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ABSTRACT

Cryo-electron microscopy (cryo-EM) is a powerful technique for determining the
structure of proteins and other macromolecular complexes at near-atomic resolution.
In single particle cryo-EM, the central problem is to reconstruct the 3D structure of
a macromolecule from 104−7 noisy and randomly oriented 2D projection images.
However, the imaged protein complexes may exhibit structural variability, which
complicates reconstruction and is typically addressed using discrete clustering
approaches that fail to capture the full range of protein dynamics. Here, we
introduce a novel method for cryo-EM reconstruction that extends naturally to
modeling continuous generative factors of structural heterogeneity. This method
encodes structures in Fourier space using coordinate-based deep neural networks,
and trains these networks from unlabeled 2D cryo-EM images by combining
exact inference over image orientation with variational inference for structural
heterogeneity. We demonstrate that the proposed method, termed cryoDRGN, can
perform ab initio reconstruction of 3D protein complexes from simulated and real
2D cryo-EM image data. To our knowledge, cryoDRGN is the first neural network-
based approach for cryo-EM reconstruction and the first end-to-end method for
directly reconstructing continuous ensembles of protein structures from cryo-EM
images.

1 INTRODUCTION

Cryo-electron microscopy (cryo-EM) is a Nobel Prize-winning technique capable of determining the
structure of proteins and macromolecular complexes at near-atomic resolution. In a single particle
cryo-EM experiment, a purified solution of the target protein or biomolecular complex is frozen in
a thin layer of vitreous ice and imaged at sub-nanometer resolution using an electron microscope.
After initial preprocessing and segmentation of the raw data, the dataset typically comprises 104−7

noisy projection images. Each image contains a separate instance of the molecule, recorded as the
molecule’s electron density integrated along the imaging axis (Figure 1). A major bottleneck in
cryo-EM structure determination is the computational task of 3D reconstruction, where the goal is
to solve the inverse problem of learning the structure, i.e. the 3D electron density volume, which
gave rise to the projection images. Unlike classic tomographic reconstruction (e.g. MRI), cryo-
EM reconstruction is complicated by the unknown orientation of each copy of the molecule in the
ice. Furthermore, cryo-EM reconstruction algorithms must handle challenges such as an extremely
low signal to noise ratio (SNR), unknown in-plane translations, imperfect signal transfer due to
microscope optics, and discretization of the measurements. Despite these challenges, continuing
advances in hardware and software have enabled structure determination at near-atomic resolution
for rigid proteins (Kühlbrandt (2014); Scheres (2012b); Renaud et al. (2018); Li et al. (2013)).

Many proteins and other biomolecules are intrinsically flexible and undergo large conformational
changes to perform their function. Since each cryo-EM image contains a unique instance of the
molecule of interest, cryo-EM has the potential to resolve structural heterogeneity, which is experi-
mentally infeasible with other structural biology techniques such as X-ray crystallography. However,
this heterogeneity poses a substantial challenge for reconstruction as each image is no longer of the
same structure. Traditional reconstruction algorithms address heterogeneity with discrete clustering

∗Corresponding authors

1



Published as a conference paper at ICLR 2020

approaches, however, protein conformations are continuous and may be poorly approximated with
discrete clusters (Malhotra & Udgaonkar (2016); Nakane et al. (2018)).

Figure 1: Cryo-EM reconstruction algorithms tackle the
inverse problem of determining the 3D electron density
volume from 104−7 noisy images. Each image is a
noisy projection of a unique instance of the molecule
suspended in ice at a random orientation. Algorithms
must jointly learn the volume and the orientation of each
particle image. Example image from Wong et al. (2014).

Here, we introduce a neural network-based re-
construction algorithm that learns a continu-
ous low-dimensional manifold over a protein’s
conformational states from unlabeled 2D cryo-
EM images. We present an end-to-end learning
framework for a generative model over 3D vol-
umes using an image encoder-volume decoder
neural network architecture. Extending spatial-
VAE, we formulate our decoder as a function of
3D Cartesian coordinates and unconstrained la-
tent variables representing factors of image vari-
ation that we expect to result from protein struc-
tural heterogeneity (Bepler et al. (2019)). All
inference is performed in Fourier space, which
allows us to efficiently relate 2D projections to
3D volumes via the Fourier slice theorem. By
formulating our decoder as a function of Cartesian coordinates, we can explicitly model the imag-
ing operation to disentangle the orientation of the molecule during imaging from intrinsic protein
structural heterogeneity. Our learning framework avoids errant local minima in image orientation
by optimizing with exact inference over a discretization of SO(3)× R2 using a branch and bound
algorithm. The unconstrained latent variables are trained in the standard variational autoencoder
approach. We present results on both real and simulated cryo-EM data.

2 BACKGROUND AND NOTATION

2.1 IMAGE FORMATION MODEL

Cryo-EM aims to recover a structure of interest V : R3 → R consisting of an electron density at
each point in space based on a collection of noisy images X1, ..., XN produced by projecting (i.e.
integrating) the volume in an unknown orientation along the imaging axis. Formally, the generation
of image X can be modeled as:

X(rx, ry) = g ∗
∫
R
V (RT r + t) drz + noise r = (rx, ry, rz)

T (1)

where V is the electron density (volume), R ∈ SO(3), the 3D rotation group, is an unknown
orientation of the volume, and t = (tx, ty, 0) is an unknown in-plane translation, corresponding
to imperfect centering of the volume within the image. The image signal is convolved with g, the
point spread function for the microscope before being corrupted with frequency-dependent noise and
registered on a discrete grid of size DxD, where D is the size of the image along one dimension.

The reconstruction problem is simplified by the observation that the Fourier transform of a 2D
projection of V is a 2D slice through the origin of V in the Fourier domain, where the slice is
perpendicular to the projection direction. This correspondence is known as the Fourier slice theorem
(Bracewell (1956)). In the Fourier domain, the generative process for image X̂ from volume V̂ can
thus be written:

X̂(kx, ky) = ĝS(t)A(R)V̂ (kx, ky) + ε (2)

where ĝ = Fg is the contrast transfer function (CTF) of the microscope, S(t) is a phase shift operator
corresponding to image translation by t in real space, and A(R)V̂ = V̂ (RT (·, ·, 0)T ) is a linear slice
operator corresponding to rotation by R and linear projection along the z-axis in real space. The
frequency-dependent noise ε is typically modelled as independent, zero-centered Gaussian noise in
Fourier space. Under this model, the probability of of observing an image X̂ with pose φ = (R, t)

from volume V̂ is thus:

2



Published as a conference paper at ICLR 2020

p(X̂|φ, V̂ ) = p(X̂|R, t, V̂ ) =
1

Z
exp

(∑
l

−1

2σ2
l

∣∣∣ĝlAl(R)V̂ − Sl(t)X̂l

∣∣∣2) (3)

where l is a two-component index over Fourier coefficients for the image, σl is the width of the
Gaussian noise expected at each frequency, and Z is a normalization constant.

2.2 TRADITIONAL CRYO-EM RECONSTRUCTION

To recover the desired structure, cryo-EM reconstruction methods must jointly solve for the unknown
volume V and image poses φi = (Ri, ti). Expectation maximization (Scheres (2012a)) and simpler
variants of coordinate ascent are typically employed to find a maximum a posteriori estimate of V
marginalizing over the posterior distribution of φi’s, i.e.:

V MAP = arg max
V

N∑
i=1

log

∫
p(Xi|φ, V )p(φ)dφ+ log p(V ) (4)

Intuitively, given V (n), the estimate of the volume at iteration n, images are first aligned with V (n) (E-
step), then with the updated alignments, the images are backprojected to yield V (n+1) (M-step). This
iterative refinement procedure is sensitive to the initial estimate of V as the optimization objective
is highly nonconvex; stochastic gradient descent is commonly used for ab initio reconstruction1 to
provide an initial estimate V (0) (Punjani et al. (2017)).

Given sample heterogeneity, the standard approach in the cryo-EM field is to simultaneously recon-
struct K independent volumes. Termed multiclass refinement, the image formation model is extended
to assume images are generated from V1, ..., VK independent volumes, with inference now requiring
marginalization over φi’s and class assignment probabilities πj’s:

arg max
V1,...,VK

N∑
i=1

log

K∑
j=1

(
πj

∫
p(Xi|φ, Vj)p(φ)dφ

)
+

K∑
j=1

log p(Vj) (5)

While this formulation is sufficiently descriptive when the structural heterogeneity consists of a
small number of discrete conformations, it suffers when the heterogeneity is complex or when
conformations lie along a continuum of states. In practice, resolving such heterogeneity is handled
through a hierarchical approach refining subsets of the imaging dataset with manual choices for
the number of classes and the initial models for refinement. Because the number and nature of the
underlying structural states are unknown, multiclass refinement is error-prone, and in general, the
identification and analysis of heterogeneity is an open problem in single particle cryo-EM.

3 METHODS

We propose a neural network-based reconstruction method, cryoDRGN (Deep Reconstructing Gener-
ative Networks), that can perform ab-initio unsupervised reconstruction of a continuous distribution
over 3D volumes from unlabeled 2D images (Figure 2). We formulate an image encoder-volume
decoder architecture based on the variational autoencoder (VAE) (Kingma & Welling (2013)), where
protein structural heterogeneity is modeled in the latent variable. While a standard VAE assumes all
sources of image heterogeneity are entangled in the latent variable, we propose an architecture that
enables modelling the intrinsic heterogeneity of the volume separately from the extrinsic orientation
of the volume during imaging. Our end-to-end training framework explicitly models the forward
image formation process to relate 2D views to 3D volumes and employs two separate strategies for
inference: a variational approach for the unconstrained latent variables and a global search over
SO(3) × R2 for the unknown pose of each image. These elements are described in further detail
below.

1"Reconstruction" is used interchangeably in the cryo-EM literature to refer to either the full pipeline from
ab-initio model generation followed by iterative refinement of the model via expectation maximization or solely
to the latter. We focus on the former case.
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3.1 GENERATIVE MODEL

We design a deep generative model to approximate a single function, V̂ : R3+n → R, representing a
n-dimensional manifold of 3D electron densities in the Fourier domain. Specifically, the volume V̂ is
modelled as a probabilistic decoder pθ(V̂ |k, z), where θ are parameters of a multilayer perceptron
(MLP). Given Cartesian coordinates k ∈ R3 and continuous latent variable z, the decoder outputs
distribution parameters for a Gaussian distribution over V̂ (k, z), i.e. the electron density of volume
V̂z at frequency k in Fourier space. Unlike a standard deconvolutional decoder which produces a
separate distribution for each voxel of a D3 lattice given the latent variable, following spatial-VAE,
we model a function over Cartesian coordinates (Bepler et al. (2019)). Here, these coordinates
are explicitly treated as each pixel’s location in 3D Fourier space and thus enforce the topological
constraints between 2D views in 3D via the Fourier slice theorem.

By the image formation model, each image corresponds to an oriented central slice of the 3D volume
in the Fourier domain (Section 2). During training, the 3D coordinates of an image’s pixels can be
explicitly represented by the rotation of a DxD lattice initially on the x-y plane. Under this model,
the log probability of an image, X̂ , represented as a vector of size DxD, given the current MLP, latent
pose variables R ∈ SO(3) and t ∈ R2, and unconstrained latent variable, z, is:

log p(X̂|R, t, z) = log p(X̂ ′|R, z) =
∑
i

log pθ(V̂ |RT c(i)0 , z) (6)

where i indexes over the coordinates of a fixed lattice c0. Note that X̂ ′ = S(−t)X̂ is the centered
image, where S is the phase shift operator corresponding to image translation in real space. We define
c0 as a vector of 3D coordinates of a fixed lattice spanning [−0.5, 0.5]2 on the x-y plane to represent
the unoriented coordinates of an image’s pixels.

Instead of directly supplying k, a fixed positional encoding of k is supplied to the decoder, consisting
of sine and cosine waves of varying frequency:

pe(2i)(kj) = sin(kjDπ(2/D)2i/D), i = 1, ..., D/2; kj ∈ k (7)

pe(2i+1)(kj) = cos(kjDπ(2/D)2i/D), i = 1, ..., D/2; kj ∈ k (8)

Without loss of generality, we assume a length scale by our definition of c0 which restricts the
support of the volume to a sphere of radius 0.5. The wavelengths of the positional encoding thus
follow a geometric series spanning the Fourier basis from wavelength 1 to the Nyquist limit (2/D)
of the image data. While this encoding empirically works well for noiseless data, we obtain better
results with a slightly modified featurization for noisy datasets consisting of a geometric series which
excludes the top 10 percentile of highest frequency components of the noiseless positional encoding.

3.2 INFERENCE

We employ a standard VAE for approximate inference of the latent variable z, but use a global search
to infer the pose φ = (R, t) using a branch and bound algorithm.

Variational encoder: As each cryo-EM image is a noisy projection of an instance of the volume
at a random, unknown pose (viewing direction), the image encoder aims to learn a pose-invariant
representation of the protein’s structural heterogeneity. Following the standard VAE framework, the
probabilistic encoder qξ(z|X̂) is a MLP with variational parameters ξ and Gaussian output with
diagonal covariance. Given an input cryo-EM image X̂ , represented as a DxD vector, the encoder
MLP outputs µz|X̂ and Σz|X̂ , statistics that parameterize an approximate posterior to the intractable

true posterior p(z|X̂). The prior on z is a standard normal, N (0, I).

Pose inference: We perform a global search over SO(3) × R2 for the maximum-likelihood pose
for each image given the current decoder MLP and a sampled value of z from the approximate
posterior. Two techniques are used to improve the efficiency of the search over poses: (1) discretizing
the search space on a uniform grid and sub-dividing grid points after pruning candidate poses with
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Figure 2: CryoDRGN model architecture. We use a VAE to perform approximate inference for latent variable
z denoting image heterogeneity. The decoder reconstructs an image pixel by pixel given z and pe(k), the
positional encoding of 3D Cartesian coordinates. The 3D coordinates corresponding to each image pixel are
obtained by rotating a DxD lattice on the x-y plane by R, the image orientation. The latent orientation for each
image is inferred through a branch and bound global optimization procedure (not shown).

branch and bound (BNB), and (2) band pass limiting the objective to low frequency components and
incrementally increasing the k-space limit at each iteration (frequency marching). The pose inference
procedure encodes the intuition that low-frequency components dominate pose estimation, and is
fully described in Appendix A.

In summary, for a given image X̂i, the image encoder produces µz|X̂i and Σz|X̂i . A sampled value
of the latent zi ∼ N (µz|X̂i ,Σz|X̂i) is broadcast to all pixels. Given zi and the current decoder, BNB

orientational search identifies the maximum likelihood rotation Ri and translation ti for X̂i. The
decoder pθ then reconstructs the image pixel by pixel given the positional encoding of RTi c0 and
zi. The phase shift corresponding to ti and optionally the microscope CTF ĝi is then applied on the
reconstructed pixel intensities. Following the standard VAE framework, the optimization objective is
the variational lower bound of the model evidence:

L(X̂i; ξ, θ) = Eqξ(z|X̂i)[log pθ(X̂i|z)]−KL(qξ(z|X̂i)||p(z)) (9)

where the expectation of the log likelihood is estimated with one Monte Carlo sample. By comparing
many 2D slices from the imaging dataset, the volume can be learned through feedback from these
single views. Furthermore, this learning process is denoising as overfitting to noise from a single
image would lead to higher reconstruction error for other views. We note that the distribution of 3D
volumes models heterogeneity within a single imaging dataset, capturing structural variation for a
particular protein or biomolecular complex, and that a separate network is trained per experimental
dataset. Unless otherwise specified, the encoder and decoder networks are both MLPs containing
10 hidden layers of dimension 128 with ReLU activations. Further architecture and implementation
details are given in Appendix A.

4 RELATED WORK

Homogeneous cryo-EM reconstruction: Cryo-EM reconstruction is typically accomplished in
two stages: 1) generation of an initial low-resolution model followed by 2) iterative refinement of
the initial model with a coordinate ascent procedure alternating between projection matching and
refinement of the structure. In practice, initial structures can be obtained experimentally (Leschziner
& Nogales (2006)), inferred based on homology to complexes with known structure, or via ab-initio
reconstruction with stochastic gradient descent (Punjani et al. (2017)). Once an initial model is
generated, there are many tools for iterative refinement of the model (Scheres (2012b); Punjani et al.
(2017); Hohn et al. (2007); Lyumkis, Dmitry et al. (2013); Tang et al. (2007)). For example, Scheres
(2012a) presents a Bayesian approach based on a probabilistic model of the image formation process
and refines the structure via Expectation Maximization. Frequency marching is used extensively in
existing tools to speed up the search for the optimal pose for each image (Scheres (2012b); Barnett
et al. (2016); Punjani et al. (2017)). CryoSPARC implements a branch and bound optimization
scheme, where their bound is a probabilistic lower bound based on the noise characteristics from the

5



Published as a conference paper at ICLR 2020

image formation model (Punjani et al. (2017)). Ullrich et al. (2019) propose a differentiable voxel-
based representation for the volume and introduce a variational inference algorithm for homogeneous
reconstruction with known poses.

Heterogeneous cryo-EM reconstruction: In the cryo-EM literature, standard approaches for ad-
dressing structural heterogeneity use mixture models of discrete, independent volumes, termed
multiclass refinement (Scheres (2010); Lyumkis, Dmitry et al. (2013)). These mixture models assume
that the clusters are independent and homogeneous, and in practice require many rounds of expert-
guided hierarchical clustering from appropriate initial volumes and manual choices for number of
clusters. More recently, Nakane et al. (2018) extend the image generative model to model the protein
as a sum of rigid bodies (determined from a homogeneous reconstruction), thus imposing structural
assumptions on the type of heterogeneity. Frank & Ourmazd (2016) aim to build a continuous
manifold of the images, however their approach requires pose supervision and final structures are
obtained by clustering the images along the manifold and reconstructing with traditional tools. Recent
theoretical work for continuous heterogeneous reconstruction includes expansion of discrete 3D
volumes in a basis of Laplacian eigenvectors (Moscovich et al. (2019)) and a general framework for
modelling hyper-volumes (Lederman et al. (2019)) e.g. as a tensor product of spatial and temporal
basis functions (Lederman & Singer (2017)). To our knowledge, our work is the first to apply deep
neural networks to cryo-EM reconstruction, and in doing so, is the first that can learn a continually
heterogeneous volume from real cryo-EM data.

Neural network 3D reconstruction in computer vision: There is a large body of work in computer
vision on 3D object reconstruction from 2D viewpoints. While these general approaches have
elements in common with single particle cryo-EM reconstruction, the problem in the context of
computer vision differs substantially in that 2D viewpoints are not projections and viewing directions
are typically known. For example, Yan et al. (2016) propose a neural network that can predict a 3D
volume from a single 2D viewpoint using only 2D image supervision. Gadelha et al. (2017) learn a
generative model over 3D object shapes based on 2D images of the objects thereby disentangling
variation in shape and pose. Tulsiani et al. (2018) also reconstruct and disentangle the shape and pose
of 3D objects from 2D images by enforcing geometric consistency. These works attempt to encode
the viewpoint ‘projection’ operation 2 explicitly in the model in a manner similar to our use of the
Fourier slice theorem.

Coordinate-based neural networks in computer vision: Using spatial (i.e. pixel) coordinates as
features to a convolutional decoder to improve generative modeling has been proposed many times,
with recent work computing each image as a function of a fixed coordinate lattice and latent variables
(Watters et al. (2019)). However, directly modeling a function that maps spatial coordinates to values
is less extensively explored. In CocoNet, the authors present a deep neural network that maps 2D
pixel coordinates to RBG color values. CocoNet learns an image model for single images, using the
capacity of the network to memorize the image, which can then be used for various tasks such as
denoising and upsampling (Bricman & Ionescu (2018)). Similarly, Spatial-VAE proposes a similar
coordinate-based image model to enforce geometric consistency between rotated 2D images in order
to learn latent image factors and disentangle positional information from image content (Bepler et al.
(2019)). Our method extends many of these ideas from simpler 2D image modelling to enable 3D
cryo-EM reconstruction in the Fourier domain.

5 RESULTS

Here, we present both qualitative and quantitative results for 1) homogeneous cryo-EM reconstruction,
validating that cryoDRGN reconstructed volumes match those from existing tools; 2) heterogeneous
cryo-EM reconstruction with pose supervision, demonstrating automatic learning of the latent
manifold that previously required many expert-guided rounds of multiclass refinement; and 3) fully
unsupervised reconstruction of continuous distributions of 3D protein structures, a capability not
provided by any existing tool.

2This is not the meaning of projection in the context of this work, where it refers to integration along the
imaging axis.
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5.1 UNSUPERVISED HOMOGENEOUS RECONSTRUCTION

We first evaluate cryoDRGN on homogeneous datasets, where existing tools are capable of recon-
struction. We create two synthetic datasets following the cryo-EM image formation model (image
size D=128, 50k projections, with and without noise), and use one real dataset from EMPIAR-10028
consisting of 105,247 images of the 80S ribosome downsampled to image size D=90. The encoder
network is not used in homogeneous reconstruction. As a baseline for comparison, we perform
homogeneous ab-initio reconstruction followed by iterative refinement in cryoSPARC (Punjani et al.
(2017)). We compare against cryoSPARC as a representative of traditional state-of-the-art tools,
which all implement variants of the same algorithm (Section 2). Further dataset preprocessing and
training details are given in Appendix B.

Dataset
Method No Noise SNR=0.1

cryoSPARC 0.0009 / 0.47 0.002 / 0.64
cryoDRGN 0.0004 / 0.27 0.003 / 0.38

Table 1: Homogeneous reconstruction pose accuracy
quantified by median rotation/translation error to the
ground truth image poses. Rotation/translation error is
defined as the Frobenius/L2 norm after alignment.

We find that cryoDRGN inferred poses and re-
constructed volumes match those from state of-
the-art tools. The similarity of the volumes to
the ground truth can be quantified with the with
the Fourier shell correlation (FSC) curve3. Re-
constructed volumes and quantitative compar-
ison with the FSC curve is given in Figure S5.
Pose error to the ground truth image poses are
given in Table 1. For the real cryoEM dataset (no ground truth), the median pose difference between
cryoDRGN and cryoSPARC reconstructions is 0.002 for rotations and 1.0 pixels for translations, and
the resulting volumes are correlated above a FSC cutoff of 0.5 across all frequencies.

5.2 HETEROGENEOUS RECONSTRUCTION WITH POSE SUPERVISION

Next, we evaluate cryoDRGN for heterogeneous cryo-EM reconstruction on EMPIAR-10076, a
real dataset of the E. coli large ribosomal subunit (LSU) undergoing assembly (131,899 images,
downsampled to D=90) (Davis et al. (2016)). Here, poses are obtained through alignment to an
existing structure of the LSU and treated as known during training. In the original analysis of this
dataset, multiple rounds of discrete multiclass refinement with varying number of classes followed
by human comparison of similar volumes were used to identify 4 major structural states of the
LSU. We train cryoDRGN with a 1-D latent variable treating image pose as fixed to skip BNB pose
inference. As a baseline, we reproduce the published structures originally obtained through multiclass
refinement with cryoSPARC. Further baseline and training details are given in Appendix C.

Figure 3: a) Volumes generated at values of the latent
(at dashed lines) match the published volumes of the 4
major states B-E of the LSU. b) Distribution of images
in the latent space, colored by cluster assignment from a
discrete multiclass reconstruction in cryoSPARC.

We find that CryoDRGN automatically identi-
fies all 4 major states of the LSU (Figure 3a).
Quantitative comparison with FSC curves3 and
additional volumes along the latent space are
shown in Figure S7. We compare the cryo-
DRGN latent encoding µz|X for each image
to the MAP cluster assignment in cryoSPARC
and find that the learned latent manifold aligns
with cryoSPARC clusters (Figure 3b). Cryo-
DRGN identifies subpopulations in some of the
cryoSPARC clusters (e.g. Class D), which is par-
titioned by a subsequent round of cryoSPARC
multiclass refinement (Figure S8). Published
structures A and F correspond to impurities in
the sample. CryoDRGN correctly assigns im-
ages from these impurities to distinct clusters,
but does not learn their correct structure since
the poses inferred from aligning to the LSU tem-
plate structure are incorrect.

3The FSC curve measures correlation between volumes as a function of radial shells in Fourier space.
The field currently lacks a rigorous method for measuring the quality of reconstruction. In practice, however,
resolution is often reported as 1/k0 where k0 = argmaxk FSC(k) < C and C is some fixed threshold.
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Figure 4: Left: Ground truth volume containing a continuous circular 1D motion. Middle: Reconstructed
structures from cryoDRGN match the ground truth volumes with the correct continuous deformation. We
visualize 10 structures (superimposed) sampled at the depicted points in the latent space. The distribution of
images in the latent space (visualized in 2D with PCA) matches the topology of the true data manifold. Right:
Reconstructed volumes from discrete 3-class reconstruction in cryoSPARC and the distribution of images over
the three reconstructed volumes.

Dataset cryoDRGN cryoDRGN+tilt cryoSPARC
Linear 1D motion 2.50(0.62) 2.35(0.36) 3.60(2.27)
Linear 2D motion 4.44(2.50) 2.93(1.02) 6.90(3.77)
Circular 1D motion 4.05(2.40) 2.63(0.74) 4.87(2.17)
Discrete 10 class 4.95(3.16) 2.58(1.00) 5.69(5.15)

Table 2: Reconstruction accuracy quantified by an FSC=0.5 resolution metric between the reconstructed volumes
corresponding to each image and its ground truth volume. We report the average and standard deviation across
100 images in the dataset (lower is better; best possible is 2 pixels).

5.3 UNSUPERVISED HETEROGENEOUS
RECONSTRUCTION

We test the ability of cryoDRGN to perform fully unsupervised heterogeneous reconstruction from
datasets with different latent structure. We generate four datasets (each 50k projections, D=64) from
an atomic model of a protein complex, containing either a 1D continuous motion, 2D continuous
motion, 1D continuous circular motion, or a mixture of 10 discrete conformations (Figure S7). We
train cryoDRGN with a 1D latent variable for the linear 1D dataset and a 10D latent variable for the
other 3 datasets. As a baseline, we perform multiclass reconstruction in cryoSPARC sweeping K=2-5
classes. We compare against K=3, which had the best qualitative results.

We also propose a modification to cryoDRGN in order to train on tilt series pairs datasets. Tilt series
pairs is a variant of cryo-EM in which, for each image Xi, a corresponding image X

′

i is acquired
after tilting the imaging stage by a known angle. This technique was originally employed to identify
the chirality of molecules (Belnap et al. (1997)), which is lost in the projection from 3D to 2D. We
propose using tilt series pairs to encourage invariance of qξ with respect to pose transformations for
a given V̂z (and incidentally to identify the chirality of V̂z). We make minor modifications to the
architecture as described in Appendix D.

In Figure 4, we show that cryoDRGN reconstructed volumes for the circular 1D dataset qualitatively
match the ground truth structures. Note that while we only visualize 10 structures sampled along
the latent space, the volume decoder can reconstruct the full continuum of states. In contrast,
cryoSPARC multiclass reconstruction, a discrete mixture model of independent structures, is only
able to reconstruct 2 (originally unaligned) structures which resemble the ground truth. Volumes
contain blurring artifacts from clustering images from different conformations into the assumed-
homogeneous clusters in the mixture model. Results for the remaining datasets are given in Figures
S10-13.

We quantitatively measure performance on this task with an FSC resolution metric computed between
the MAP volume for each image Vzi|X̂i and the ground truth volume which generated each image,
averaged across images in the dataset (Table S4). We find that cryoDRGN reconstruction accuracy
is much higher than state-of-the-art discrete multiclass reconstruction in cryoSPARC, with further
improvement achieved by training on tilt series pairs.

8



Published as a conference paper at ICLR 2020

6 CONCLUSIONS

We present a novel neural network-based reconstruction method for single particle cryo-EM that
learns continuous variation in protein structure. We applied cryoDRGN on a real dataset of highly
heterogeneous ribosome assembly intermediates and demonstrate automatic partitioning of structural
states. In the presence of simulated continuous heterogeneity, we show that cryoDRGN learns a
continuous representation of structure along the true reaction coordinate, effectively disentangling
imaging orientation from intrinsic structural heterogeneity. The techniques described here may also
have broader applicability to image and volume generative modelling in other domains of computer
vision and 3D shape reconstruction.
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A APPENDIX - METHODS

A.1 BRANCH AND BOUND IMPLEMENTATION DETAILS

We perform a global search over SO(3) × R2 for the maximum-likelihood pose for each image
given the current decoder MLP. Two techniques are used to improve the efficiency of the search over
poses: (1) discretizing the search space on a uniform grid and sub-dividing grid points after pruning
candidate poses with branch and bound, and (2) band pass limiting the objective to low frequency
components and incrementally increasing the k-space limit at each iteration (frequency marching).

Our branch and bound algorithm for pose optimization is given in Algorithm 1. Briefly, we discretize
SO(3) uniformly using the Hopf fibration Yershova et al. (2010) at a predefined base resolution of the
grid and incrementally increase the grid resolution by sub-dividing grid points. At each resolution of
the grid, the set of candidate poses is pruned using a branch and bound (BNB) optimization scheme,
which alternates between a computationally inexpensive lower bound on the objective function
evaluated at all grid points and an upper bound consisting of the true objective evaluated on the
best lower-bound candidate. Grid points whose lower bound is higher than this value are excluded
for subsequent iterations. In our case, the loss is evaluated on low-frequency components of the
image; specifically, Fourier components with |k| < kmax is an effective lower bound, as it is both
inexpensive to compute and captures most of the power (and thus the error). This bound encodes the
intuition that low-frequency components dominate pose estimation. We concomitantly increase kmax
at each iteration of grid subdivision.

At each iteration, some poses are excluded by BNB, and the remaining poses are further discretized.
Although BNB is risk-free in the sense that the optimal pose at a given resolution will not be pruned,
our application of it is not risk-free as a candidate pose with high loss at a given resolution doesn’t
guarantee that its neighbor in the next iteration will not have a lower loss. Irrespective, in practice, we
find that at a sufficiently fine base resolution, we obtain good results on a tractable timescale (hours
on a single GPU).4

We reimplement the uniform multiresolution grids on SO(3) based on Yershova et al. (2010), using
the Healpix Gorski et al. (2005) grid for the sphere and the Hopf fibration to uniformly lift the grid to
SO(3). The base grid on SO(3) contains 576 orientations. We use the ordinary grid for translations
containing 72 points with an extent of 20 pixels for D=128 datasets. We subdivide the grid 5 times
for a final resolution of 0.92 degrees for the orientation and 0.08 pixels for the translation. For D=64
datasets, we use a translational grid with extent of 10 pixels.

Algorithm 1 CryoDRGN branch and bound with frequency marching

1: procedure OPTPHI(X̂, V̂z) . Find the optimal image pose given the current decoder
2: kmin ← 12, kmax ← D/2, Niter ← 5
3: Φ← SO(3)× R2 grid at base resolution
4: k ← kmin
5: for iter = 1 . . . Niter do
6: for φi ∈ Φ do . Compute lower bound at all grid points
7: lb(φi)← loss between X̂ and SLICE(V̂z, φi) at k < k

8: φ∗ ← arg min(lb)

9: ub← loss between X̂ and SLICE(V̂z, φ∗) at k < kmax . Compute upper bound
10: Φnew ← {}
11: for φi ∈ Φ do . Subdivide grid points below the upper bound
12: if lb(φi) < ub then
13: Φnew ← Φnew ∪ SUBDIVIDE(φi)

14: Φ← Φnew
15: k ← k + (kmax − kmin)/(Niter − 1) . Increase frequency band limit
16: return φ∗

4The difference in loss between nearby poses could be incorporated into the BNB lower bound, but this
would require assumptions about the smoothness of the loss with respect to pose. We leave this detail for future
work.
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A.2 TRAINING DETAILS

Given an imaging dataset, X̂1, ...X̂N , we summarize three training paradigms of cryoDRGN. 1) For
homogeneous reconstruction, we only train the volume decoder pθ and perform BNB pose inference
for the unknown φi’s for each image. 2) As an intermediate task, we can perform heterogeneous
reconstruction training the image encoder qξ and the volume decoder pθ with known φi’s to skip
BNB pose inference. 3) For fully unsupervised heterogeneous reconstruction, we jointly train qξ and
pθ to learn a continuous latent representation, performing BNB pose inference for the unknown pose
of each image.

Unless otherwise specified, the encoder and decoder networks are both MLPs containing 10 hidden
layers of dimension 128 with ReLU activations. A fully connected architecture is used instead of a
convolutional architecture because the images are not represented in real space.

Instead of representing both the real and imaginary components of each image, we use the closely-
related Hartley space representation (Hartley (1942)). The Hartley transform of real-valued functions
is equivalent to the real minus imaginary component of the FT, and thus is real valued. The Fourier
slice theorem still holds and the error model is equivalent.

In this work, we simplify the image generation model to Gaussian white noise. Therefore, for a given
image, the negative log likelihood for a reconstructed slice from the decoder corresponds to the mean
squared error between the phase-shifted image and the oriented slice from the volume decoder. We
leave the implementation of a colored noise model to future work.

We use the Adam optimizer (Kingma & Ba (2014)) with learning rate of 5e-4 for experiments
involving noiseless, homogeneous datasets, and 1e-4 for all other experiments. All models are
implemented in Pytorch (Paszke et al. (2017)).

B HOMOGENEOUS RECONSTRUCTION

B.1 DATASET PREPARATION

Simulated datasets: From a ground truth 3D volume, we simulated datasets following the cryo-EM
image formation model by 1) rotating the 3D volume in real space by R, where R ∈ SO(3) is
sampled uniformly, 2) projecting (integrating) the volume along the z-axis, 3) shifting the resulting
2D image by t, where t is sampled uniformly from [−10, 10]2 pixels, and 4) optionally adding noise
to an SNR of 0.1, a typical value for cryo-EM data (Baxter et al. (2009)). Following convention in the
cryo-EM field, we define SNR as the ratio of the variance of the signal to the variance of the noise.
We define the noise-free signal images to be the entire DxD image. 50k projections were generated
for each dataset with image size of D=128.

Real dataset: To generate the real cryo-EM dataset for homogeneous reconstruction, images from
EMPIAR-10028 (Wong et al. (2014)) were downsampled by a factor of 4 by clipping in Fourier
space. The images were then ’phase flipped’ in Fourier space by their contrast transfer function, a
given real-valued function with range [-1,1] determined by the microscopy conditions, i.e. the Fourier
components are negated where the CTF is negative.

B.2 TRAINING

For each dataset, we train the volume decoder (10 hidden layers of dimension 128) in minibatches
of 10 images with random orientations for the first epoch to learn a volume with roughly correct
spatial extent, followed by 4 epochs with branch and bound (BNB) pose inference (30 min/epoch
noiseless, 80 min/noisy datasets). Since BNB pose inference is the bottleneck during training, we
employ a multiscale training protocol, where after 4 epochs with BNB pose inference, the latent pose
is fixed, and we train a separate, larger volume decoder (10 hidden layers of dimension 500) for 15
epochs with fixed poses to "refine" the structure to high resolution (20 min/epoch). Training times
are reported for 50k, D=128 image datasets trained on a Nvidia Titan V GPU.
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B.3 SUPPLEMENTARY RESULTS

Figure S5: Left: CryoDRGN unsupervised homogeneous reconstruction on 2 simulated datasets and 1 real cryo-
EM dataset matches state-of-the-art. Right: Fourier shell correlation (FSC) curves between the reconstructed
volume and the ground truth volume for the synthetic ribosome datasets.

C HETEROGENEOUS RIBOSOME RECONSTRUCTION WITH POSE SUPERVISION

Dataset preparation: We used the dataset from EMPIAR-10076 which contains 131,899 images of
the E. coli large ribosomal subunit (LSU) in various stages of assembly (Davis et al. (2016)). Images
were downsampled to D=128 by clipping in Fourier space. Poses were determined by aligning the
images to a mature LSU structure obtained from a homogeneous reconstruction of the full resolution
dataset in cryoSPARC, i.e. "a consensus reconstruction".

Baseline: In the original analysis of this dataset, multiple rounds of multiclass refinement in sweeps
of varying number of classes followed by expert manual alignment and clustering of similar volumes
were used to identify 6 classes, labeled A-F consisting of 4 major structural states of the LSU (classes
B-E) and 2 additional structures of the 70S and 30S ribosome, class A and F, respectively.

Since the published dataset did not contain the corresponding image cluster assignments, we perform
multiclass refinement in cryoSPARC using the published structures of the 6 major states, low pass
filtered to 25Å as initial models, to reproduce the results and obtain image cluster assignments. Aside
from class A and F (low population impurities in the sample), the remaining structures correlate well
with the published volumes (Figure S6).

Figure S6: Reconstructed volumes from cryoSPARC multiclass refinement using the published structures of the 6
major states, low pass filtered to 25Åas initial models. Right: FSC curves between the cryoSPARC reconstructed
and published volumes.
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cryoDRGN training: We train cryoDRGN with a 1-D latent variable in minibatches of 10 images
for 200 epochs, treating image pose as fixed (11 min/epoch on a Nvidia Titan V GPU). To simplify
representation learning for qξ, we center and phase flip images before inputting to the encoder. We
encode and decode a circle of pixels with diameter D=128 instead of the full 128x128 image.

C.1 SUPPLEMENTARY RESULTS

Figure S7: Left: Latent encoding for each image of the dataset from EMPIAR-10076. Bottom: Volumes from
12 sampled values along the latent space (dashed lines). Right: Fourier shell correlation (FSC) curves for 4
structures against the published volumes for classes B-E from corresponding to structural states of the large
ribosomal subunit during assembly (Davis et al. (2016)).

Figure S8: The latent encoding aligns with cluster assignments from a successive round of multiclass refinement
in cryoSPARC on the subset of images from class D and E.

D FULLY UNSUPERVISED HETEROGENEOUS RECONSTRUCTION

D.1 DATASET PREPARATION

Linear 1D motion: We generated a dataset containing one continuous degree of freedom as follows:
From an atomic model of a protein complex, a single bond in the atomic model was rotated while
keeping the remaining structure fixed, and 50 atomic models were sampled along this reaction
coordinate. 1000 projections with random rotations and in-plane translations were generated for
each model, yielding a total of 50k images, approximating a uniform distribution along a continuous
reaction coordinate.

Linear 2D motion: We extended the linear 1D motion dataset by introducing a second degree of
freedom from rotating a bond in the atomic model that connected a different protein in the complex.
Similar to the 1D motion dataset, from a starting configuration, the original bond was rotated +/-
N degrees, and 50 models were sampled along this reaction coordinate. Then from the starting
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conformation, the second bond was rotated +/- 90 degrees, and 50 additional models were sampled
along the second reaction coordination. 500 projections were generated from each model, yielding a
total of 50k images.

Circular 1D motion: For this dataset, we rotated a bond a full 360 degrees and sample 100 models
along this circular reaction coordinate. 500 projections were generated from each model, yielding a
total of 50k images.

Discrete 10 class: For this dataset, we sampled 10 random configurations for the proteins in the
complex. 5000 projection images were generated from each model, yielding a dataset containing a
mixture of 10 discrete states.

For all four datasets, random rotations were generated uniformly from SO(3), and translations were
sampled uniformly from [−5, 5] pixels. The image size was D=64 with absolute spatial extent of
720Åand Nyquist limit of 22.5Å. Schematics of the simulated motions are given in Figure S9.

Figure S9: Ground truth atomic model and the heterogeneity introduced for different datasets.

D.2 TILT SERIES PAIRS

Tilt series pairs is a variant of cryo-EM in which, for each image Xi, a corresponding image X
′

i is
acquired after tilting the imaging stage by a known angle. This technique was originally employed
to identify the chirality of molecules (Belnap et al. (1997)), which is lost in the projection from
3D to 2D and therefore cannot be inferred from standard cryo-EM. Inferential procedures such as
expectation maximization converge to one handedness or the other depending on their initialization.
In multiclass reconstruction, different classes are not guaranteed to possess the same handedness
even if there is a high relatedness between structures. We remark on this experimental technique as
we propose using tilt series pairs to encourage invariance of qξ with respect to pose transformations
for a given V̂z (and incidentally also to identify the chirality of V̂z). To train on tilt series pairs, the
encoder is split into two MLPs, the first learning an intermediate encoding of each image, and the
second mapping the concatenation of the two encodings to the latent space. We use an 8 layer MLP
with output dimension 128 for the former and a 2 layer MLP with input dimension 256 for the latter.
All hidden layers have dimension 128. For branch and bound, the combined loss over both images is
evaluated for each grid point of SO(3)× R2. To generate the image Xtilt,i associated with Xi, prior
to rotating the volume by Ri, we rotate the volume by a constant 45 degrees around the x-axis.
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D.3 TRAINING

We trained cryoDRGN in minibatches of 5 images for 40 epochs without tilt series pairs and 20
epochs with tilt series pairs. We trained a 1-D latent variable for the linear 1D motion dataset, and
10-D latent variables for the remaining datasets. Random angles were used for the first epoch of
training to learn roughly the correct spatial extent of the volume and BNB pose inference was used
for the remaining epochs. The runtime was 120 min/epoch vs 2 min/epoch with and without BNB
pose inference, respectively, on a Nvidia Titan V GPU.

D.4 SUPPLEMENTARY RESULTS

Figure S10: Reconstruction results for the linear 1D dataset by cryoDRGN and by discrete multiclass recon-
struction in cryoSPARC. Top: Reconstructed structures from cryoDRGN sampled along the latent space (at
depicted points) matches the ground truth variation. The predicted latent encoding correlates with the ground
truth latent degree of freedom. Middle: CryoDRGN results with tilt series Bottom: Reconstructed volumes and
the distribution of images over clusters from discrete multiclass reconstruction in cryoSPARC. Volumes are
visualized at high and low isosurface, showing artifacts in the cryoSPARC structures.
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Figure S11: Reconstruction results for the circular 1D dataset by cryoDRGN and by discrete multiclass
reconstruction in cryoSPARC. Top: Reconstructed structures from cryoDRGN sampled along the latent space (at
depicted points) matches the ground truth variation. The distribution of images in the latent space matches the
ciruclar topology of the true data manifold. Middle: CryoDRGN results with tilt series Bottom: Reconstructed
volumes and the distribution of images over clusters from discrete multiclass reconstruction in cryoSPARC.
Volumes are visualized at high and low isosurface, showing artifacts in the cryoSPARC structures.
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Figure S12: Reconstruction results for the linear 2D dataset by cryoDRGN and by discrete multiclass reconstruc-
tion in cryoSPARC. Top: Reconstructed structures from cryoDRGN sampled along the latent space (at depicted
points) roughly matches the ground truth variation, however the distribution of images in the latent space does
not recapitulate the true data manifold well. Middle: CryoDRGN results with tilt series reconstructs the true
structural variation and the distribution of images in the latent space matches the topology of the true data
manifold. Bottom: Reconstructed volumes and the distribution of images over clusters from discrete multiclass
reconstruction in cryoSPARC. CryoSPARC volumes are visualized at high and low isosurface, showing artifacts
at low isosurface
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Figure S13: Reconstruction results for the dataset containing 10 discrete structures by cryoDRGN and by
discrete multiclass reconstruction in cryoSPARC. Top: The majority of reconstructed structures from cryoDRGN
sampled along the latent space (at depicted points) matches the ground truth structures, however some are
incorrect (red boxes), and the learned data manifold is not well separated into clusters. Middle: CryoDRGN
results with tilt series reconstructs the 10 structures and clusters the images in the latent space accordingly.
Bottom: Reconstructed volumes from discrete multiclass reconstruction in cryoSPARC and the distribution of
images over clusters. CryoSPARC learns 8 out of 10 structures correctly.

cryoSPARC
Dataset K=2 K=3 K=4 K=5

Linear 1D motion 5.11(3.82) 3.60(2.27) 7.40(4.16) 7.59(4.58)
Linear 2D motion 6.89(2.21) 6.90(3.77) 5.98(2.10) 6.76(4.47)
Circular 1D motion 5.16(2.70) 4.87(2.17) 7.50(3.32) 4.62(1.93)

Table S3: Relationship between number of classes in cryoSPARC and reconstruction accuracy quantified by an
FSC=0.5 resolution metric between the reconstructed volumes corresponding to each image and its ground truth
volume. We report the average and standard deviation across 100 images in the dataset (lower is better; best
possible is 2 pixels).

cryoDRGN cryoDRGN+tilt
Dataset z-D=1 z-D=2 z-D=10 z-D=1 z-D=2 z-D=10

Linear 1D motion 2.50(0.62) 2.34(0.12) – 2.35(0.36) 2.43(0.26) –
Linear 2D motion 7.16(4.69) 4.38(3.15) 4.44(2.50) 3.38(1.18) 2.97(1.24) 2.93(1.02)
Circular 1D motion 5.61(4.36) 4.95(2.91) 4.05(2.40) 3.12(0.96) 2.65(0.67) 2.63(0.74)

Table S4: Relationship between z dimension in cryoDRGN and reconstruction accuracy quantified by an
FSC=0.5 resolution metric between the reconstructed volumes corresponding to each image and its ground truth
volume. We report the average and standard deviation across 100 images in the dataset (lower is better; best
possible is 2 pixels).
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