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Abstract

This work proposes an end-to-end deep fully convolutional neural network for MRF recon-
struction (MRF-FCNN), which firstly employs linear dimensionality reduction and then
uses a neural network to project the data into the tissue parameters. The MRF dictionary
is only used for training the network and not during image reconstruction. We show that
MRF-FCNN is capable of achieving accuracy comparable to the ground-truth maps thanks
to capturing spatio-temporal data structures without a need for the non-scalable dictionary
matching step used in the baseline reconstructions.
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1. Introduction

Magnetic Resonance Fingerprinting (MRF) (Ma et al., 2013) has emerged as a promis-
ing quantitative Magnetic Resonance Imaging approach, which can significantly reduce
the acquisition time needed for quantitative measurements. However, the conventional
MRF methods suffer from the heavy storage and computation requirements of a dictionary-
matching (DM) step due to the growing size and complexity of the fingerprint dictionaries in
multi-parametric quantitative MRI applications (Davies et al., 2014). Recently, many deep
learning based MRF reconstructions (Hoppe et al., 2017; Cohen et al., 2018) have been pro-
posed to exploit deep neural networks to replace the dictionary and the lookup-table used in
conventional MRF reconstruction approaches. Alternately, by imposing a linear dimension
reduction procedure, our proposed MRF-Net (Golbabaee et al., 2019) is able to accurately
approximate the DM step saving more than 60 times in memory and computations. This
paper extends the learning capability of the MRF-Net by including a fully convolutional
architecture that is capable of capturing both spatial and temporal structures.

2. Proposed Method

The proposed MRF-FCNN consists of two components: a linear projector P0 : Rm×d0 →
Rm×d1 and a neural network projector P1 : Rm×d1 → Rm×d2 , where m is the number
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of voxels, d0 is the number of acquired time points (i.e., dimension of each fingerprint),
d1 = 10 is the reduced dimensionality, and d2 = 3 corresponding to the desired tissue’s
intrinsic parameters e.g., Θ = [T1, T2, PD] where T1, T2 are relaxation times and PD
denotes proton density. The former aims to learn a linear projection onto the subspace of
clean fingerprints. The latter devotes to nonlinearly project the dimension-reduced data
onto the manifold of Θ, due to the powerful ability of neural networks for manifold learning
(Chen et al., 2017, 2018b) and pattern recognition (Chen et al., 2018a; Li et al., 2019).
Therefore, MRF-FCNN finally approximates the following transformation F :

F : P0 ◦ P1. (1)

In this work, we apply principal component analysis (PCA) as the P0 and a concisely
designed fully convolutional neural network as the MRF-FCNN (Figure 1). It starts with
an unsupervised learning layer (gray) which learns a linear projection onto the subspace
of clean fingerprints through PCA, then keep P0 fixed during the training of the other
layers. The main component (dotted box) of the MRF-FCNN is designed with stacks of
separable convolutional layers (yellow) with kernel size 3× 3, and decreasing feature maps
(256, 128, 64, 32) for fine texture features learning, and finally ends with two convolutional
layers (green) with the same kernel size 1 × 1 and 3 feature maps for each layer. The
ReLu are used as the activation function, as it provides a piece-wise affine approximation to
the Bloch response manifold projection (Golbabaee et al., 2019) (i.e. a transformation from
tissue’s intrinsic parameters [T1, T2] to it’s corresponding temporal signature). The followed
dropouts are included to prevent over-fitting. Our empirical studies show that including
the 1 × 1 convolutional layers at the end of the model is crucial to the reconstruction,
which reduces the redundancy in former feature maps and increases the correlation between
channels and finally helps to prevent local blurring in our MRF reconstruction.

Our approach performs a sharp and accurate parameter estimation. The proposed
MRF-FCNN uses spiral sub-sampled MRF data but it reconstructs the data with similar
accuracy to the Cartesian sampled images acquired using a specific protocol, e.g. MAGIC
(Marcel and AB, 2015). In addition, a benefit from the dimensionality-reduction operator,
the MRF-FCNN requires far less units and training resource which distinguishes from other
mainstream deep learning approached applied to MRF (Hoppe et al., 2017; Cohen et al.,
2018), and our experimental results show that the MRF-FCNN does not suffer from common
blurring artifacts in spiral sampling protocols.

3. Results

We test the MRF-FCNN on a simulated human brain MRF data. To be specific, the ground
truth used for this simulation was acquired using longer protocol MAGIC (Marcel and AB,
2015). In this work, we set the image scale m = 256 × 256, and we collect ground truth
(GT) parametric maps from 8 volunteers (20 brain slices each) using MAGIC quantitative
MRI protocol with Cartesian sampling. These parametric maps are then used to simulate
MRF acquisition using the Fast imaging with Steady State Precession (FISP) (Jiang et al.,
2015) protocol and spiral sampling. Accordingly, the input to MRF-FCNN are the Fourier
back-projected images corresponding to the MRF k-space measurements. These are highly
aliased due to operating in a sever under-sampling regime (i.e. only 732 k-space samples are
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Figure 1: An illustration of the proposed MRF-FCNN. Inputs are the voxel sequences and
output are the per-voxel T1, T2 and PD parameters.
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Figure 2: Two examples of the reconstructed T1 and T2 maps using the proposed MRF-
FCNN. For each example (a) and (b), the first row of images are the ground
truth parametric maps acquired using MAGIC protocol with Cartesian sampling,
the bottom images are our MRF reconstruction results using FISP protocol and
spiral sampling.

collected at each time-point). The output are the GT parametric maps. To avoid overfitting,
the standard data augmentation is conducted by adding the translation, rotation, scale, and
noise. In our experiment, the first 7 volunteers’ data are used for training while the data
of last volunteer are for reconstruction testing. We train the MRF-FCNN on two Nvidia
1080Ti GPUs. The reconstructed maps (Figure 2) indicate the proposed MRF-FCNN could
generate high-quality reconstruction similar to MAGIC without suffering from blurring
artifacts. More importantly, the standard dictionary matching (search) approaches would
typically take a couple of minutes for reconstruction, but MRF-FCNN only takes around
0.29 seconds for a single slice MRF reconstruction. This means we can use the MRF-
FCNN framework and get similar quality quantitative images as MAGIC but in a much
shorter acquisition time. Detailed comparison with other methods in terms of reconstruction
quality, computational performance and applicability to real-world data will be addressed
in future work.
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