
Published as a conference paper at ICLR 2019

UNSUPERVISED CONTINUAL LEARNING AND SELF-
TAUGHT ASSOCIATIVE MEMORY HIERARCHIES∗

James Smith, Seth Baer, Zsolt Kira & Constantine Dovrolis
College of Computing, Georgia Institute of Technology, Atlanta, GA
{jamessealesmith, sbaer8, zkira, constantine}@gatech.edu

ABSTRACT

We first pose the Unsupervised Continual Learning (UCL) problem: learning
salient representations from a non-stationary stream of unlabeled data in which the
number of object classes varies with time. Given limited labeled data just before
inference, those representations can also be associated with specific object types
to perform classification. To solve the UCL problem, we propose an architecture
that involves a single module, called Self-Taught Associative Memory (STAM),
which loosely models the function of a cortical column in tha mammalian brain.
Hierarchies of STAM modules learn based on a combination of Hebbian learning,
online clustering, detection of novel patterns and forgetting outliers, and top-down
predictions. We illustrate the operation of STAMs in the context of learning hand-
written digits in a continual manner with only 3-12 labeled examples per class.
STAMs suggest a promising direction to solve the UCL problem without catas-
trophic forgetting.

Introduction. Unsupervised Continual Learning (UCL) involves learning from a stream of unla-
beled data in which the data distribution or number/type of object classes vary with time. UCL is
motivated by recent advances in Continual Learning (CL) (Hsu et al., 2018; Parisi et al., 2018) but
also differs in that it is completely unsupervised and there are no priors on the data stream.

In UCL the data stream includes unlabeled instances of both previously learned classes and, oc-
casionally, new classes. This setting mirrors the natural world where known object types keep
re-appearing – if they do not, it makes sense to forget them. Many CL methods involve some sort of
“replay” – we argue that observing instances of known classes (perhaps infrequently) is equivalent
to replaying previous instances.

To evaluate whether a given architecture can solve the UCL problem, we partition the time axis in
distinct learning phases. During each phase, the data stream includes unlabeled examples from a
constant set of classes (unknown to the architecture). At the end of each phase, we evaluate the
architecture with a simple classification task. To do so, we provide a limited number of labeled
instances per class. This labeled dataset is not available during the learning phase and it is only
used to associate the class-agnostic representations that the architecture has learned with the specific
classes that are present in the labeled dataset. This is different than Semi-Supervised Learning (SSL)
methods (Springenberg, 2015; Oliver et al., 2018; Miyato et al., 2018) because SSL requires both
labeled and unlabeled data during the training process. We have found one SSL method compatible
with the UCL problem, the latent-feature discriminate model (M1) (Kingma et al., 2014), and we
present a variation of that method in the experimental section.

To solve the UCL problem, we have developed a neuro-inspired architecture based on a model of
cortical-columns, referred to as Self-Taught Associative Memory (STAM). The connection between
STAMs and cortical models is described in another reference. Due to space constraints, we only
present the STAM architecture from a functional perspective here. The architecture is a layered
hierarchy of STAM modules that involve forward, feedback, and lateral connections. The hierarchy
learns salient features through online clustering. Each feature is a cluster centroid. STAMs at
different layers of the hierarchy learn centroids at different spatial resolutions (different receptive

∗Supported by the Lifelong Learning Machines (L2M) program of DARPA/MTO: Cooperative Agreement
HR0011-18-2-0019

1

Published as a conference paper at ICLR 2019

y1 /	x2 y2 /	x3 y3

C2 C3

x2,p c2(x2,p) x3,p c3(x3,p)

Novelty	Detection Novelty	Detection

Feedback

x1

C1

x1,p c1(x1,p)

Novelty	Detection

Figure 1: Illustration of a 3-layer STAM hierarchy. At each layer, the input is broken up into several overlap-
ping patches (Receptive Fields), which are clustered using online k-means (Euclidean distance). If an input RF
is flagged to be novel, a new cluster is created and its centroid is initialized based on that patch. Each layer
reconstructs its output image based on the selected centroid for each RF, and that image becomes the input to
the next layer. Feedback connections are used to control the creation of new centroids based on higher-layer
predictions over wider RFs.

field sizes). STAMs learn in an online manner through mechanisms that include novelty detection,
forgetting outlier patterns, intrinsic dimensionality reduction, and top-down predictions.

STAMs have some superficial similarities with Convolutional Neural Networks (CNN) (Krizhevsky
et al., 2012) in that they are both layered and have increasing receptive field sizes. However, the
STAM architecture learns in a Hebbian manner without the task-specific optimization requirement of
CNNs. Further, the features learned by STAMs are highly interpretable (they are basically common
patterns at different spatial resolutions), and they adapt to non-stationarities in the data distribution.

The STAM architecture also differs from previous hierarchical clustering schemes such as (Coates
et al., 2011; Coates and Ng, 2012) in that STAMs rely on online clustering (to support continual
learning), novelty detection (to detect new classes), limited memory (to forget outlier centroids),
and intrinsic dimensionality reduction (to generalize across instances of the same class). In general,
we do not consider iterative algorithms, such as the “deep clustering” architecture (Caron et al.,
2018), to be compatible with UCL because they require repetitive training epochs through the same
data.

Self-Taught Associative Memory (STAM) architecture. A STAM architecture (illustrated in
Figure 1) is composed of L layers. The functional unit at each layer is a STAM module. Layer
i consists of Mi STAM modules. In the context of object recognition in static images, each STAM
processes a Receptive Field (RF) of the input image in that layer. The RF size gradually increases
along the hierarchy (i.e., Mi gradually decreases).

The feedforward input to the m’th STAM module of layer i at time t is denoted by xi,m(t). The
set Ci(t) of clusters at layer i is shared among all STAMs of that layer. The j’th centroid of layer
i is denoted by the vector wi,j(t). We drop the time variable t when it is not necessary. Given the
set of Ci clusters, each STAM module of layer i selects the nearest centroid to its input based on
Euclidean distance:

c(xi,m) = arg min
j=1...|Ci|

||xi,m − wi,j || (1)

The input of layer i+1 is the output of the previous layer. The output of layer i, denoted by Yi, is of
the same (extrinsic) dimensionality with the inputXi in that layer. Yi is constructed by the sequence
of selected centroids, first replacing the input RF xi,m with the corresponding centroid c(xi,m), and
averaging the overlapping segments. Consequently, the intrinsic dimensionality of Yi is much lower
than that of Xi: Yi can take |Ci|Mi distinct values, and Mi decreases along the hierarchy as the RFs
get larger.

A STAM learns in an online manner by updating the centroid that has been selected by its input
vector. If the m’th STAM module selected centroid j at layer i for its input vector xi,m, we update

2

Published as a conference paper at ICLR 2019

that centroid as follows:

wi,j = αxi,m + (1− α)wi,j ,when c(xi,m) = j (2)

where the constant α is a learning rate parameter 0 < α < 1. The higher the α, the faster the
learning process becomes, potentially resulting in lower accuracy. In the rest of this paper, α=0.05.

Centroids are created and initialized dynamically, based on a novelty detection algorithm. To detect
novel patterns, we estimate in an online manner the mean distance µj and standard difference σ̂j
between a centroid j and its assigned inputs:

µj = α ||xi,m − wi,j ||+ (1− α)µj (3)

σ̂j = α | ||xi,m − wi,j || − µj |+ (1− α) σ̂j (4)

Based on the previous two online estimates, an input xi,m is flagged as “novel” if its distance from
the nearest centroid j is significantly larger than the centroid’s mean distance µj estimate,

||xi,m − wi,j || > µj + 3 σ̂j (5)

If xi,m is flagged as novel, a new centroid is created at layer i and it is initialized based on that
input. The number of centroids learned at each layer is fixed: layer i cannot remember more than
Ci centroids. When that number is exceeded, the centroid that has been Least Recently Used (LRU)
is forgotten.

To help differentiate between patterns that are outliers and true novelties, we leverage top-down
connections. Suppose that yi+1,m is the portion of Yi+1 that corresponds to the m’th RF at the ith
layer, and let ci(yi+1,m) be the layer i centroid that is nearest to to yi+1,m. This centroid represents
the prediction of layer i + 1 for the m’th RF at layer i. If the corresponding input xi,m at layer i
was flagged as novel but yi+1,m does not pass the “novelty” criterion of equation 5, then we do not
create a new centroid for that input at layer i.

Classification. In principle, we can use any classifier to evaluate the representations (centroids)
that the STAM architecture has learned at the end of a learning phase. Here, we describe a simple
classifier that first associates each output-layer centroid with a class by calculating the “allegiance”
of each labeled input vector xn to centroid wj relative to the nearest-neighbor centroid:

swj ,xn
=

e−‖wj−xn‖

maxj′ e
−‖wj′−xn‖ (6)

The allegiance of centroid wj to class m is simply the average swj ,xn
across all labeled inputs xn

that belong to class m:

Swj ,m =
1

Nm

∑
n:yn=m

swj ,xn (7)

where Nm is the number of labeled examples of class m, and yn is the class of input xn. It is
possible that a centroid at the output layer does not have strong allegiance to any class. For this
reason, we remove centroids for which the maximum allegiance maxm(Swj ,m) is less than 70%.

The classification of an input x is based on the distance between x and each centroid as well as the
allegiance of each centroid to every class. Specifically, x is assigned to the class m that maximizes
the following sum across all centroids wj ,

k = argmax
m

∑
wj

Swj ,me
−‖wj−x‖ (8)

Experiments. We divide the time axis into five learning phases. In each learning phase, the data
stream includes two additional classes (digits) from the MNIST dataset, i.e., the first learning phase
includes only 0s and 1s, while the fifth learning phase includes all ten digits. In each learning phase,
the architecture has access to Nold unlabeled examples per class of previously learned classes and
Nnew unlabeled examples per class of newly introduced classes. At the end of each phase, we
introduce a limited amount of labeled data per class to evaluate classification accuracy.

3

Published as a conference paper at ICLR 2019

Figure 2: An image is processed by a 4-layer STAM hierarchy.

1
0..1

2
0..3

3
0..5

4
0..7

5
0..9

Learning Phases

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Accuracy vs Learning Phases
Nold =Nnew = 10000

STAM-EQ13-4L
STAM-NN-4L
STAM-EQ13-1L
STAM-NN-1L
CAE-EQ13
CAE-NN

(b)

1
0..1

2
0..3

3
0..5

4
0..7

5
0..9

Learning Phases

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Accuracy vs Learning Phases
Nold =Nnew = 1000

STAM-EQ13-4L
STAM-NN-4L
STAM-EQ13-1L
STAM-NN-1L
CAE-EQ13
CAE-NN

(a)

3 6 9 12 15
Labeled Examples per Class

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Final Accuracy vs Labeled Examples per Class
Nold =Nnew = 10000

STAM-EQ13-4L
STAM-NN-4L
STAM-EQ13-1L
STAM-NN-1L
CAE-EQ13
CAE-NN

(d)

3 6 9 12 15
Labeled Examples per Class

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Final Accuracy vs Labeled Examples per Class
Nold =Nnew = 1000

STAM-EQ13-4L
STAM-NN-4L
STAM-EQ13-1L
STAM-NN-1L
CAE-EQ13
CAE-NN

(c)

Figure 3: (a) UCL results for Nold = Nnew = 1, 000 and 10 labeled examples per class (b) UCL results for
Nold = Nnew = 10, 000 and 10 labeled examples per class (c) Final phase accuracy vs. labeled examples per
class for Nold = Nnew = 1, 000 (d) Final phase accuracy vs. labeled examples per class for Nold = Nnew =
10, 000

Together with the STAM architecture, we also train a Convolutional AutoEncoder (CAE) (Li et al.,
2017) in an unsupervised manner, and then create a classifier using latent representations of the
labeled data for each evaluation period. The CAE architecture was designed specifically for the
MNIST dataset, using three convolution and max pooling layers in the encoder and three convolu-
tion and upsampling layers in the decoder. We optimize binary cross-entropy loss using the Adam
method (Kingma and Ba, 2014). As another baseline, we simply consider a single-layer STAM,
which can be interpreted as a non-hierarchical version of the STAM architecture.

For both STAMs and the CAE network, we use two classifiers: nearest-neighbor (NN) and the
classifier of (equation 8) – referred to as EQ8 in the results. We apply EQ8 on the CAE latent
representations as centroids with allegiance only to the class corresponding to the input instance’s
label. The STAM architecture is described in Table 1. We present results (Figures 2-3) for two
experiments on the MNIST dataset (Lecun et al., 1998) based on 10 trials, evaluating accuracy on
10,000 images that were not seen during training.

Table 1: STAM Hierarchy
Layer RF size stride |Ci|

1 7 3 200
2 10 3 200
3 13 5 300
4 28 28 400

For the first experiment, we compare classification accuracy for var-
ious amounts of unlabeled data. We consider Nold = Nnew =
{1, 000, 10, 000} and provide 10 labeled examples per class for clas-
sification. We observe that the performance of the CAE and single-
layer baselines strongly fall off when reducing the unlabeled data
to 1, 000, whereas the STAM architecture shows less catastrophic
forgetting. For the second experiment, we repeat the first experi-
ment varying the amount of labeled data per class and we report only
the classification accuracy at the last learning phase. As expected,
STAMs and CAE both see large benefits from increasing the number of labeled examples per class.
However, we see that STAM can perform reasonably well with fewer labeled examples compared to
the CAE baseline.

4

Published as a conference paper at ICLR 2019

REFERENCES

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsu-
pervised learning of visual features. In The European Conference on Computer Vision (ECCV),
September 2018.

Adam Coates and Andrew Y Ng. Learning feature representations with k-means, pages 561–580.
Springer, 2012.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelli-
gence and statistics, pages 215–223, 2011.

Yen-Chang Hsu, Yen-Cheng Liu, and Zsolt Kira. Re-evaluating continual learning scenarios: A
categorization and case for strong baselines. arXiv preprint arXiv:1810.12488, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, and Max Welling. Semi-supervised
learning with deep generative models, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran Associates,
Inc., 2012.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998.

Fengfu Li, Hong Qiao, Bo Zhang, and Xuanyang Xi. Discriminatively boosted image clustering
with fully convolutional auto-encoders, 2017.

Takeru Miyato, Shin-ichi Maeda, Shin Ishii, and Masanori Koyama. Virtual adversarial training: a
regularization method for supervised and semi-supervised learning. IEEE transactions on pattern
analysis and machine intelligence, 2018.

Avital Oliver, Augustus Odena, Colin Raffel, Ekin D. Cubuk, and Ian J. Goodfellow. Realistic
evaluation of deep semi-supervised learning algorithms. 2018.

German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. 2018.

Jost Tobias Springenberg. Unsupervised and semi-supervised learning with categorical generative
adversarial networks, 2015.

5

