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ABSTRACT

Unsupervised bilingual dictionary induction (UBDI) is useful for unsupervised
machine translation and for cross-lingual transfer of models into low-resource lan-
guages. One approach to UBDI is to align word vector spaces in different languages
using Generative Adversarial Networks (GANs) with linear generators, achieving
state-of-the-art performance for several language pairs. For some pairs, however,
GAN-based induction is unstable or completely fails to align the vector spaces. We
focus on cases where linear transformations provably exist, but the performance of
GAN-based UBDI depends heavily on the model initialization. We show that the
instability depends on the shape and density of the vector sets, but not on noise;
that it is the result of local optima, but neither over-parameterization nor changing
the batch size or the learning rate consistently reduces instability. Nevertheless, we
can stabilize GAN-based UBDI through best-of-N model selection, based on an
unsupervised stopping criterion.

1 INTRODUCTION

A word vector space – also sometimes referred to as a word embedding – associates similar words in
a vocabulary with similar vectors. Learning a projection of one word vector space into another, such
that similar words – across the two word embeddings – are associated with similar vectors, is useful
in many contexts, with the most prominent example being the alignment of vocabularies of different
languages. This is a key step in machine translation of low-resource languages (Lample et al., 2018).
An embedding of English words may associate thoughtful, considerate, and gracious with similar
vectors, for example, but for English-Icelandic translation, it would be useful to have access to a
cross-lingual word embedding space in which hugulsamur (lit.: ‘thoughtful’) was also associated
with a similar vector. Such joint embeddings of words across languages can also be used to extract
bilingual dictionaries.

Projections between word vector spaces have typically been learned from dictionary seeds. In seminal
papers such as Mikolov et al. (2013) and Faruqui and Dyer (2014), these seeds would comprise
thousands of words, but Vulić and Korhonen (2016) showed that we can learn reliable projections
from as little as 50 words. Smith et al. (2017) and Hauer et al. (2017) subsequently showed that the
seed can be replaced with just words that are identical across languages; and Artetxe et al. (2017)
showed that numerals can also do the job, in some cases; both proposals removing the need for an
actual dictionary. Even more recently, a handful of papers have proposed an entirely unsupervised
approach to projecting word vector spaces onto each other, based on Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014). We present the core idea behind such approaches in §3, but briefly
put, GANs are used to learn a linear transformation to minimize the divergence between a target
distribution (say the Icelandic embeddings) and a source distribution (the English embeddings
projected into the Icelandic space).

The possibility of unsupervised bilingual dictionary induction (UBDI) has seemingly removed the
data bottleneck in machine translation, evoking the idea that we can now learn to translate without
human supervision (Lample et al., 2018). Yet, it remains an open question whether the initial,
positive results extrapolate to real-world scenarios of learning translations between low-resource
language pairs. Søgaard et al. (2018) recently presented results suggesting that UBDI is challenged
by some language pairs exhibiting very different morphosyntactic properties, as well as when the
monolingual corpora are very different. In this paper, we identify easy, hard, and impossible instances
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of GAN-based UBDI, and apply a simple test for discriminating between them. The hard cases exhibit
instability, i.e. their success depends heavily on initialization. We set up a series of experiments to
investigate these hard cases.

Our contributions We introduce a distinction between easy, hard, and impossible alignment
problems over pairs of word vector spaces and show that a simple linearity test can be used to
tell these cases apart. We show that the impossible cases are caused not necessarily by linguistic
differences, but rather by properties of the corpora and the embedding algorithms. We also show that
in the hard cases, the likelihood of being trapped in local minima depends heavily on the shape and
density of the vector sets, but not on noise. Changes in the number of parameters, batch size, and
learning rate do not alleviate the instability. Yet, using an unsupervised model selection method over
N different initializations to select the best generators, leads to a 6.74% average error reduction over
standard MUSE.

Structure of the paper §2 presents MUSE (Conneau et al., 2018), an approach to GAN-based
UBDI. Here we also discuss theoretical results from the GAN literature, relevant to our case, and
show a relation to a common point set registration method. In §3, we use a test based on Procrustes
Analysis to discriminate between easy, hard, and impossible cases, discussing its relation with tests
of isomorphism and isospectrality. We then focus on the hard cases, where linear transformations
provably exist, but GANs exhibit considerable instability. Through a series of experiments, we
analyze what affects the instability of GAN-based UBDI. §4 presents our unsupervised best-of-N
model selection method for stabilizing GAN-based UBDI.

2 UNSUPERVISED ALIGNMENT USING GANS

In this section, we discuss the dynamics of GAN-based UBDI and how the training behavior of
GANs can help us understand their limitations as applied to UBDI. Two families of approaches to
UBDI exist: using GANs (Barone, 2016; Conneau et al., 2018; Zhang et al., 2017) and using iterative
closest point (Hoshen and Wolf, 2018). We focus on GAN-based UBDI, and more specifically on
MUSE (Conneau et al., 2018), but at the end of this section we establish a relation between the two
families of algorithms.

A GAN consists of a generator and a discriminator. The generatorG is trained to fool the discriminator
D. The generator can be any differentiable function; in MUSE, it is a linear transform Ω. Let e ∈ E
be an English word vector, and f ∈ F a French word vector, both of dimensionality d. The goal of the
generator is then to choose Ω ∈ Rd×d such that ΩE has a distribution close to F . The discriminator
is a map Dw : X → {0, 1}, implemented in MUSE as a multi-layered perceptron. The objective of
the discriminator is to discriminate between vector spaces F and ΩE. During training, the model
parameters Ω and w are optimized using stochastic gradient descent by alternately updating the
parameters of the discriminator based on the gradient of the discriminator loss and the parameters of
the generator based on the gradient of the generator loss, which, by definition, is the inverse of the
discriminator loss. The loss function used in MUSE and in our experiments below is cross-entropy.
In each iteration, we sample N vectors e ∈ E and N vectors f ∈ F and update the discriminator
parameters w according to

w → w + α

N∑
i=1

∇[logDw(fi) + log(1−Dw(GΩ(ei)]

Theoretically, the optimal parameters are a solution to the min-max problem:
minΩ maxw E[log(Dw(F )) + log(1 − Dw(GΩ(E)))], which reduces to minΩ JS (PF | PΩ).
If a generator wins the game against an ideal discriminator on a very large number of samples, then F
and ΩE can be shown to be close in Jensen-Shannon divergence, and thus the model has learned the
true data distribution. This result, referring to the distributions of the data, pdata , and the distribution,
pg, G is sampling from, is from Goodfellow et al. (2014): If G and D have enough capacity, and at
each step of training, the discriminator is allowed to reach its optimum given G, and pg is updated so
as to improve the criterion

Ex∼pdata [logD∗G(x)] + Ex∼pg [log(1−D∗G(x))]
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then pg converges to pdata . This result relies on a number of assumptions that do not hold in practice.
The generator in MUSE, which learns a linear transform Ω, has very limited capacity, for example,
and we are updating Ω rather than pg. In practice, therefore, during training, MUSE alternates
between k steps of optimizing the discriminator and one step of optimizing the generator. Another
common problem with training GANs is that the discriminator loss quickly drops to zero, when
there is no overlap between pg and pdata (Arjovsky et al., 2017); but note that in our case, the
discriminator is initially presented with IE and F , for which there is typically no trivial solution,
since the embedding spaces are likely to overlap. We show in §4 that discriminator and generator loss
are poor model selection criteria, however; instead we propose a simple criterion based on cosine
similarities between nearest neighbors in the learned alignment.

From ΩE and F , we can extract a bilingual dictionary using nearest neighbor queries, i.e., by
asking what is the nearest neighbor of ΩE in F , or vice versa. MUSE uses a normalized nearest
neighbor retrieval method to reduce the influence of hubs (Radovanović et al., 2010; Dinu et al.,
2015). The method is called cross-domain similarity local scaling (CSLS) and used to expand
high-density areas and condense low-density ones. The mean similarity of a source language
embedding Ωe to its k nearest neighbors in the target language (k = 10 suggested) is defined as
µkE(Ω(e)) = 1

k

∑k
i=1 cos(e, fi), where cos is the cosine similarity. µF (fi) is defined in an analogous

manner for every i. CSLS(e, fi) is then calculated as 2cos(e, fi)−µE(Ω(e))−µF (fi). MUSE uses
an unsupervised validation criterion based on CSLS. The translations of the top 10k most frequent
words in the source language are obtained with CSLS and average pairwise cosine similarity is
computed over them. This metric is considered indicative of the closeness between the projected
source space and the target space, and is found to correlate well with supervised evaluation metrics.
After inducing a bilingual dictionary, Ed and Fd, by querying ΩE and F with CSLS, MUSE performs
a refinement step based on the Procrustes algorithm (Schönemann, 1966), whereby the singular value
decomposition of FTd Ed, computed as UΣV T , gives Ω = UV T .

The idea of minimizing nearest neighbor similarity for unsupervised model selection is also found
in point set registration and lies at the core of iterative closest point (ICP) optimization (Besl and
McKay, 1992). ICP typically minimizes the λ2 distance (mean squared error) between nearest
neighbor pairs. The ICP optimization algorithm works by assigning each transformed vector to its
nearest neighbor and then computing the new relative transformation that minimizes the cost function
with respect to this assignment. ICP can be shown to converge to local optima (Besl and McKay,
1992), in polynomial time (Ezra et al., 2006). ICP easily gets trapped in local optima, however, exact
algorithms only exist for two- and three-dimensional point set registration, and these algorithms are
slow (Yang et al., 2016). Generally, it holds that the optimal solution to the GAN min-max problem is
also optimal for ICP. To see this, note that a GAN minimizes the Jensen-Shannon divergence between
F and ΩE. The optimal solution to this is F = ΩE. As sample size goes to infinity, this means the
L2 loss in ICP goes to 0. In other words, ICP loss is minimal if an optimal solution to the UBDI
min-max problem is found. ICP was independently proposed for UBDI in Hoshen and Wolf (2018).
They report their method only works using PCA initialization. We explored PCA initialization for
MUSE, but observed the opposite effect, namely that PCA initialization leads to a degradation in
performance.

3 WHEN AND WHY IS UNSUPERVISED ALIGNMENT HARD?

A function Ω from E to F is a linear transformation if Ω(f+g) = Ω(f)+Ω(g) and Ω(kf) = kΩ(f)
for all elements f, g of E, and for all scalars k. An invertible linear transformation is called an
isomorphism. The two vector spaces E and F are called isomorphic, if there is an isomorphism from
E to F . Equivalently, if the kernel of a linear transformation between two vector spaces of the same
dimensionality contains only the zero vector, it is invertible and hence an isomorphism. Most work
on supervised or unsupervised alignment of word vector spaces relies on the assumption that they
are approximately isomorphic, i.e., isomorphic after removing a small set of vertices (Mikolov et al.,
2013; Barone, 2016; Zhang et al., 2017; Conneau et al., 2018). In this section, show that word vector
spaces are not necessarily approximately isomorphic. We will refer to cases of non-approximately
isomorphic word vector spaces as impossible cases. The possible cases can be further divided into
easy and hard cases; corresponding to the cases where GAN-based UBDI is stable and unstable (i.e.,
performance is highly dependent on initialization), respectively.
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It is not difficult to see why hard cases may arise when using GANs for unsupervised alignment
of vector spaces. One example of a hard (but not impossible) problem instance is the case of two
smoothly populated vector spaces on unit spheres. In this case, there is an infinite set of equally good
linear transformations (rotations) that achieve the same training loss. Similarly, for two binary-valued,
n-dimensional vector spaces with one vector in each possible position. Here the number of local
optima would be 2n, but since the loss is the same in each of them the loss landscape is highly
non-convex, and the basin of convergence is therefore very small (Yang et al., 2016). The chance of
aligning the two spaces using gradient descent optimization would be 1

2n . In other words, minimizing
the Jensen-Shannon divergence between the word vector distributions, even in the easy case, is not
always guaranteed to uncover an alignment between translation equivalents. From the above, it
follows that alignments between linearly alignable vector spaces cannot always be learned using
UBDI methods. In §3.1 , we test for approximate isomorphism to decide whether two vector spaces
are linearly alignable.§3.2–3.3 are devoted to analyzing when alignments between linearly alignable
vector spaces can be learned.

In our experiments in §3 and 4, Bengali and Cebuano embeddings are pretrained by FastText;1 all
others are trained using FastText on Polyglot.2 In the experiments in §5, we use FastText embeddings
pretrained on Wiki and Common Crawl data.3 If not indicated otherwise, we use MUSE with default
parameters (Conneau et al., 2018).

3.1 LINEAR ALIGNABILITY AND GRAPH SIMILARITY

Procrustes fit (Kementchedjhieva et al., 2018) is a simple linearity test, which, as we find, captures the
dynamics of GAN-based UBDI well. Compared to isomorphism and isospectrality tests, Procrustes
fit is inexpensive and can be run with bigger dictionary seeds.
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Figure 1: Correlation of UBDI performance (P@1;
x-axis) with Procrustes fit (y-axis)

Procrustes fit The idea behind this test is
to apply a Procrustes analysis (see §2) on
a sizeable dictionary seed (5000 tokens), to
measure the training fit. Since UV TE = F
if and only if E and F are isomorphic, the
Procrustes fit tests the linear alignability
between two embedding spaces exists. We
can correlate the Procrustes fit measure with
the performance of UBDI. While UBDI is
motivated by cases where dictionary seeds
are not available, and Procrustes fit relies
on dictionary seeds, a strong correlation can
act as a sanity check on UBDI, as well as
a tool to help us understand its limitations.
The relationship between Procrustes fit and
UBDI performance is presented in Figure 1
and shows a very strong correlation. One
immediate conclusion is that the poor UBDI
performance on languages such as Bengali
and Cebuano is not a result of GANs being
a poor estimator of the linear transforms, but rather a result of there not being a good linear transform
from English into these languages.4

Isomorphism and isospectrality We briefly compare Procrustes fit to two similarity measures for
nearest neighbor graphs of vector spaces, introduced in Søgaard et al. (2018). The nearest neighbor

1https://github.com/facebookresearch/MUSE
2https://polyglot.readthedocs.io/
3https://fasttext.cc/docs/en/crawl-vectors.html
4We also experimented with learning non-linear alignment using GANs with non-linear generators, specifi-

cally, a generator with two hidden layers connected by a non-linearity. Our results on Spanish were much poorer
than with linear generators, as expected: 35.9 with tanh; 0.0 with sigmoid; 21.4 with relu. On Cebuano, where
the linear generator failed, we observed the same result with all three non-linear approaches: P@1 = 0.0 (All
numbers are averaged over 5 runs).

4
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EASY HARD IMPOSSIBLE

es el et fi hu pl bn ceb

Procrustes fit 87.4 73.1 72.4 69.0 71.5 70.1 46.3 44.3
10-Isospectrality 02.5 05.5 05.5 02.7 02.6 03.2 03.1 03.4
100-Isospectrality 04.2 42.3 66.9 15.4 13.5 06.8 08.8 16.5
Directionality 0.35 0.18 0.19 0.23 0.28 0.30 * *

Vocab size 138,385 37,397 29,587 80,999 88,681 139,641 145,351 695,368

Table 1: Dataset properties. See §3.1 for Procrustes fit. k-Isospectrality is k-subgraph isospectrality
(§3.1). Directionality is the variance in the inner products with means (Mimno and Thompson, 2017).
Languages are Spanish (es), Greek (el), Estonian (et), Finnish (fi), Hungarian (hu), Polish (pl), Bengali
(bn), and Cebuano (ceb). Directionality scores for Bengali and Cebuano are not comparable.

graph of a word vector space is obtained by adding edges between any word vertex and its nearest
neighbor. Note that only cycles of length 2 are possible in a nearest neighbor graph. Two nearest
neighbor graphs are graph isomorphic if they contain the same number of vertices connected in the
same way. Two isomorphic vector spaces have isomorphic nearest neighbor graphs, but not vice versa.
We say that the nearest neighbor graphs are k-subgraph isomorphic if the nearest neighbor graphs for
the most frequent k words (in the source language and their translations) are isomorphic. There are
exact algorithms, e.g., VF2 (Cordella et al., 2001), for checking whether two nearest neighbor graphs
are graph isomorphic. These algorithms do not scale easily to graphs with hundreds of thousands of
nodes, however. Also, the algorithms do not identify approximate isomorphism, unless run on all
subgraphs with k vertices removed. Such tests are therefore impractical.

Søgaard et al. (2018) instead introduce a spectral metric based on eigenvalues of the Laplacian of the
nearest neighbor graphs, similar to metrics used for graph matching problems in computer vision
(Reuter et al., 2005) and biology (Lewitus and Morlon, 2016). The metric quantifies to what extent
the nearest neighbor graphs are isospectral. Note that (approximately) isospectral graphs need not
be (approximately) isomorphic, but (approximately) isomorphic graphs are always (approximately)
isospectral. Let A1 and A2 be the adjacency matrices of the nearest neighbor graphs G1 and G2 of
our two word embeddings, respectively. Let L1 = D1 −A1 and L2 = D2 −A2 be the Laplacians of
the nearest neighbor graphs, where D1 and D2 are the corresponding diagonal matrices of degrees.
We then compute the eigensimilarity of the Laplacians of the nearest neighbor graphs, L1 and L2.
For each graph, we find the smallest k such that the sum of the k largest Laplacian eigenvalues
is <90% of the Laplacian eigenvalues. We take the smallest k of the two, and use the sum of the
squared differences between the largest k Laplacian eigenvalues ∆: ∆ =

∑k
i=1(λ1i

− λ2i
)2, where

k is chosen s.t. minj{
∑k

i=1 λji∑n
i=1 λji

> 0.9}. Note that ∆ = 0 means the graphs are isospectral, and
the metric goes to infinite. Thus, the higher ∆ is, the less similar the graphs (i.e., their Laplacian
spectra). Isospectrality varies with Procrustes fit; to see this, we show that

∑k
i=1(λEi

− λFi
)2 varies

with
∑
fi∈Fd,ei∈UV T (Ed) |fi = CSLS (ei)|. If E = F , it holds that

∑k
i=1(λ1i

− λ2i
)2 = 0. Since

UV T = arg minΩ ||ΩE − F ||2F , in this case Ω = I . Two isomorphic graphs also have the same
set of sorted eigenvalues, i.e.,

∑k
i=1(λ1i

− λ2i
)2 = 0. In general, it holds that if we add an edge

to a graph G, to form G′, its spectrum changes monotonically (So, 1999). Since the Procrustes fit
evaluates the nearest neighbor graph, it follows that a change in the nearest neighbor graph leading to
a drop in Procrustes fit will also lead to a drop in eigenvector similarity. However, isomorphism and
isospectrality tests are computationally expensive, and in practice, we have to sample subgraphs and
run the tests on multiple subgraphs, which leads to a poor approximation of the similarities of the
two embedding graphs.

In practice, Procrustes fit, k-subgraph isomorphism, and k-subgraph isospectrality thus all rely on
a dictionary. The tests are therefore not diagnostic tools, but means to understand the dynamics of
UBDI. Procrustes fit is more discriminative (since vector space isomorphism entails nearest neighbor
graph isomorphism, not vice versa) and computationally more efficient. In our experiments, it also
correlates much better with UBDI performance (MUSE in Table 2; the correlation coefficient is
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96%, compared to 0% for k-subgraph isomorphism (not listed in Table 2), and -27% for k-subgraph
isospectrality with k = 10.

Observation 1 Impossible cases are not (solely) the result of linguistic differences, but also of
corpus characteristics. English-Bengali and English-Cebuano are not linearly alignable according to
our Procrustes fit tests. There can be two explanations for such an observation: linguistic differences
between the two languages or variance in the monolingual corpora for Bengali and Cebuano, i.e.
noise and little support per word. We test for this by applying the Procrustes fit test to the word vector
spaces of Bengali and a higher resource related language, Hindi. The Procrustes fit for Bengali-Hindi
is even lower than for English-Bengali (30.01, compared to 46.25, respectively). This finding is
surprising as we would expect Bengali and Hindi to align well due to their relatedness. The result thus
suggests that the Bengali embeddings are of insufficient quality, which can largely explain the poor
alignment found by the GAN. This is further supported by follow-up experiments we ran aligning a
word vector space for English and a word vector space induced from scrambled English sentences
(learned on two different 10% samples of Wikipedia), which can be thought of as a sample from a
synthetic language that completely diverges from English in its syntactic properties.5 GAN-based
UBDI was able to near-perfectly recover the word identities without supervision, showing that its
success is not easily impeded by linguistic differences.

Observation 2 Impossible cases can also be the result of the inductive biases of the underlying
word embedding algorithms. One observation made in Conneau et al. (2018) is that the performance
of MUSE degrades a little when using alternative embedding algorithms, but that alignment is still
possible. We, however, observe that this is not the case if using different, monolingual embedding
algorithms, i.e., if using FastText for English and Hyperwords for Spanish. While such embeddings are
still linearly alignable (as verified by computing their Procrustes fits), GAN-based UBDI consistently
fails on such cases. This also holds for the case of aligning FastText for English and Hyperwords for
English, as observed in Hartmann et al. (2018).

3.2 ABLATION TRANSFORMATIONS

In order to better understand the dynamics of GAN-based UBDI in hard cases, i.e., when the GAN
suffers from local minima, we introduce three ablation transformations, designed to control for
properties of the word vector spaces: unit length normalization, PCA-based pruning, and noising.
The results of GAN-based UBDI after applying these transforms are reported in Table 2.

Observation 3 GAN-based UBDI becomes more unstable and performance deteriorates with unit
length normalization. This ablation transform performs unit length normalization (ULN) of all vectors
x, i.e., x′ = x

||x||2 , and is often used in supervised bilingual dictionary induction (Xing et al., 2015;
Artetxe et al., 2017). We use this transform to project word vectors onto a sphere – to control for
shape information. If vectors are distributed smoothly over two spheres, there is no way to learn an
alignment in the absence of dictionary seed; in other words, if UBDI is unaffected by this transform,
UBDI learns from density information alone. While supervised methods are insensitive to or benefit
from ULN, we find that UBDI is very sensitive to such normalization (see Table 2, M-unit). We
verify that supervised alignment is not affected by ULN by checking the Procrustes fit (§3.1), which
remains unchanged under this transformation.

Observation 4 GAN-based UBDI becomes more unstable and performance deteriorates with PCA
pruning. In order to control for density, we apply PCA to our word vector spaces, reducing them
to 25 dimensions, and prune our vocabularies to remove density clusters by keeping all but one
of the nearest neighbors vectors on an integer grid. This removes about 10% of our vocabularies.
We then apply UBDI to the original vectors for the remaining words. This smoothening of the
embeddings results in highly unstable and reduced performance (see Table 2, M-PCA). In other
words, density information, while less crucial than shape information, is important for the stability
of UBDI, possibly by reducing the chance of getting stuck in local optima. This is in contrast with
the results on using ICP for UBDI in Hoshen and Wolf (2018), who report significant improvements

5The context window for learning the embeddings is smaller than the average sentence length, which ensures
that words in scrambled English are seen in different contexts than in regular English.
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EASY HARD IMPOSSIBLE

es el et fi hu pl bn ceb

P@1 fail P@1 fail P@1 fail P@1 fail P@1 fail P@1 fail P@1 fail P@1 fail

MUSE 80.8 0 35.4 2 23.1 2 31.0 2 47.9 0 31.1 3 00.0 10 00.0 10

M-unit 80.4 0 17.7 5 12.6 5 32.3 1 14.4 7 24.1 4 00.0 10 00.0 10
M-PCA 74.1 1 09.3 8 10.9 3 03.5 8 38.2 2 18.0 6 00.0 10 00.0 10
M-noise 80.1 0 33.7 2 19.4 2 34.7 0 42.2 1 40.9 1 00.0 10 00.0 10

M-discr 77.5 0 26.5 4 09.4 7 26.3 2 09.3 8 19.6 6 00.0 10 00.0 10

M-cosine 81.3 0 44.8 0 28.7 0 36.3 0 47.2 0 45.2 0 00.0 10 00.0 10

Table 2: Main experiments; average performance and stability across 10 runs. We consider a P@1
score below 1% a fail. MUSE is the MUSE system with default parameters. Ablation transforms:
M-unit uses unit length normalization to evaluate the impact of shape; M-PCA uses PCA-based
pruning to evaluate the impact of density; M-noise uses 25% random vectors injected in the target
language space to evaluate the impact of noise. M-discr uses discriminator loss for model selection,
as a baseline for M-cosine; M-cosine uses our model selection criterion. The macro-averaged error
reduction of M-cosine over MUSE for the HARD languages is 7%; and 4% across all language pairs.

Discriminator
loss

P@1
Mean cosine
(csls_knn_10) 0 10.0

0.5
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(a) Discriminator loss (green), P@1 (blue) and mean
cosine similarity (red) for generators along the line
segment from the (failed) unsupervised GAN solution
to the supervised Procrustes fit. α is the interpolation
parameter.

el hu

P@1 P@1 fail P@1 P@1 fail
(10 runs) (top-5) (10 runs) (top-5)

MUSE 23.68 33.59 2 28.24 42.26 3

OP d=4096 21.39 32.23 3 36.16 42.83 1
d=8192 17.56 30.05 3 39.42 43.44 0

BS b=16 22.09 32.18 2 31.33 39.04 1
b=128 00.00 00.00 10 00.00 00.00 10

LR l=0.01 10.43 20.62 5 15.43 30.86 6
l=0.001 00.00 00.00 10 00.00 00.00 10

(b) Results for overparametrization (OP), increased
batch sizes (BS) and decreased discriminator learn-
ing rates (LR), compared to the MUSE default hyper-
parameters: d=2048, b=32, l=0.1: averages over 10
runs and over the top 5 runs, and the number of fails.

Figure 2: Follow-up experiments on Greek (el) and Hungarian (hu)

using PCA initialization with 50 dimensions. We ran experiments with 25, 50, and 100 dimensions,
with or without pruning, observing significant drops in performance across the board.

Observation 5 GAN-based UBDI is largely unaffected by noise injection. We add 25% random
vectors, randomly sampled from a hypercube bounding the vector set. GAN-based UBDI results
are not consistently affected by noise injection (see Table 2, M-noise). This is because the injected
vectors rarely end up in the seed dictionaries used for the Procrustes analysis step.

3.3 OVER-PARAMETERIZATION, BATCH SIZE, AND LEARNING RATE

In follow-up experiments on Greek and Hungarian, we find that GAN-based UBDI gets stuck in local
optima in hard cases, and over-parameterization, increasing batch size or decreasing learning rate
does not help.

Observation 6 In the hard cases, GAN-based UBDI gets stuck in local optima. In cases where linear
alignment is possible, but UBDI is unstable, the model might get stuck in a local optimum, which
is the result of the discriminator loss not increasing in the region around the current discriminator
model. We analyze the discriminator loss in these areas by plotting it as a function of the generator
parameters for the failure cases of two of the hard alignment cases, namely English-Greek and
English-Hungarian. We plot the loss surface along its intersection with a line segment connecting two
sets of parameters (Goodfellow et al., 2015; Li et al., 2018). In our case, we interpolate between the
model induced by GAN-based UBDI and the (oracle) model obtained using supervised Procrustes
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analysis. Result are shown in Figure 2a. The green loss curves represent the current discriminator’s
loss along all the generators between the current generator and the generator found by Procrustes
analysis. In all cases, we see that while performance (P@1 and mean cosine similarity) goes up,
there is an initial drop in the discriminator loss, which suggests there is no learning signal in this
direction for GAN-based UBDI. This is along a line segment representing the shortest path from the
failed generator to the oracle generator, of course; linear interpolation provides no guarantee there are
no almost-as-short paths with plenty of signal. A more sophisticated sampling method is to sample
along two random direction vectors Goodfellow et al. (2015); Li et al. (2018). We used an alternative
strategy of sampling from normal distributions with fixed variance that were orthogonal to the line
segment. We observed the same pattern, leading us to the conclusion that instability is caused by
local optima.

Observation 7 Over-parameterization does not consistently help in the hard cases. Recent work
has observed that over-parameterization leads to smoother loss landscapes and makes optimization
easier (Brutzkus et al., 2018). We experiment with widening our discriminators to smoothen the loss
landscape, but results are inconsistent: for Hungarian, this made GAN-based UBDI more stable; for
Greek, less stable (see Figure 2b).

Observation 8 Changing the batch size or the learning rate to hurt the discriminator also does
not help. Previous work has shown that large learning rate and small batch size contribute towards
SGD finding flatter minima (Jastrzebski et al., 2018), but in our experiments, we are interested in
the discriminator not ending up in flat regions, where there is no signal to update the generator. We
therefore experiment with smaller learning rate and larger batch sizes. The motivation behind both is
decreasing the scale of random fluctuations in the SGD dynamics (Smith and Le, 2017; Balles et al.,
2017), enabling the discriminator to explore narrower regions in the loss landscape. See Figure 2b for
results. Increasing the batch size or varying the learning rate (up or down) clearly comes at a cost,
and it seems the MUSE default hyperparameters are close to optimal.

4 UNSUPERVISED MODEL SELECTION

In this section, we compare two unsupervised model selection criteria. We train three models with
different random seeds in parallel and use the selection criterion to select one of these models to train
for the remaining epochs. The first criterion is the discriminator loss during training, which is used
in Daskalakis et al. (2018), for example. In contrast, we propose to use the mean cosine similarity
between all translations predicted by the CSLS method (see §2), which was used as an unsupervised
stopping criterion by Conneau et al. (2018).

Observation 9 In the hard cases, model selection with cosine similarity can stabilize GAN-based
UBDI. As we see in Table 2, the selection criterion based on discriminator loss (M-discr) increases the
instability of UBDI, leading to 4/10 failed alignments for Greek compared to 2/10 without model
selection, for example. Cosine similarity (M-cosine) in contrast leads to perfectly stable UBDI. Note
that if the probability of getting stuck in a local optimum that leads to a poor alignment is β, using n
random restarts and oracle model selection we increase the probability of finding a good alignment to
1− (1− β)n. In our experiments, n = 3.

5 CONCLUSIONS

Some pairs of word vector spaces are not alignable based on distributional information alone. For
other pairs, GANs can be used to induce such an alignment, but the degree of instability is very
susceptible to the shape and density of the word vector spaces, albeit not to noise. Instability is
caused by local optima, but not remedied by standard techniques such as over-parameterization,
increasing the batch size or decreasing the learning rate. We propose an unsupervised model selection
criterion that enables stable learning, leading to a ~7% error reduction over MUSE, and present
further observations about the alignability of word vector distributions.
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