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Abstract

Recent studies have shown that even vast collec-
tions of data from real drivers are insufficient to
train autonomous vehicle controllers capable of
generalizing to the variety of situations that can
occur in the real world. End-to-end reinforcement
learning within simulation presents many poten-
tial advantages to learn safety critical controller
directly from an agent’s raw perception. Unfortu-
nately, existing simulators lack the photorealism
needed to train such machine learning models for
autonomous vehicles. In this work, we present a
novel data-driven simulation and training engine
capable of learning end-to-end autonomous ve-
hicle controllers without any human supervision.
We demonstrate the ability of these controllers
to generalize to and navigate in the real world
without access to any human control commands
during training. Our results validate the learned
control policy onboard a full-scale autonomous
vehicle, including in previously un-encountered
scenarios, such as new roads and novel, complex,
near-crash situations.

1. Introduction

Deep learning has demonstrated remarkable performance
in a diverse set of tasks, particularly in computer vi-
sion (Voulodimos et al., 2018) and natural language pro-
cessing (Van Den Oord et al., 2016). When combined with
reinforcement learning (RL), super-human performance can
be achieved for planning and control tasks in structured
environments, such as video or board games (Mnih et al.,
2015; Silver et al., 2018). So far, this level of success has
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Figure 1. TRAVIS: Training Robust Autonomous Vehicles in
Simulation. From a single human collected trajectory our data-
driven simulator (TRAVIS) synthesizes a space of new possible
trajectories. Preserving photo-realism of the real world allows the
autonomous vehicle to move beyond imitation learning and instead
explore the space, optimizing their own policies from scratch.

not been mirrored in the area of safety-critical control sys-
tems operating in unstructured real world environments such
as autonomous cars. While end-to-end (i.e., perception-to-
control) trained neural networks for autonomous vehicles
have shown great promise (Pomerleau, 1989; Bojarski et al.,
2016), they still lack methods to learn robust models at scale
and require vast amounts of training data that is time con-
suming and expensive to collect. Even when trained with
vast collections of data, supervised driving models only imi-
tate human driving performance in similar situations, and
do not generalize well to the complexities of real world
driving, including varying road, weather, and traffic condi-
tions. Capturing training data from all the necessary edge
cases and non-ideal conditions, such as recovering from
near collisions, is not only prohibitively expensive, it is also
potentially dangerous (Kendall et al., 2018).

Training and evaluating autonomous vehicle controllers in
simulation with synthetic data provides a potential solution
to the need for more data and increased robustness to novel
situations, and also avoiding the time, cost and safety is-
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Figure 2. Simulating novel viewpoints for learning. Schematic of an autonomous agents interaction with the data-driven TRAVIS
simulator. At every time step, the agent receives an observation of the environment and commands an action to execute. Their motion is
simulated in TRAVIS and compared to the humans estimated motion in the real world. A new observation is then simulated by transforming

a 3D representation of the scene into the virtual agents viewpoint.

sues of current methods. Unfortunately, existing simulators
do not map well to the challenges of training end-to-end
autonomous vehicle controllers.

We present an end-to-end simulation and training engine
capable of taking a dataset of geo-tagged, human collected
driving trajectories and synthesizing a continuum of new tra-
jectories that are photorealistic and semantically faithful to
the respective real world driving conditions (Fig. 1). Our en-
gine, termed TRAVIS: Training Robust Autonomous Vehicles
in Simulation, couples computer vision and deep learning
techniques to synthesize this training data on-demand as a
given trajectory is explored, and thus avoids the scalability
issues of constructing an entire virtual world in advance.
We consider the problem of learning lateral control for lane
following over a wide variety of different road and environ-
ment types. Concretely, given only a visual observation of
the environment (i.e. raw image pixels from a front facing
video camera), we seek to learn a model that outputs the
instantaneous curvature of the desired trajectory the vehicle
should follow.

Our results show that RL agents trained entirely within
TRAVIS, without any prior knowledge of human driving nor
post-training fine-tuning, can be deployed directly onboard
a full-scale autonomous vehicle capable of driving on real
world roads. To the best of our knowledge, our work is the
first published report of a full-scale autonomous vehicle
trained entirely in simulation, using only reinforcement
learning, that is capable of being deployed onto real roads
and recovering from complex, near crash driving scenarios.

2. Related Work

Training agents in simulation for the purpose of robust de-
ployment in the real world is a long-standing goal in many
areas of robotics (Tobin et al., 2017; Andrychowicz et al.,
2018; Sadeghi & Levine, 2016; Bewley et al., 2018). In
autonomous driving, end-to-end trained controllers learn
from raw perception data, as opposed to maps (Bansal et al.,
2018) or other object representations (Chen et al., 2015;
Henaff et al., 2019; Hong et al., 2018). Previous works have
explored learning with expert information for lane follow-
ing (Pomerleau, 1989; Bojarski et al., 2016), point-to-point
navigation (Amini et al., 2019), and shared human-robot
control (Amini et al., 2018), as well as in the context of
reinforcement learning by allowing the vehicle to repeatedly
drive off the road (Kendall et al., 2018). However, when
trained on state-of-art synthetically generated images, these
techniques are unable to be directly deployed in real world
driving conditions. Thus, end-to-end trained controllers re-
quire photorealistic input data for robust training without
any domain adaptation.

Performing style transformation, such as adding realistic
textures to synthetic images, can be achieved with deep
generative models and has been used to deploy learned
policies from model-based simulation engines into the real
world (Pan et al., 2017; Bewley et al., 2018). However,
these approaches do not address the semantic complexities
(such as driver and pedestrian behaviors) present in the real-
world required to train robust autonomous controllers. Data
driven engines like The Gibson Environment (Xia et al.,
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2018) use a method of synthesizing photo-realistic environ-
ments, but such closed-world models are not scalable to
the vast exploration space needed to train for real world
autonomous driving. Simulation engines capable of training
robust, end-to-end autonomous vehicle controllers must ad-
dress the challenges of photo-realism, real world semantic
complexities, and scalable exploration of control options,
while avoiding the fragility of imitation learning and pre-
venting unsafe conditions during data collection, evaluation,
and deployment.

3. Data-Driven Simulation

In this section, we present our data-driven simulator,
TRAVIS, and describe how autonomous vehicle controllers
are trained via reinforcement learning on synthesized data
to drive a stable trajectory consistent with the lane, allowing
them to be deployed into real world.

TRAVIS is a data-driven simulator which is inserted into an
agent’s action-perception loop to synthesize photo-realistic
local viewpoints as a virtual agent moves through the en-
vironment (Fig. 2). Here, we use the word “environment”
in the reinforcement learning setting, where agents receive
visual inputs and command a subsequent action to execute
at that instant, while the simulator takes these commands
to synthesize the next observation that the agent would ob-
serve. For each human-collected trajectory through a road
environment, TRAVIS allows autonomous agents to drive
(in virtual space) along an infinity of new local trajectories
consistent with the road appearance and semantics, each
with a different view of the scene.

The local viewpoint simulation occurs in three main stages.
First, the action is used to update an internal state represen-
tation of the virtual agent and relative transformation from
the human driver, inside the environment. Second, a new
observation is retrieved from the database and projected
from the sensor frame into the 3-dimensional (3D) world
frame. The 3D observation then undergoes a coordinate
transformation to account for the relative transformation
between agent and human. Finally, the third stage of our
system projects the transformed 3D observation back into
the sensor frame of the vehicle and returns it to the agent as
its next observation.

TRAVIS is scalable as it does not require storing and operat-
ing on 3D reconstructions of entire environments or cities.
Instead, it considers only the observation collected nearest
to the virtual agent’s current state. Thus, simulating vir-
tual agents over real road networks spanning thousands of
kilometers can be achieved efficiently, with a few hundred
gigabytes of data.

From only a single monocular image (Fig. 3A), a depth map
is estimated using a deep convolutional neural network to

Depth Map

Original Imag

Figure 3. Sample synthesized perception. Example simulated
images are shown for a sample environment observation and in-
ferred depth map (A), including simulated rotations (B), lateral
translations (C), and longitudinal translations (D).

handle objects on the road (e.g. cars, pedestrians, etc.) as
well as off-road obstacles (e.g. signs, buildings, etc.). The
monocular depth network is trained using self-supervision
of stereo cameras, wherein the network accepts one camera
and learns to predict the other camera by first learning a
representation of the depth of pixels in the scene (Godard
et al., 2017). TRAVIS is capable of simulating different
local rotations (Fig. 3B) of the agent as well as both lateral
(Fig. 3C) and longitudinal translations (Fig. 3D) along the
road. We demonstrate simulated rotations up to +15° as
well as translations up to +1.5m. Since the average free
lateral space of a vehicle within its lane is typically less
than 1m, we demonstrate simulation beyond the bounds of
lane-stable driving.

3.1. End-to-end Learning

In this section, we present results on learning end-to-end
(i.e., sensor-to-actuation) control of autonomous vehicles
entirely within TRAVIS.

All controllers presented in this paper are learned end-to-
end, directly from raw image pixels to actuation. We con-
sidered controllers that act based on their current perception
without memory or recurrence built in, as suggested in (Bo-
jarski et al., 2016; Chen et al., 2015). Features are extracted
from the image using a series of convolutional layers that
transform the image pixels into a lower dimensional feature
space. These features are then fed through a set of dense
fully connected layers to learn the final control commands
to actuate the vehicle. Since all layers are fully differen-
tiable, the model was optimized entirely end-to-end. As in
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previous work (Bojarski et al., 2016), we consider learning
lateral control by predicting the curvature of motion that
the vehicle should follow. Thus, our models remain vehicle
independent, as they feed their desired output curvature into
a vehicle-specific controller that computes a corresponding
steering angle at deployment time.

Given a dataset of n observed state-action pairs (s, a;)?_,
from human driving, we aim to build an autonomous agent
parameterized by € which estimates a; = f(s¢; ). In the
supervised learning setting, this agent outputs a determinis-
tic action and is trained by minimizing the empirical error

n
L(6) = (f(s;0) — ar)*. (1)
i=1

However, in the reinforcement learning setting, the agent
has no explicit feedback of the human actuated command
a¢. Instead, it receives a reward r; for every consecutive
action that does not result in a crash and can evaluate the
return, B; = Z;O:O 'yk T+, as the discounted, accumulated
reward with a discount factor v € (0, 1]. In other words,
the return that the agent receives at time ¢ is a discounted
distance traveled between ¢ and the time when the vehicle
crashes. As opposed to the supervised learning case, the
agent optimizes a stochastic policy over the space of all
possible actions: mw(a|s;; ). Since the steering control of
autonomous vehicles is a continuous variable, we parameter-
ize the output probability distribution at time ¢ as a Gaussian
(ut,02). Therefore, the policy gradient, Vo (als:; 0), of
the agent can be computed analytically:

Veom(als:; 0) = mw(alst; 0) Ve log (m(als:; 6))  (2)

Thus, the weights 6 are updating in the direction
Vo log (m(alst; 0)) - Ry during optimization of the agent
when training (Williams, 1992).

We present a reinforcement learning agent that learned to
operate in various different simulated environments, where
it only receives rewards based on how far it can drive without
crashing. Compared to supervised learning, where agents
learn to simply imitate the behavior of the human driver,
reinforcement learning in simulation allows agents to learn
suitable actions which maximize their total reward in that
particular situation. Thus, the agent has no knowledge of
how the human drove in that situation. Instead, it receives a
reward the longer it stays safely on the road and is penalized
when crashing off the edge of the lane boundary. Using only
the feedback from crashes in simulation, the agent learns to
optimize its own policy and thus to drive longer distances.

We define a learning episode in our simulator from the
time the agent starts receiving sensory observations to the
moment when it exits its lane boundaries. Assuming the
original data was collected at approximately the center of the
lane, this corresponds to declaring the end of an episode as

when the lateral translation of the agent exceeds =1m. We
train an convolutional neural network with a single Gaussian
distribution output to model the continuous steering control
of the vehicle in the simulator using policy gradient (PG)
reinforcement learning (Williams, 1992; Sutton et al., 2000).

If the agent reaches the end of a road successfully, it is
automatically transported to a new random location in the
dataset. By doing so, we are not limited to simulating only
on long roads, but can also train on multiple shorter roads
as well. We define that an agent has sufficiently learned the
environment once it successfully drives for 10km without
crashing, at which point the simulator will restart without a
crash penalty to continue with the next training iteration.

4. Results
4.1. Real-World Testbed

Learned controllers were deployed directly onboard a full-
scale autonomous vehicle (2015 Toyota Prius V) which we
retrofitted for full autonomous control (Naser et al., 2017)
(Fig. 4). The primary perception sensor for control is a
LI-AR0231-GMSL camera, which is recorded at 15Hz for
training and simulation. The vehicle is also equipped with
inertial measurement units (IMUs), wheel encoders, and a
global positioning satellite (GPS) sensor for evaluation. The
steering control commands from the models are sent to a
low level tracking control running at 100Hz to actuate the
physical steering wheel using the vehicle’s built in power
steering. To standardize all model trials on the test-track,
a constant desired speed of the vehicle was set at 10 kph,
while the model commanded the steering of the vehicle. All
processing on the vehicle was done on an NVIDIA Drive
PX2 computing platform with neural network inference
using the on-board integrated Tegra GPUs running at a
maximum of 30Hz.

Our test track contains a series of roads, turns, and intersec-

Figure 4. Full-scale autonomous vehicle testbed. Our algo-
rithms and baselines are evaluated using a full-scale vehicle (A) on
a real world test track. The vehicle is retrofitted with cameras (B,
red circles). The test track (C) consists of rural roads without lane
markers or clearly defined road boundaries, making perception an
especially complex task.
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Figure 5. Reinforcement learning in simulation. Autonomous vehicles placed in the simulator with no prior knowledge of human
driving or road semantics demonstrate the ability to learn and optimize their own driving policy under various different environment types.
Scenarios range from different times of day (A), to weather condition (B), and road types (C).

tions spanning over 3 km. The track presents a difficult test
environment, as it does not have any clearly defined road
boundaries or lane markers. Cracks, where grass and other
vegetation grow into the road, as well as strong shadows cast
from surrounding trees, also make road detection signifi-
cantly more challenging. Agents were evaluated on all roads
in the test environment. It is crucial to note that the training
set contained only the outermost loop of the track but in
the reverse direction of the evaluation run. Additionally, all
other side roads are also tested to evaluate generalization
performance on entirely unseen roads.

4.2. Reinforcement Learning in TRAVIS

In this section, we present results on learning end-to-end
(i.e., sensor-to-actuation) control of autonomous vehicles
entirely within TRAVIS, under different weather conditions,
times of day, and even road types. We evaluated training
in different simulated environments synthesized from data
collected by humans driving on real roads. Each of the
environments collected for this experiment consisted of, on
average, one hour of driving data from that scenario.

We started by learning end-to-end policies in different times
of day (Fig. 5A) and, as expected, found that agents learned
more quickly during the day than at night, where there

was often limited visibility of lane markers and other road
cues. Next, we considered changes in the weather condi-
tions. Environments were considered “rainy” when there
was enough water to coat the road sufficiently for reflections
to appear, or when falling rain drops were visible in the
images. Comparing dry with rainy weather learning, we
found only minor differences between their optimization
rates (Fig. 5B). This was especially surprising considering
the visibility challenges for humans due to large reflections
from puddles as well as raindrops covering the camera lens
during driving. Finally, we evaluated different road types by
comparing learning on highways and rural roads (Fig. 5C).
Since highway driving has a tighter distribution of likely
steering control commands (i.e., the car is traveling primar-
ily in a nearly straight trajectory), the agent quickly learns
to do well in this environment compared to the rural roads,
which often have much sharper and more frequent turns.
Additionally, many of the rural roads in our database lacked
lane markers, thus making the beginning of learning harder
since this is a key visual feature for autonomous navigation.

In our experiments, our learned agents iteratively explore
and observe their surroundings (e.g. buildings, trees, cars,
pedestrians, etc.) from novel viewpoints. On average, the
learning agent is able to autonomously drive 10km without
crashing in the environment within 1.5 million training iter-
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Figure 6. Evaluation of end-to-end autonomous driving. Comparison of different models on the test track including, standard imitation
learning (IMIT), imitation learning with augmented off-center data (IMIT-AUG), policy gradient optimization within TRAVIS (SIM-PG),
and baseline human driving. Each model is tested 3 times at fixed speeds on every road on the test track (A-D). Locations of crashes are
indicated with red dots on the map. The mean trajectory of each model along with the variance between runs is also visualized (E-H).
Finally, the distribution of deviations of the agent from its mean trajectory computed in (I-L).

ations. Thus, when randomly placed in new locations with
similar features during training the agent is able to use its
learned policy to navigate. Furthermore, while demonstra-
tion of learning in simulation is critical for development of
autonomous vehicle controllers, we also evaluate the learned
policies directly on-board our full-scale autonomous vehicle
to test generalization to the real world.

4.3. Evaluation in the Real World

In this section, we evaluate the performance of learned agent
policies directly on real roads. All policies were learned
without human supervision, entirely within our data-driven
simulator. Controllers trained within our data-driven simu-
lator using policy gradient reinforcement learning (denoted
by SIM-PG) are evaluated against two baseline supervised
imitation learning techniques: (1) standard end-to-end super-
vised learning of road curvature (IMIT) and (2) supervised
learning augmented with data from side cameras (IMIT-
AUG). Augmenting supervised learning with views from
side cameras is the standard approach to help teach the
model how to recover from off-center positions on the roads,

and has been used with great success (Bojarski et al., 2016;
Giusti et al., 2016). We employ the techniques presented in
(Bojarski et al., 2016) to compute the recovery correction
signal that should be trained with given these augmented
inputs. Finally, a human driver (HUMAN), is instructed to
drive the designed route as close to the center of the lane
as possible, and is used to fairly evaluate and compare all
learned models.

Each of these models are trained separately three times
and tested individually on every road on the test track.
When reaching the end of a road, the autonomous vehicle is
stopped and restarted at the beginning of the next road seg-
ment. The test driver intervenes and takes over control when
the vehicle exits its lane or if it starts to go off-road. The
mean trajectory of the three trials for each model are shown
in Fig. 6A-D, with intervention locations visualized as red
points. The road boundaries are plotted in black for scale
of deviations. Both IMIT and IMIT-AUG experience mul-
tiple interventions over the course of the three trials, with
IMIT requiring 70 interventions (~ 1 intervention every
120 meters). Since IMIT was not trained with any data from
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side views the car was unable to recover from off-center
positions and thus drifts off the road even on minor turns.
IMIT-AUG was more robust to slight off-center recoveries
but still required intervention during large turns or when
the vehicle encountered other edge-case orientations (e.g.
large rotations on the road). SIM-PG exhibited the greatest
robustness of the considered models and never required any
interventions throughout the three different trials (totalling
approximately 10km of autonomous driving).

The variance across trials is also visualized at each point
along the trajectories of the models (Fig. 6E-H), where the
color of the line maps onto the trial variance at that location.
‘We note that for IMIT and IMIT-AUG, the variance tends
to spike at locations which resulted in interventions, while
the variance of SIM-PG was highest in ambiguous situa-
tions (such as approaching an intersection, or wider roads
with multiple possible correct control outputs).

In addition to initiating testing of our autonomous con-
trollers when the vehicle was started roughly in the center
of the lane, we also tested initiating the vehicle from off-
orientation positions, with significant lateral offsets as well
as rotational offsets. Upon initiating the autonomous con-
troller, we designated a successful recovery if the vehicle
was able to successfully execute an evasive maneuver and
drive back to the center of its lane within 5 seconds. Thus,
this tests if the learned controllers are capable of recovering
from these near-crash scenarios.

We observed that agents trained in TRAVIS (SIM-PG) were
able to recover from these off-orientation positions on real
and previously un-encountered roads, and also significantly
outperformed models trained with imitation learning on
real world data (IMIT and IMIT-AUG). Considering re-
covery from rotational offsets alone, SIM-PG successfully
recovered over 3x more frequently than IMIT-AUG. The
performance of IMIT-AUG improved with translational off-
sets, but was still significantly outperformed by SIM-PG
models trained in simulation by approximately 30%.

5. Conclusion

Simulation allows for scalable training of autonomous
agents under a wide range of different large-scale environ-
ments as well as positions and orientations of the vehicle
on the road. While there have been remarkable successes
in learning real world controllers to imitate human drivers,
these methods are often trained directly on data collected by
human drivers. Collecting “gold-standard” human driving
data to train imitation models can be extremely difficult
and subjective from driver to driver. Additionally, due to
safety concerns humans are limited in the types of scenar-
ios that are feasible to collect (i.e., restricted to driving on
the road and in safe conditions); thus, the resulting learned

controllers rarely will be exposed to necessary edge case
driving scenarios. Such edge cases are not only the most
challenging to collect, but also the hardest for the controllers
to robustly handle.

Our data-driven simulator supports training the controller
anywhere within the feasible band of trajectories that can be
synthesized from data collected by a human driver on a sin-
gle trajectory. This enables training on infinitely more data
from one or more individually collected trajectories. This
allows for agents to move beyond imitation learning and
to learn an entire driving policy from scratch by iteratively
exploring the simulation space.

Our experiments empirically validate the ability to train
models in our data-driven simulation engine using reinforce-
ment learning, and to directly deploy these learned models
on a full-scale autonomous vehicle that can then success-
fully drive autonomously on real roads. Furthermore, we
demonstrate that controllers learned within our simulator
exhibit greater robustness in recovery from near-crash sce-
narios. We believe our approach and system represents a
major step towards the direct, real world deployment of
end-to-end learning techniques for robust training of au-
tonomous vehicle controllers.
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