal loss and cross entropy on a linear model in Appendix G.

5 EXPERIMENTS

We perform experiments on multiple image and document classification datasets to verify the
effectiveness of focal loss for training calibrated models. For image classification experiments, we use
CIFAR-10 (Krizhevsky, 2009) and CIFAR-100 (Krizhevsky, 2009) and for document classification
we use 20 Newsgroups and the Stanford Sentiment Treebank (SST) (Socher et al., 2013). We
provide details on the datasets and the train/validation/test splits for each dataset in the Appendix
C. On CIFAR-10 and CIFAR-100, we train the networks: ResNet-50, ResNet-110 (He et al., 2016),
Wide-ResNet-26-10 (Zagoruyko and Komodakis, 2016), and DenseNet-121 (Huang et al., 2017).We
train the Global Pooling Convolutional Network (Lin et al., 2014) on 20 Newsgroups and the Tree-
LSTM (Tai et al., 2015) on the SST Binary dataset. We provide implementation details for each of
the state of the art networks in Appendix D. For each dataset-network pair, we train the network using
each of the following loss functions:

Baselines (Cross-Entropy, MMCE (Kumar et al., 2018)) and Brier Score (Brier, 1950): Models
trained on cross-entropy loss, MMCE loss (i.e. cross-entropy with an MMCE regulariser) and
Brier score serve as our baselines for comparison. MMCE (Maximum Mean Calibration Error)
is a continuous and differentiable proxy for calibration error and hence, can be directly optimised
using standard optimisers like Stochastic Gradient Descent. Normally, MMCE is optimised as a
regulariser alongside cross-entropy. Brier score, for a single sample, is computed as the squared error
between the predicted softmax vector and the one-hot ground truth encoding. We find Brier score
to be a particularly relevant baseline for calibration as there is a distinct penalty for increasing the
confidence on incorrect classes. In addition, it is relevant as it can be decomposed into calibration
and refinement (DeGroot and Fienberg, 1983).

Focal Loss (Fixed γ): We train various models each using three values of γ set to 1, 2 and 3.

Focal Loss (Sample-Dependent γ): From Proposition 2, we know that for a given probability p,
we can find a value of γ such that either g(p, γ) ∈ [0, 1), and focal loss regularises the weights
of the network, or g(p, γ) > 1, and focal loss speeds up the process of making the network more
confident on the correct class. In this approach, we follow the idea of accelerating the rise in the
value of p̂i,yi (the confidence on the correct class yi for the ith training sample) as long as p̂i,yi < 0.5.
As soon as p̂i,yi ≥ 0.5, we can confirm that the ith training sample has been predicted correctly.
Hence, when p̂i,yi ≥ 0.5, we want to regularise the weights to prevent the network from becoming
overconfident and miscalibrated. There can be multiple ways of choosing sample-dependent γ that
satisfy the above condition. However, with just few initial tries we found these two policies to produce
quite competitive results on the validation sets: (a) Focal Loss (sample-wise γ 5,3,2): γ = 5 for
p̂i,yi ∈ [0, 0.19] (as g(0.19, 5) ≈ 1), γ = 3 for p̂i,yi ∈ (0.19, 0.5] and γ = 2 for p̂i,yi ∈ (0.5, 1], and
(b) Focal Loss (sample-wise γ 5,3): γ = 5 for p̂i,yi ∈ [0, 0.19], and γ = 3 for p̂i,yi ∈ (0.19, 1].

Focal Loss (Scheduled γ): As a simplification to the above approach, we also investigated the use of
a schedule for γ during training, as we expect the value of p̂i,yi to increase in general for all samples
over time. In particular, we report results for two different schedules: (a) Focal Loss (scheduled γ
5,3,2): γ = 5 for the first 100 epochs, γ = 3 for the next 150 epochs, and γ = 2 for the last 100
epochs, and (b) Focal Loss (scheduled γ 5,3,1): γ = 5 for the first 100 epochs, γ = 3 for the next

7



Under review as a conference paper at ICLR 2020

Dataset Model Cross Entropy Brier Loss MMCE Focal Loss (sample-wise γ 5,3)
Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR-100

ResNet 50 17.52 3.42(2.10) 6.52 3.64(1.10) 15.32 2.38(1.80) 4.50 2.00(1.10)
ResNet 110 19.05 4.43(2.30) 7.88 4.65(1.20) 19.14 3.86(2.30) 8.56 4.12(1.20)

Wide ResNet 26-10 15.33 2.88(2.20) 4.31 2.70(1.10) 13.17 4.37(1.90) 3.03 1.64(1.10)
DenseNet 121 20.98 4.27(2.30) 5.17 2.29(1.10) 19.13 3.06(2.10) 3.73 1.31(1.10)

CIFAR-10

ResNet 50 4.35 1.35(2.50) 1.82 1.08(1.10) 4.56 1.19(2.60) 1.55 0.95(1.10)
ResNet 110 4.41 1.09(2.80) 2.56 1.25(1.20) 5.08 1.42(2.80) 1.87 1.07(1.10)

Wide ResNet 26-10 3.23 0.92(2.20) 1.25 1.25(1.00) 3.29 0.86(2.20) 1.56 0.84(0.90)
DenseNet 121 4.52 1.31(2.40) 1.53 1.53(1.00) 5.10 1.61(2.50) 1.22 1.22(1.00)

20 Newsgroups Global Pooling CNN 17.92 2.39(3.40) 13.58 3.22(2.30) 15.48 6.78(2.20) 6.92 2.19(1.50)

SST Binary Tree LSTM 7.37 2.62(1.80) 9.01 2.79(2.50) 5.03 4.02(1.50) 9.19 1.83(0.70)

Table 1: ECE (%) computed for different approaches both pre and post temperature scaling (cross-
validating T on ECE). Optimal temperature for each method is indicated in brackets.

Dataset Model Cross Entropy Brier Loss MMCE Focal Loss (sample-wise γ 5,3)
Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR-100

ResNet 50 17.52 3.67(2.10) 6.52 3.69(1.20) 15.32 2.44(1.80) 4.39 2.33(1.10)
ResNet 110 19.05 5.50(2.40) 7.73 4.53(1.20) 19.14 4.85(2.30) 8.55 3.96(1.20)

Wide ResNet 26-10 15.33 2.89(2.20) 4.22 2.81(1.10) 13.16 4.25(1.90) 2.75 1.63(1.10)
DenseNet 121 20.98 5.09(2.30) 5.04 2.56(1.10) 19.13 3.07(2.10) 3.55 1.24(1.10)

CIFAR-10

ResNet 50 4.33 2.14(2.50) 1.74 1.23(1.10) 4.55 2.06(2.50) 1.56 1.26(1.10)
ResNet 110 4.40 1.84(2.70) 2.60 1.70(1.20) 5.06 2.45(2.70) 2.07 1.67(1.10)

Wide ResNet 26-10 3.23 1.69(2.20) 1.70 1.63(0.90) 3.29 1.69(2.10) 1.52 1.38(0.90)
DenseNet 121 4.51 2.25(2.30) 2.03 2.18(0.90) 5.10 2.46(2.40) 1.42 1.42(1.00)

20 Newsgroups Global Pooling CNN 17.91 2.20(3.30) 13.57 2.60(2.20) 15.21 7.07(2.10) 6.92 2.17(1.40)

SST Binary Tree LSTM 7.31 2.10(1.80) 9.42 2.80(2.70) 4.49 3.72(1.50) 8.63 1.92(0.70)

Table 2: Adaptive ECE (%) computed for different approaches both pre and post temperature scaling
(cross-validating T on Adaptive ECE). Optimal temperature for each method is indicated in brackets.

150 epochs, and γ = 1 for the last 100 epochs. We also tried various other schedules, but found these
two to produce the best results on the validation sets.

We find the best policy for each of the above three focal loss variants by cross-validating on the
validation set, and report its results in Table 4 and 7. We report results for all other policies in
Appendix E.

6 DISCUSSION

Temperature Scaling: We report the ECE % (using 15 bins), both before and after temperature
scaling, for focal loss (sample-dependant which performed the best) vs baselines in Table 1. Further,
we report the same metric for different variants of focal loss in Table 4. Similarly we report AdaECE
in Table 2 and Table 5. In fact our results show that in situations where ECE might imply that the
model is well calibrated, AdaECE brings out the miscalibration present in the model. For example, in
the case of WideResNet on CIFAR10 for Cross Entropy, the best ECE obtained is 0.92, implying
almost no miscalibration, whereas AdaECE is 1.69 showing further scope for improvements.

We compute the optimal temperature using two different approaches: (a) learning the optimal
temperature by optimising NLL over a validation set, and (b) performing grid search over temperature
values between 0 and 10, with a step of 0.1, and choosing the temperature that minimises the
ECE/AdaECE over a validation set. We find the second approach to produce better results in general.
Since we report ECE/AdaECE as the primary performance metric and grid search does not require a
differentiable objective function, we directly minimise ECE/AdaECE over the validation set during
grid search. Furthermore, since NLL is not a convex function of temperature, an optimisation
algorithm may get stuck at a locally optimal temperature. We thus report the optimal temperatures
and their corresponding ECEs/AdaECEs obtained using grid search (i.e. the second approach).

Performance Gains: It should be noted that for all the dataset-network pairs, we obtain state-of-
the-art classification accuracies, as shown in Table 3. For focal loss with a fixed γ, we found that
γ = 3 produced the best ECE results. This corroborates the observation we made in §4 that γ = 3
should produce better results than γ = 1 or γ = 2, as the regularising effect for γ = 3 is higher. For
the sample-dependent γ approach, we found the second policy (i.e. Focal Loss (sample-wise γ 5,3)
with γ = 5 for p̂i,yi ∈ [0, 0.19], and γ = 3 for p̂i,yi ∈ (0.19, 1]) to produce better results. Of the two
approaches for scheduled γ, we found the first schedule (i.e. Focal Loss (scheduled γ 5,3,2) with
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Dataset Model Cross Entropy Brier Loss MMCE FL-3 FLS-532 FLA-53

CIFAR-100

ResNet 50 23.30 23.39 23.20 22.75 23.24 23.22
ResNet 110 22.73 25.10 23.07 22.92 22.96 22.51

Wide ResNet 26-10 20.70 20.59 20.73 19.69 20.13 20.11
DenseNet 121 24.52 23.75 24.00 23.25 23.72 22.67

CIFAR-10

ResNet 50 4.95 5.00 4.99 5.25 5.63 4.98
ResNet 110 4.89 5.48 5.40 5.08 5.71 5.42

Wide ResNet 26-10 3.86 4.08 3.91 4.13 4.46 4.01
DenseNet 121 5.00 5.11 5.41 5.33 5.65 5.46

20 Newsgroups Global Pooling CNN 26.68 27.06 27.23 29.26 28.16 27.98

SST Binary Tree LSTM 12.85 12.85 11.86 12.19 13.07 12.80

Table 3: Error (%) computed for different approaches. In this table, FL-3 denotes Focal Loss (fixed γ
3), FLS-532 denotes Focal Loss (scheduled γ 5,3,2) and FLA-53 denotes Focal Loss (sample-wise γ
5,3) i.e. focal loss with sample-wise γ with γ = 5 for p̂i,yi ∈ [0, 0.19] and γ = 3 for p̂i,yi ∈ (0.19, 1].

Dataset Model Focal Loss (fixed γ 3) Focal Loss (scheduled γ 5,3,2) Focal Loss (sample-wise γ 5,3)
Pre T Post T Pre T Post T Pre T Post T

CIFAR-100

ResNet 50 5.13 1.97(1.10) 8.47 2.13(1.30) 4.50 2.00(1.10)
ResNet 110 8.64 3.95(1.20) 11.20 3.43(1.30) 8.56 4.12(1.20)

Wide ResNet 26-10 2.13 2.13(1.00) 4.98 1.94(1.20) 3.03 1.64(1.10)
DenseNet 121 4.15 1.25(1.10) 7.63 1.96(1.20) 3.73 1.31(1.10)

CIFAR-10

ResNet 50 1.48 1.42(1.10) 2.97 1.53(1.20) 1.55 0.95(1.10)
ResNet 110 1.55 1.02(1.10) 3.33 1.36(1.30) 1.87 1.07(1.10)

Wide ResNet 26-10 1.69 0.97(0.90) 1.82 1.45(1.10) 1.56 0.84(0.90)
DenseNet 121 1.32 1.26(0.90) 2.22 1.34(1.10) 1.22 1.22(1.00)

20 Newsgroups Global Pooling CNN 8.67 3.51(1.50) 12.13 2.47(1.80) 6.92 2.19(1.50)

SST Binary Tree LSTM 16.05 1.78(0.50) 3.91 2.64(0.90) 9.19 1.83(0.70)

Table 4: ECE (%) computed for different approaches both pre and post temperature scaling (cross-
validating T on ECE). Optimal temperature for each method is indicated in brackets.

Dataset Model Focal Loss (fixed γ 3) Focal Loss (scheduled γ 5,3,2) Focal Loss (sample-wise γ 5,3)
Pre T Post T Pre T Post T Pre T Post T

CIFAR-100

ResNet 50 5.08 2.35(1.20) 8.41 2.25(1.30) 4.39 2.33(1.10)
ResNet 110 8.64 4.14(1.20) 11.18 3.68(1.30) 8.55 3.96(1.20)

Wide ResNet 26-10 2.08 2.08(1.00) 5.00 2.11(1.20) 2.75 1.63(1.10)
DenseNet 121 4.15 1.23(1.10) 7.61 2.04(1.20) 3.55 1.24(1.10)

CIFAR-10

ResNet 50 1.95 1.83(1.10) 2.95 2.18(1.20) 1.56 1.26(1.10)
ResNet 110 1.62 1.44(1.10) 3.32 1.91(1.40) 2.07 1.67(1.10)

Wide ResNet 26-10 1.84 1.54(0.90) 2.04 1.90(1.10) 1.52 1.38(0.90)
DenseNet 121 1.22 1.48(0.90) 2.19 1.59(1.20) 1.42 1.42(1.00)

20 Newsgroups Global Pooling CNN 8.65 3.78(1.50) 12.13 2.18(1.90) 6.92 2.17(1.40)

SST Binary Tree LSTM 15.64 2.17(0.50) 2.94 2.50(0.90) 8.63 1.92(0.70)

Table 5: Adaptive ECE (%) computed for different approaches both pre and post temperature scaling
(cross-validating T on Adaptive ECE). Optimal temperature for each method is indicated in brackets.

γ = 5 for the first 100 epochs, γ = 3 for the next 150 epochs, and γ = 2 for the last 100 epochs) to
produce better ECEs/AdaECEs for every model and dataset. We report the ECE values for the best
performing approaches in Table 1 and 4. Similarly we show the AdaECE values of these models in 2
and 5. Full results (ECE, AdaECE, MCE, NLL and test error) for all approaches are reported in the
Appendix E.

It is clear from Table 1 and 4 that focal loss with sample-dependent γ outperforms all the baselines
(cross-entropy, brier score and MMCE). It broadly produces the lowest ECE and AdaECE values
both before and after temperature scaling. This observation is particularly encouraging, as it indicates
that a principled method of obtaining values of γ for focal loss can work well, thereby alleviating the
need to naively cross-validate the γ hyperparameter. Also, Table 4 and Table 5 show that other focal
loss based approaches are also very competitive.
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Dataset Model Cross Entropy (Pre T) Cross Entropy (Post T) MMCE (Pre T) MMCE (Post T) Focal Loss (Pre T) Focal Loss (Post T)
|S99|% Accuracy |S99|% Accuracy |S99|% Accuracy |S99|% Accuracy |S99|% Accuracy |S99|% Accuracy

CIFAR-10 ResNet 110 97.11 96.33 11.5 97.39 97.65 96.72 10.62 99.83 61.41 99.51 31.10 99.68
CIFAR-10 ResNet 50 95.93 96.72 7.33 99.73 92.33 98.24 4.21 100 46.31 99.57 14.27 99.93

Table 6: Percentage of test samples predicted with confidence higher than 99% and the corresponding
accuracy for Cross Entropy, MMCE and Focal loss computed both pre and post temperature scaling
(represented in the table as pre T and post T respectively).

Confident and Calibrated Models: It is interesting to note that for focal loss with sample-based
γ (refer Tab. 1 and Tab. 2), beside most other focal loss models, the optimal temperatures are
very close to 1, mostly lying between 0.9 and 1.1. By contrast, the optimal temperatures for the
baselines (cross-entropy and MMCE) are significantly higher, with values lying between 2.0 to 2.8.
An optimal temperature close to 1 indicates that the model is innately calibrated and cannot be
made significantly more calibrated by temperature scaling. Furthermore, an optimal temperature
that is much greater than 1 can make the network underconfident in general, as its outputs are
temperature-scaled irrespective of their correctness. To see this, we follow the approach adopted in
Kumar et al. (2018), and measure the percentage of test samples that are predicted with a confidence
of 0.99 or more (we call this set of test samples S99). In Table 6, we report |S99| as a percentage of
the total number of test samples, along with the accuracy of the samples in S99 for ResNet-50 and
ResNet-110 trained on CIFAR-10, using cross-entropy loss, MMCE loss, and focal loss. We observe
that |S99| for the focal loss model is much lower than for the cross-entropy or MMCE models before
temperature scaling. However, after temperature scaling, |S99| for focal loss is significantly higher
than for both MMCE and cross-entropy. The reason is that with an optimal temperature of 1.1, the
confidence of the temperature-scaled model for focal loss does not reduce as much as those of the
models for cross-entropy and MMCE, for which the optimal temperatures lie between 2.5 to 2.8. We
thus conclude that models trained on focal loss are not only more calibrated, but also better preserve
their confidence on predictions, even after being post-processed with temperature scaling. We present
some qualitative results to support this claim in Appendix F.

7 CONCLUSION

In this paper, we have shown that training using focal loss can yield multi-class classification networks
that are more naturally calibrated than those trained using more conventional cross-entropy loss.
There are sound theoretical reasons to expect this: in particular, as we show in §4, focal loss implicitly
regularises the weights of a network during training, reducing NLL overfitting and thereby improving
calibration. Extensive experiments on a variety of computer vision (CIFAR-10/100) and NLP (20
Newsgroups/SST) datasets, and with a wide variety of different network architectures, show that
this expectation is also borne out in practice. Our results show that in almost all cases, networks
trained with focal loss are more calibrated than those trained with cross-entropy loss, whilst having
similar levels of accuracy, making their predictions much easier for downstream components to trust.
We also introduce principled way of getting sample-dependent γ for focal loss and we show that it
produces good results across datasets and models.
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A APPENDIX

In § B, we show the proofs of the propositions formulated in the main text. We then describe all the
datasets we used for our experiments in § C which is followed by implementation details of the state
of the art networks in § D.

B PROOFS

Here we provide the proofs of both the propositions presented in the main text. While Proposition 3
helps us understand the regularization effect of using the focal loss, the Proposition 4 efficiently
provides us the γ values in a principle way such that it is sample-dependent. Implementing the
sample-dependent γ is very easy as implementation of the Lambert-W function (Corless et al., 1996)
is available in standard libraries (e.g. python scipy). Using it we could get quite competitive results
with just few initial sample-dependent γ policies that we tried.

Proposition 3. For focal loss Lf and cross-entropy loss Lc, the gradients ∂Lf

∂w = ∂Lc

∂w g(p̂i,yi , γ),
where g(p̂i,yi , γ) = (1− p̂i,yi)γ − γp̂i,yi(1− p̂i,yi)γ−1 log(p̂i,yi), γ ≥ 0 is the focal loss hyperpa-

rameter, and w are the last layer network parameters. Thus,
∥∥∥∂Lf

∂w

∥∥∥ ≤ ∥∥∂Lc

∂w

∥∥ iff g(p̂i,yi , γ) ∈ [0, 1].

Proof. Let w be the linear layer parameters connecting the feature map to the logit s. Then, using
the chain rule, ∂Lf

∂w =
(
∂s
∂w

)(
∂p̂i,yi
∂s

)(
∂Lf

∂p̂i,yi

)
. Similarly, ∂Lc

∂w =
(
∂s
∂w

)(
∂p̂i,yi
∂s

)(
∂Lc

∂p̂i,yi

)
. The

derivative of the focal loss with respect to p̂i,yi , the softmax output of the network for the true class
yi, takes the form

∂Lf
∂p̂i,yi

= − 1

p̂i,yi

(
(1− p̂i,yi)γ − γp̂i,yi(1− p̂i,yi)γ−1 log(p̂i,yi)

)
=

∂Lc
∂p̂i,yi

g(p̂i,yi , γ), (4)

in which g(p̂i,yi , γ) = (1− p̂i,yi)γ − γp̂i,yi(1− p̂i,yi)γ−1 log(p̂i,yi) and ∂Lc

∂p̂i,yi
= − 1

p̂i,yi
. It is thus

straightforward to verify that if g(p̂i,yi , γ) ∈ [0, 1], then
∥∥∥ ∂Lf

∂p̂i,yi

∥∥∥ ≤ ∥∥∥ ∂Lc

∂p̂i,yi

∥∥∥, which itself implies

that
∥∥∥∂Lf

∂w

∥∥∥ ≤ ∥∥∂Lc

∂w

∥∥.

Proposition 4. For p ≥ p0, g(p, γ) ≤ 1 for all γ ≥ γ∗ = a
b +

1
log aW−1

(
− a(1−a/b)

b log a
)
, where

a = 1− p0, b = p0 log p0 and W−1 is the Lambert-W function (Corless et al., 1996). Moreover, for
p ≥ p0 and γ ≥ γ∗, the equality g(p, γ) = 1 holds only for p = p0 and γ = γ∗.

Proof. We derive the value of γ > 0 for which g(p0, γ) = 1 for a given p0 ∈ [0, 1]. From Proposition
4.1, we already know that

∂Lf
∂p̂i,yi

=
∂Lc
∂p̂i,yi

g(p̂i,yi , γ), (5)

where Lf is focal loss, Lc is cross entropy loss, p̂i,yi is the probability assigned by the model to the
ground-truth correct class for the ith sample, and

g(p̂i,yi , γ) = (1− p̂i,yi)γ − γp̂i,yi(1− p̂i,yi)γ−1 log(p̂i,yi). (6)

For p ∈ [0, 1], if we look at the function g(p, γ), then we can clearly see that g(p, γ)→ 1 as p→ 0,
and that g(p, γ) = 0 when p = 1. To observe the behaviour of g(p, γ) for intermediate values of p,
we first take its derivative with respect to p:

∂g(p, γ)

∂p
= γ(1− p)γ−2

[
− 2(1− p)− (1− p) log p+ (γ − 1)p log p

]
(7)

In Equation 7, γ(1 − p)γ−2 > 0 except when p = 1 (in which case γ(1 − p)γ−2 = 0). Thus, to
observe the sign of the gradient ∂g(p,γ)∂p , we focus on the term

− 2(1− p)− (1− p) log p+ (γ − 1)p log p. (8)
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Dividing Equation 8 by (− log p), the sign remains unchanged and we get

k(p, γ) =
2(1− p)
log p

+ 1− γp. (9)

We can see that k(p, γ) → 1 as p → 0 and k(p, γ) → −(1 + γ) as p → 1 (using l’Hôpital’s
rule). Furthermore, k(p, γ) is monotonically decreasing for p ∈ [0, 1]. Thus, as the gradient ∂g(p,γ)∂p

monotonically decreases from a positive value at p = 0 to a negative value at p = 1, we can say that
g(p, γ) first monotonically increases starting from 1 (as p→ 0) and then monotonically decreases
down to 0 (at p = 1). Thus, if for some threshold p0 > 0 and for some γ > 0, g(p, γ) = 1, then
∀p > p0, g(p, γ) < 1. We now want to find a γ such that ∀p ≥ p0, g(p, γ) ≤ 1. First, let a = (1−p0)
and b = p0 log p0. Then:

g(p0, γ) = (1− p0)γ − γp0(1− p0)γ−1 log p0 ≤ 1

=⇒ (1− p0)γ−1[(1− p0)− γp0 log p0] ≤ 1

=⇒ aγ−1(a− γb) ≤ 1

=⇒ (γ − 1) log a+ log(a− γb) ≤ 0

=⇒
(
γ − a

b

)
log a+ log(a− γb) ≤

(
1− a

b

)
log a

=⇒ (a− γb)e(γ−a/b) log a ≤ a(1−a/b)

=⇒
(
γ − a

b

)
e(γ−a/b) log a ≤ −a

(1−a/b)

b

=⇒
((
γ − a

b

)
log a

)
e(γ−a/b) log a ≥ −a

(1−a/b)

b
log a

(10)

where a = (1− p0) and b = p0 log p0. We know that the inverse of y = xex is defined as x =W (y),
where W is the Lambert-W function (Corless et al., 1996). Furthermore, the r.h.s. of the inequality
in Equation 10 is always negative, with a minimum possible value of −1/e that occurs at p0 = 0.5.
Therefore, applying the Lambert-W function to the r.h.s. will yield two real solutions (corresponding
to a principal branch denoted by W0 and a negative branch denoted by W−1). We first consider the
solution corresponding to the negative branch (which is the smaller of the two solutions):(

(γ − a

b
) log a

)
≤W−1

(
− a(1−a/b)

b
log a

)
=⇒ γ ≥ a

b
+

1

log a
W−1

(
− a(1−a/b)

b
log a

) (11)

If we consider the principal branch, the solution is

γ ≤ a

b
+

1

log a
W0

(
− a(1−a/b)

b
log a

)
, (12)

which yields a negative value for γ that we discard. Thus Equation 11 gives the values of γ for which
if p > p0, then g(p, γ) < 1. In other words, g(p0, γ) = 1, and for any p < p0, g(p, γ) > 1.

C DATASET DESCRIPTION

We use the following image- and document-classification datasets in our experiments:

1. CIFAR-10 (Krizhevsky, 2009): This dataset has 60,000 colour images of size 32× 32, divided
equally into 10 classes. We use a train/validation/test split of 45,000/5,000/10,000 images.

2. CIFAR-100 (Krizhevsky, 2009): This dataset has 60,000 colour images of size 32× 32, divided
equally into 100 classes. (Note that the images in this dataset are not the same images as in
CIFAR-10.) We again use a train/validation/test split of 45,000/5,000/10,000 images.

3. 20 Newsgroups: This dataset contains 20,000 news articles, categorised evenly into 20 different
newsgroups based on their content. It is a popular dataset for text classification. Whilst some of
the newsgroups are very related (e.g. rec.motorcycles and rec.autos), others are quite unrelated (e.g.
sci.space and misc.forsale). We use a train/validation/test split of 15,098/900/3,999 documents.
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4. Stanford Sentiment Treebank (SST) (Socher et al., 2013): This dataset contains movie reviews
in the form of sentence parse trees, where each node is annotated by sentiment. We use the
dataset version with binary labels, for which 6,920/872/1,821 documents are used as the train-
ing/validation/test split. In the training set, each node of a parse tree is annotated as positive,
neutral or negative. At test time, the evaluation is done based on the model classification at the
root node, i.e. considering the whole sentence, which contains only positive or negative sentiment.

D IMPLEMENTATION DETAILS

For training networks on the image classification datasets (CIFAR-10 and CIFAR-100), we use SGD
with a momentum of 0.9 as our optimiser, and train the networks for 350 epochs, with a learning rate
of 0.1 for the first 150 epochs, 0.01 for the next 100 epochs, and 0.001 for the last 100 epochs. We
use a training batch size of 128. Furthermore, we augment the training images by applying random
crops and random horizontal flips.

For 20 Newsgroups, we train the Global Pooling Convolutional Network (Lin et al., 2014) using the
Adam optimiser, with learning rate 0.001, and betas 0.9 and 0.999. The code is a PyTorch adaptation
of (Ng). We used Glove word embeddings (Pennington et al., 2014) to train the network. We trained
all the models for 50 epochs and used the models with the best validation accuracy.

For the SST Binary dataset, we train the Tree-LSTM (Tai et al., 2015) using the AdaGrad optimiser
with a learning rate of 0.05 and a weight decay of 10−4, as suggested by the authors. We used the
constituency model, which considers binary parse trees of the data and trains a binary tree LSTM on
them. The Glove word embeddings (Pennington et al., 2014) we used were also tuned for best results.
The code framework we used is inspired by (TreeLSTM). We trained all of our models for 25 epochs
and used the models with the best validation accuracy.

For all our models, we use the PyTorch framework, setting any hyperparameters not explicitly
mentioned to the default values used in the standard models. For MMCE, we used λ = 2 for all the
image-classification tasks, whilst we found λ = 8 to perform better for document classification. A
calibrated model which does not generalise well to an unseen test set is not very useful. Hence, for
all the experiments, we set the training parameters in a way such that we get state-of-the-art test set
accuracies on all datasets for each model.

E ADDITIONAL RESULTS

We use various metrics to compare the proposed methods based on focal loss with the baselines (i.e.
cross-entropy, Brier score and MMCE).

We show all test ECE of all the focal loss models before and after temperature scaling in Table 7.
Similarly, we show all test AdaECE of all the focal loss models before and after temperature scaling
in Table 8. We present the test set error for all the focal loss models in Table 9. We present the test
NLL % before and after temperature scaling in Tables 10 and 11, respectively. We report the test set
MCE % before and after temperature scaling in Tables 12 and 13, respectively.

In this section we use the following abbreviation to report results on different varieties of Focal Loss.
FL-1 refers to Focal Loss (fixed γ 1), FL-2 refers to Focal Loss (fixed γ 2), FL-3 refers to Focal
Loss (fixed γ 3), FLS-531 refers to Focal Loss (scheduled γ 5,3,1), FLS-532 refers to Focal Loss
(scheduled γ 5,3,2), FLA-532 refers to Focal Loss (sample-wise γ 5,3,2) and FLA-53 refers to Focal
Loss (sample-wise γ 5,3)

F QUALITATIVE RESULTS

In Figure 8, we present some qualitative results to show the improvement in the confidence estimates
of focal loss in comparison to other baselines (i.e., cross entropy, MMCE and Brier score). For
this, we take ResNet-50 networks trained on CIFAR-10 using all the four loss functions (cross
entropy, MMCE, Brier score and Focal loss with sample-wise γ 5,3) and measure the confidence
of their predictions for four correctly and four incorrectly classified test samples. We report these
confidences both before and after temperature scaling. It is clear from Figure 8 that for all the
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Dataset Model FL-1 FL-2 FL-3 FLS-531 FLS-532 FLA-532 FLA-53
Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR-100

ResNet 50 12.86 2.29(1.50) 8.61 2.24(1.30) 5.13 1.97(1.10) 11.63 2.09(1.40) 8.47 2.13(1.30) 9.09 1.61(1.30) 4.50 2.00(1.10)
ResNet 110 15.08 4.55(1.50) 11.56 3.72(1.30) 8.64 3.95(1.20) 14.99 4.56(1.50) 11.20 3.43(1.30) 11.74 3.64(1.30) 8.56 4.12(1.20)

Wide ResNet 26-10 8.93 2.53(1.40) 4.64 2.93(1.20) 2.13 2.13(1.00) 9.36 2.48(1.40) 4.98 1.94(1.20) 4.98 2.55(1.20) 3.03 1.64(1.10)
DenseNet 121 14.24 2.80(1.50) 7.90 2.33(1.20) 4.15 1.25(1.10) 13.05 2.08(1.50) 7.63 1.96(1.20) 8.14 2.35(1.30) 3.73 1.31(1.10)

CIFAR-10

ResNet 50 3.42 1.08(1.60) 2.36 0.91(1.20) 1.48 1.42(1.10) 4.06 1.53(1.60) 2.97 1.53(1.20) 2.52 0.88(1.30) 1.55 0.95(1.10)
ResNet 110 3.46 1.20(1.60) 2.70 0.89(1.30) 1.55 1.02(1.10) 4.92 1.50(1.70) 3.33 1.36(1.30) 2.82 0.97(1.30) 1.87 1.07(1.10)

Wide ResNet 26-10 2.69 1.46(1.30) 1.42 1.03(1.10) 1.69 0.97(0.90) 2.81 0.96(1.40) 1.82 1.45(1.10) 1.31 0.87(1.10) 1.56 0.84(0.90)
DenseNet 121 3.44 1.63(1.40) 1.93 1.04(1.10) 1.32 1.26(0.90) 4.12 1.65(1.50) 2.22 1.34(1.10) 2.45 1.31(1.20) 1.22 1.22(1.00)

20 Newsgroups Global Pooling CNN 15.06 2.14(2.60) 12.10 3.22(1.60) 8.67 3.51(1.50) 13.55 4.32(1.70) 12.13 2.47(1.80) 12.20 2.39(2.00) 6.92 2.19(1.50)

SST Binary Tree LSTM 6.78 3.29(1.60) 3.05 3.05(1.00) 16.05 1.78(0.50) 4.66 3.36(1.40) 3.91 2.64(0.90) 4.47 2.77(0.90) 9.19 1.83(0.70)

Table 7: ECE (%) computed for different focal loss approaches both pre and post temperature scaling
(cross-validating T on ECE). Optimal temperature for each method is indicated in brackets.

Dataset Model FL-1 FL-2 FL-3 FLS-531 FLS-532 FLA-532 FLA-53
Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR-100

ResNet 50 12.86 2.54(1.50) 8.55 2.44(1.30) 5.08 2.35(1.20) 11.58 2.01(1.40) 8.41 2.25(1.30) 9.08 1.94(1.30) 4.39 2.33(1.10)
ResNet 110 15.08 4.30(1.60) 11.57 4.38(1.40) 8.64 4.14(1.20) 14.98 3.92(1.60) 11.18 3.68(1.30) 11.74 4.21(1.30) 8.55 3.96(1.20)

Wide ResNet 26-10 8.93 2.74(1.40) 4.65 2.96(1.20) 2.08 2.08(1.00) 9.20 2.52(1.40) 5.00 2.11(1.20) 5.00 2.58(1.20) 2.75 1.63(1.10)
DenseNet 121 14.24 2.71(1.50) 7.90 2.36(1.20) 4.15 1.23(1.10) 13.01 2.18(1.50) 7.61 2.04(1.20) 8.04 2.10(1.30) 3.55 1.24(1.10)

CIFAR-10

ResNet 50 3.42 1.51(1.60) 2.37 1.69(1.20) 1.95 1.83(1.10) 4.06 2.36(1.50) 2.95 2.18(1.20) 2.50 1.23(1.30) 1.56 1.26(1.10)
ResNet 110 3.42 1.57(1.70) 2.69 1.29(1.30) 1.62 1.44(1.10) 4.91 2.62(1.60) 3.32 1.91(1.40) 2.78 1.58(1.30) 2.07 1.67(1.10)

Wide ResNet 26-10 2.70 1.52(1.40) 1.64 1.47(1.10) 1.84 1.54(0.90) 2.75 1.87(1.30) 2.04 1.90(1.10) 1.68 1.49(1.10) 1.52 1.38(0.90)
DenseNet 121 3.44 1.85(1.40) 1.80 1.39(1.10) 1.22 1.48(0.90) 4.11 2.20(1.50) 2.19 1.59(1.20) 2.44 1.60(1.20) 1.42 1.42(1.00)

20 Newsgroups Global Pooling CNN 15.06 2.55(2.70) 12.10 3.33(1.60) 8.65 3.78(1.50) 13.55 3.55(1.90) 12.13 2.18(1.90) 12.19 3.14(1.70) 6.92 2.17(1.40)

SST Binary Tree LSTM 6.01 2.92(1.70) 2.67 2.67(1.00) 15.64 2.17(0.50) 3.94 1.90(1.30) 2.94 2.50(0.90) 3.54 3.54(1.00) 8.63 1.92(0.70)

Table 8: AdaECE (%) computed for different focal loss approaches both pre and post temperature
scaling (cross-validating T on AdaECE). Optimal temperature for each method is indicated in brackets.

Dataset Model FL-1 FL-2 FL-3 FLS-531 FLS-532 FLA-532 FLA-53

CIFAR-100

ResNet 50 22.80 23.15 22.75 23.49 23.24 23.55 23.22
ResNet 110 22.36 22.52 22.92 22.81 22.96 22.93 22.51

Wide ResNet 26-10 19.61 20.01 19.69 20.13 20.13 19.71 20.11
DenseNet 121 23.82 23.19 23.25 23.69 23.72 22.41 22.67

CIFAR-10

ResNet 50 4.93 4.98 5.25 5.66 5.63 5.24 4.98
ResNet 110 4.78 5.06 5.08 6.13 5.71 5.19 5.42

Wide ResNet 26-10 4.27 4.27 4.13 4.11 4.46 4.14 4.01
DenseNet 121 5.09 4.84 5.33 5.46 5.65 5.46 5.46

20 Newsgroups Global Pooling CNN 26.13 28.23 29.26 29.16 28.16 27.26 27.98

SST Binary Tree LSTM 12.63 12.30 12.19 12.36 13.07 12.30 12.80

Table 9: Error (%) computed for different focal loss approaches.

Dataset Model Cross Entropy Brier Loss MMCE FL-1 FL-2 FL-3 FLS-531 FLS-532 FLA-532 FLA-53

CIFAR-100

ResNet 50 153.67 99.63 125.28 105.61 92.82 87.52 100.09 92.66 94.10 88.03
ResNet 110 179.21 110.72 180.54 114.18 96.74 90.90 112.46 95.85 97.97 89.92

Wide ResNet 26-10 140.10 84.62 119.58 87.56 77.80 74.66 88.61 78.52 78.86 76.92
DenseNet 121 205.61 98.31 166.65 115.50 93.11 87.13 107.91 93.12 91.14 85.47

CIFAR-10

ResNet 50 41.21 18.67 44.83 22.67 18.60 18.43 25.32 20.50 18.69 17.55
ResNet 110 47.51 20.44 55.71 22.54 19.19 17.80 32.77 22.48 19.39 18.54

Wide ResNet 26-10 26.75 15.85 28.47 17.66 14.96 15.20 18.50 15.57 14.78 14.55
DenseNet 121 42.93 19.11 52.14 22.50 17.56 18.02 27.41 19.50 20.14 18.39

20 Newsgroups Global Pooling CNN 176.57 130.41 158.70 140.40 115.97 109.62 128.75 123.72 124.03 109.17

SST Binary Tree LSTM 50.20 54.96 37.28 53.90 47.72 50.29 50.25 53.13 45.08 49.23

Table 10: NLL (%) computed for different approaches pre temperature scaling.

correctly classified samples, the model trained using focal loss has very confident predictions both pre
and post temperature scaling. However, on misclassified samples, we observe a very low confidence
for the focal loss model. The ResNet-50 network trained using cross entropy is very confident even
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Dataset Model Cross Entropy Brier Loss MMCE FL-1 FL-2 FL-3 FLS-531 FLS-532 FLA-532 FLA-53

CIFAR-100

ResNet 50 106.83 99.57 101.92 94.58 91.80 87.37 92.77 91.58 92.83 88.27
ResNet 110 104.63 111.81 106.73 94.65 91.24 89.92 93.73 91.30 92.29 88.93

Wide ResNet 26-10 97.10 85.77 95.92 83.68 80.44 74.66 84.11 80.01 80.40 78.14
DenseNet 121 119.23 98.74 113.24 100.81 91.35 87.55 98.16 91.55 90.57 86.06

CIFAR-10

ResNet 50 20.38 18.36 21.58 17.56 17.67 18.34 19.93 19.25 17.28 17.37
ResNet 110 21.52 19.60 24.61 17.32 17.53 17.62 23.79 20.21 17.78 18.24

Wide ResNet 26-10 15.33 15.85 16.16 15.48 14.85 15.06 15.81 15.38 14.69 14.23
DenseNet 121 21.77 19.11 24.88 18.71 17.21 18.10 21.65 19.04 19.27 18.39

20 Newsgroups Global Pooling CNN 87.95 93.11 99.74 87.24 93.60 94.69 97.89 93.66 91.73 93.98

SST Binary Tree LSTM 41.05 38.27 36.37 45.67 47.72 45.96 45.82 54.52 45.36 49.69

Table 11: NLL (%) computed for different approaches post temperature scaling (cross validated on
ECE).

Dataset Model Cross Entropy Brier Loss MMCE FL-1 FL-2 FL-3 FLS-531 FLS-532 FLA-532 FLA-53

CIFAR-100

ResNet 50 44.34 36.75 39.53 33.22 21.03 13.02 26.76 23.56 22.40 16.12
ResNet 110 55.92 24.85 50.69 40.49 32.57 26.00 37.24 29.56 34.73 22.57

Wide ResNet 26-10 49.36 14.68 40.13 27.00 15.14 9.96 27.81 17.59 13.64 10.17
DenseNet 121 56.28 15.47 49.97 35.45 21.70 11.61 38.68 18.91 21.34 9.68

CIFAR-10

ResNet 50 38.65 31.54 60.06 31.75 25.00 21.83 30.54 23.57 25.45 14.89
ResNet 110 44.25 25.18 67.52 73.35 25.92 25.15 34.18 30.38 30.80 18.95

Wide ResNet 26-10 48.17 77.15 36.82 29.17 30.17 23.86 37.57 30.65 18.51 74.07
DenseNet 121 45.19 19.39 43.92 38.03 29.59 77.08 33.50 16.47 17.85 13.36

20 Newsgroups Global Pooling CNN 36.91 31.35 34.72 34.28 24.10 18.85 26.02 25.02 24.29 17.44

SST Binary Tree LSTM 71.08 92.62 68.43 95.48 86.21 22.32 76.28 86.93 80.85 73.70

Table 12: MCE (%) computed for different approaches pre temperature scaling.

Dataset Model Cross Entropy Brier Loss MMCE FL-1 FL-2 FL-3 FLS-531 FLS-532 FLA-532 FLA-53

CIFAR-100

ResNet 50 12.75 21.61 11.99 8.92 8.86 6.76 7.46 6.76 5.24 27.18
ResNet 110 22.65 13.56 19.23 20.13 12.00 13.06 18.28 13.72 15.89 10.94

Wide ResNet 26-10 14.18 13.42 16.50 10.28 18.32 9.96 13.18 11.01 12.50 9.73
DenseNet 121 21.63 8.55 13.02 10.49 11.63 6.17 6.21 6.48 9.41 5.68

CIFAR-10

ResNet 50 20.60 22.46 23.60 25.86 28.17 15.76 22.05 23.85 24.76 26.37
ResNet 110 29.98 22.73 31.87 29.74 23.82 37.61 26.25 25.94 11.59 17.35

Wide ResNet 26-10 26.63 77.15 32.33 74.58 29.58 25.64 28.63 20.23 19.68 36.56
DenseNet 121 32.52 19.39 27.03 19.68 22.71 76.27 21.05 32.76 35.06 13.36

20 Newsgroups Global Pooling CNN 6.10 13.04 15.12 7.79 11.88 22.22 16.86 11.85 8.37 12.65

SST Binary Tree LSTM 88.48 91.86 32.92 87.77 86.21 74.52 54.27 88.85 82.42 76.71

Table 13: MCE (%) computed for different approaches post temperature scaling (cross validated on
ECE).

on the misclassified samples, particularly before temperature scaling. Apart from focal loss, the only
model which has relatively low confidences on misclassified test samples is the one trained using
Brier score. These observations support our claim that focal loss produces not only a calibrated model
but also one which is confident on its correct predictions.

G FOCAL LOSS AND CROSS ENTROPY ON A LINEAR MODEL

To understand the effect of focal loss on simpler to analyse models, we conducted experiments on a
generalised linear model on a simple data distribution.

Setup We consider a binary classification problem. The data matrix X ∈ R2×N is created by
assigning each class two normally distributed clusters such that the mean of the clusters are linearly
separable. The mean of the clusters are situated on the vertices of a two-dimensional hypercube.
Further to that, for 10% of the data points, the labels were flipped. The model consists of a simple
2-parameter logistic regression model. fw(x) = σ(w1x1 + w2x2). We train this model using both
cross entropy and focal loss with γ = 1.
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Figure 5: (a): Norm of logits (b): Norm of weights.

Weight Magnification We have argued that focal loss implicitly regularizes the weights of the
model by providing smaller gradients as compared to cross entropy. This helps in calibration as - if
all the weights are large, the logits are large and thus the confidence of the network is large on all test
points. When the model misclassifies, it misclassifies with a high confidence. Figure 5 shows, for a
generalised linear model, that the norm of the logits and the weights of a network blows for Cross
Entropy as compared to Focal Loss.

High Confidence for mistakes Figure 6 (b) and (c) shows that running gradient descent with cross
entropy (CE) and focal loss (FL) both gives the same decision regions i.e. the weight vector points in
the same region for both FL and CE. However, as we have seen that the norm of the weights is much
larger for FL as compared to CE, we would expect the confidence of misclassified test points to be
large for CE as compared to FL. Figure 6 (a) plots a histogram of the confidence of the misclassified
points and it shows that CE misclassifies almost always with greater than 90% confidence whereas
FL misclassifies with much lower confidence.
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Figure 6: (a): Confidence of mis-classifications (b): Decision boundary of linear classifier trained
using cross entropy (c): Decision boundary of linear classifier trained using focal loss

H FOCAL LOSS MINIMISES REGULARISED BREGMAN DIVERGENCE

In this section, we show that just like Cross Entropy minimizes an upper bound on the KL-Divergence
between the true distribution p and the predicted distribution q, focal loss minimizes a regularized KL
divergence between p and q. We use FLγ(p, q) and CE(p, q) to denote the focal loss with parameter
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γ and cross entropy between p and q respectively and K to denote the number of classes.

FLγ(p, q) = −
K∑
i

(1− qi)γpi log qi

≥ −
K∑
i

(1− γqi)pi log qi By Bernoulli’s inequality ∀γ ≥ 1 and 0 ≤ qi ≤ 1

= −
K∑
i=1

pi log qi − γ

∣∣∣∣∣
K∑
i=1

piqi log qi

∣∣∣∣∣ ∀i log qi ≤ 0

≥ −
K∑
i=1

pi log qi − γmax
j
pj

K∑
i=1

|qi log qi| By Holder’s inequality with p =∞, q = 1

≥ −
K∑
i=1

pi log qi + γ

K∑
i=1

qi log qi ∀i pi ≤ 1

= CE(p, q)− γEntropy(q)

We know that

KL(p||q) = CE(p, q)− Entropy(p)

KL(p||q) ≤ γEntropy(q) + FL(p, q)− Entropy(p)

FL(p, q) ≥ KL(p||q) + Entropy(p)− γEntropy(q)

Experimentally, we found the solution of the Cross Entropy and Focal loss equation, i.e. the value of
the predicted probability q̂ which minimizes the loss, for various values of p in a binary classification
problem (i.e. K = 2) and plotted it in Figure 7. Note how Focal loss favours a more entropic solution
q̂ that is closer to 0.5. In other words, as Figure 7 shows, solutions to focal loss (Eqn equation 13)
will always have higher entropy than that of Cross Entropy.

q̂ = argminx − (1− x)γp log x− xγ(1− p) log (1− x) 0 ≤ x ≤ 1 (13)
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Figure 7: Optimal q̂ for various values of p and γ
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Figure 8: Qualitative results showing the performance of Cross Entropy, Brier Score, MMCE and
Focal Loss (sample-wise γ 5,3) for a ResNet-50 trained on CIFAR-10. The first row of images have
been correctly classified by networks trained on all four loss functions and the second row of images
have all been incorrectly classified. For each image, we present the actual label, the predicted label
and the confidence of the prediction both before and after temperature scaling.
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