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Abstract

In this paper, some results from DILATE(Distortion Loss including shape and time) (2) are
replicated and additional studies on hyperparameter explorations and other Neural Network
models are done as a part of NeurIPS Reproducibility Challenge. The comparison between
DILATE and Euclidean Loss (MSE) has been shown when training Deep Neural Networks on
non-stationary time series forecasting problems.

1 Introduction

Time series forecasting for non-stationary signals and multi-future-step predictions has been a challenging task. Deep Neural
Networks such as RNNs, LSTMs and GRUs have been intensively studied in related domains because of their abilities to
model complex non-linear time dependencies. The authors of (2) introduced DILATE(Distortion Loss including shape and
time) for training Deep Neural Networks in the context of multi-step and non-stationary time series forecasting. DILATE is a
di�erentiable loss function which penalizes two errors, shape and temporal localisation errors of change detection (2). Mostly,
mean squared error (MSE) or its variants are used a loss function for training Deep Neural Nets. In (2), the authors have showed
that in some cases, MSE or its variants doesn’t capture a sharp drop or is not a better �t for regulation purposes whereas
DILATE re�ects on the sharp changes of regime although with a slight delay or with a slight inaccurate amplitude(refer to
Figure1:b,c in (2)).

The source code provided by the authors was used and it includes the implementation of DILATE loss function and seq2seq
model. We tried to make a contact with the authors for supplementary material and data preprocessing guidelines but didn’t
get a response back. We followed the directions as mentioned in (2) for data preprocessing and also evaluated the perfor-
mance of DILATE on additional dataset section 3.1. In this paper, the main results from (2) were reproduced to evaluate the
performance of DILATE. We propose Convolutional-LSTM model to make certain that DILATE can be used with other Neural
Network architectures speci�cally designed for multi-step and non-stationary forecasting. In addition to the above, several
tests were done to study the impact of α and γ on the overall performance of the model and results are shown in 3.4.

2 DILATE

A very brief introduction to the working of DILATE is given in this section. For more details on this algorithm, please refer
to (2), (1), (4). The framework proposed for multi-step time series forecasting is depicted in Figure2 in (2). For each input
example of length n, the forecasting model predicts the output ŷ. The DILATE objective function (2) is composed of two terms
balanced by the hyperparameter α ∈ [0, 1] which compares the prediction ŷi with the ground truth value y∗i :

LDILATE(ŷi, y∗i ) = αLshape(ŷi, y∗i ) + (1− α)Ltemporal(ŷi, y∗i ) (1)
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Shape term The shape loss function is based on Dynamic Time Warping (5) . DTW is non-di�erentiable but the smooth
minimum operator γ proposed in (1) de�nes the shape term Lshape as:

Lshape(ŷi, y∗i ) = DTWr(ŷi, y
∗
i ) := −γ log(

∑
A∈Ak,k

exp(−〈A,∆(ŷi, y
∗
i )〉

γ
)) (2)

Temporal Term The temporal term penalizes the temporal irregularities between ŷi and y∗i (2). The loss function is inspired
from computing the Time Distortion Index (TDI) for temporal misalignment estimation (4). The loss function is given as:

Ltemporal(ŷi, y∗i ) :=
〈
A∗γ ,Ω

〉 1

Z

∑
A∈Ak,k

〈A,Ω〉 exp(−〈A,∆(ŷi, y
∗
i )〉

γ
) (3)

3 Experiments

The results were reproduced from section 4.2 in (2) on 3 non-stationary time series datasets from di�erent domains as im-
plemented in (2). We did an evaluation on one more additional dataset to analyse the relevance of DILATE against Euclidean
loss (MSE). The multi-step evaluation consists in forecasting the future trajectory on k future time steps (2).

3.1 Experimental Setup

Synthetic and ECG5000 Data preprocessing on these 2 datasets is same as in (2).

Tra�c(k=24) dataset corresponds to the road occupancy rates (between 0 and 1) from the California Department of Trans-
portation (48 months from 2015-2016) measured every 1h (2). For this, there were no data pre-processing instructions, this
allowed us to work on univariate series of length 17544 with train/test on 75/25 weeks of data and predictions on 24 future
points given the past 168 points (past week).

Wafer (k=62) comes from the UCR Time Series classi�cation Archive (6) with sequence length 152. It consists of the collection
of inline process control measurements (1000/6000: train/test) recorded from various sensors during the processing of silicon
wafers for semiconductor fabrication.

Network Architectures and Training For multi-step forecasting, we used the Seq2Seq model with Gated Recurrent Units
(GRU) as provided by the authors of (2). The model is trained in Pytorch for a maximum 1000 epochs with the ADAM
optimizer. In addition to Seq2Seq, an implementation of CNN-LSTM model (section 3.3) is carried out so as to compare the
performance of DILATE and MSE on di�erent Neural Network architectures.

3.2 Evaluating DILATE Forecasting

The similar procedure is used as mentioned in Section4.2 in (2) to evaluate the forecasting performance of DILATE against
Euclidean Loss (MSE) and DTWγ . The results were averaged over 5 runs as opposed to 10 runs in (2). The same experiment
was repeated with CNN-LSTM Neural Network as well. The results are evaluated using three metrics: MSE, shape(DTW)
and TDI(temporal) (2). Overall results are presented in Table1. For ECG dataset when evaluated on DTW, our results don’t
quite match with that of the authors in (2) and are highlighted in bold in Table1. Also, the results di�er signi�cantly for tra�c
dataset(seq2seq) and this could be due to the di�erence in ways of processing the data.

We display a few qualitative examples for Synthetic and Wafer dataset in Figure 1 and 2 when implemented in Se2Seq and
CNN-LSTM. As in paper (2), our results for Synthetic dataset matches with that of the authors where DILATE is better than
MSE in predicting sharp changes in regime. DTWγ leads to very sharp predictions in shape, but with a large temporal
misalignment. In the case of Wafer dataset, the performance of MSE is better than DILATE when evaluated on MSE.
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Table 1: Forecasting results evaluated with MSE (x100), DTW (x100) and TDI (x10) metrics, averaged over 5runs.

Convolutional-LSTM Network Recurrent Neural Network
Dataset Eval MSE DTWγ DILATE MSE DTWγ DILATE
Synth MSE 1.64± 0.03 5.06± 0.44 1.7± 0.07 1.07± 0.08 1.66± 0.08 1.3± 0.05

DTW 32.67± 0.24 28.18± 1.69 28.66± 0.42 22.78± 1.5 14.59± 0.81 19.24± 1.39
TDI 12.42± 0.47 30.44± 2.27 14.06± 0.12 19.15± 1.78 20.06± 0.47 14.79± 1.56

ECG MSE 17.70± 0.19 67.18± 15.66 34.22± 4.54 20.38± 0.32 72.29± 1.77 35.98± 5.19
DTW 167.07± 1.27 169.95± 4.16 168.29± 4.76 177.62± 5.24 311.99± 2.67 180.7± 12.78
TDI 6.29± 0.226 23.17± 8.47 7.65± 0.52 8.04± 0.28 77.68± 18.58 9.27± 2.1

Tra�c MSE 0.103±0.004 0.13±0.009 0.10±0.009 0.1± 0.004 0.13± 0 0.1± 0
DTW 11.66±0.10 10.21±0.41 11.34±0.39 12.01± 0.32 12.04± 0.26 11.11± 0.15
TDI 0.77±0.18 0.87±0.02 1.23±0.25 0.71± 0.01 0.70± 0.03 1.32± 0.10

Wafer MSE 4.25±0.24 105.17±8.3 75.07±15.48 2.88± 0.54 165.82± 1.53 43.63± 5.24
DTW 94.59±3.36 29.35±0.59 52.81±5.25 74.37± 10.72 38.74± 0.6 90.22± 14.37
TDI 11.52±0.14 67.91±9.26 31.19±9.76 20.83± 1.18 97.87± 1.14 22.13± 1.47

MSE Comparison: DILATE is better than MSE when evaluated on shape(DTW) in 5/8 experiments. On evaluation on
time(TDI), MSE performs much better than DILATE in 7/8 experiments. When evaluated on MSE, DILATE is equivalent to
MSE except on Wafer dataset.

DTWγComparison: On evaluation with shape(DTW), DILATE performs equivalently toDTWγ (2 reductions, 1 signi�cant
improvement and 5 similar performances). When evaluated on time, DILATE outperforms DTWγ in 6/8 experiments except
for Tra�c dataset. For MSE evaluation, DILATE is signi�cantly better than DTWγ in all experiments.

In conclusion, DILATE performs better than DTWγ . The performance of DILATE is better than MSE but in some cases, MSE
is comparable to DILATE and when evaluated on MSE, MSE outperforms DILATE.

(a) Synthetic data

(b) Wafer data

Figure 1: Forecasting results for Synthetic and Wafer data based on Seq2Seq model. Leftmost: Seq2Seq with MSE loss,
Middle: Seq2Seq with DTWγ loss, Rightmost: Seq2Seq with DILATE loss.
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(a) Synthetic data

(b) Wafer data

Figure 2: Forecasting results for Synthetic and Wafer data based on CNN_LSTM model. Leftmost: CNN_LSTM with MSE
loss, Middle: CNN_LSTM with DTWγ loss, Rightmost: CNN_LSTM with DILATE loss.

3.3 Comparison with CNN-LSTM

We compared DILATE performance on Seq2Seq model and a basic CNN-LSTM. CNN-LSTM model is developed with the goal
to perform 1-D convolution to capture local patterns in the multi-step time series and then LSTM for capturing the complex
nonlinear time dependencies. The Seq2Seq DILATE performs similarly to CNN-LSTM when evaluated on all the three metrics
and four datasets used in this study. This highlights the relevance of DILATE loss function, which reaches better performances
with simpler architectures. If DILATE and MSE perform similar when used in complex Neural Network architectures (3), then
MSE seems to be a better choice because of computational reasons.

3.4 DILATE Analysis

Impact of γ: We carried out a thorough analysis of γ on the overall performance of the model using Synthetic dataset. We
chose from 6 log-spaced values between 10−3 and 10. We observed that for low values of γ, DILATE training loss converges
to an acceptable minimum value but as seen from the Figure 3, it has a possibility to get stuck in a very bad local minima. On
the other hand, for high values of γ, loss converges smoothly to a reasonable solution. As γ decreases, DTWγ achieves low
loss values which veri�es that DILATE is more compliant to optimisation by gradient-descent methods. The convergence of
training loss for 3 di�erent values of gamma is shown in the Figure 3. The same analysis can carried out on di�erent datasets
for more validity.

Impact of α: We run experiments on 10 di�erent values of α from 0 to 1 and observe its impact on the performance of
DILATE. We carry out this analysis on synthetic and ECG5000 dataset. When α = 0, temporal loss is minimized without any
shape constraint. Both MSE and shape errors explode in this case illustrating the fact from (2). We reproduced the similar
results as in (2) for Synthetic dataset. For ECG5000 dataset, we observed the similar performance between Ltemporal and
Lshape but MSE in this case seems to be independent of alpha as seen from Figure 4. This suggests that MSE loss does not
depend on the value of α. For more insights on this, similar analysis can be carried out on di�erent datasets.
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(a) γ = 0.001 (b) γ = 0.01 (c) γ = 1

Figure 3: DILATE training loss on di�erent γ values.

Figure 4: alpha on ECG data

Custom backward implementation speedup: In order to verify the speedup, we apply the Pytorch build in function
TORCH.AUTOGRAD.PROFILER to check the runtime of the back propagation of DILATE and MSE loss. According to section
3.2 in paper(2), the time complexity of DILATE is O(k2) and the time complexity of MSE algorithm is known i.e. O(k). We
tested di�erent input length and di�erent models, then estimated the speedup by computing runtime2mse

runtimedilate
. We veri�ed that

the custom backward implementation in (2) is very e�ective, but DILATE is still computationally expensive than MSE.

4 Conclusion

We reproduced some results which are similar to that of the paper (2). We did additional experiments using di�erent datasets
and studied the e�ect of two hyperparamters α and γ on the model performance. The results were easy to reproduce given
one has to run the tests many times for quantitative reasons. We could not reproduce the Hausdor� distance and Ramp score
as there was no access to the supplementary material. DILATE works better than MSE but from the above experiments, in
some cases, MSE is as good as DILATE. So, the future work could be to compare the performance of DILATE and MSE loss
on transformer like models(3) with respect to better predictions and computational complexity.
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5 Appendix

The following are some more �gures from the reproduction work.

(a) ECG data

(b) Tra�c data

Figure 5: Forecasting results for ECG and tra�c data based on Seq2Seq model. Leftmost: Seq2Seq with MSE loss, Middle:
Seq2Seq with DTWγ loss, Rightmost: Seq2Seq with DILATE loss.

(a) ECG data

(b) Tra�c data

Figure 6: Forecasting results for ECG and tra�c data based on CNN_LSTM model. Leftmost: CNN_LSTM with MSE loss,
Middle: CNN_LSTM with DTWγ loss, Rightmost: CNN_LSTM with DILATE loss.
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(a) Synthetic data

(b) Tra�c data

(c) ECG data

(d) Wafer data

Figure 7: Forecasting results for ECG and tra�c data based on Fully connected network(MLP) model. Leftmost: MLP with
MSE loss, Middle: MLP with DTWγ loss, Rightmost: MLP with DILATE loss.

8


	Introduction
	DILATE
	Experiments
	Experimental Setup
	Evaluating DILATE Forecasting
	Comparison with CNN-LSTM
	DILATE Analysis

	Conclusion
	Appendix

