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ABSTRACT

We propose a novel method for incorporating conditional information into a gen-
erative adversarial network (GAN) for structured prediction tasks. This method is
based on fusing features from the generated and conditional information in feature
space and allows the discriminator to better capture higher-order statistics from
the data. This method also increases the strength of the signals passed through
the network where the real or generated data and the conditional data agree. The
proposed method is conceptually simpler than joint convolutional neural network
- conditional Markov random field (CNN-CRF) models and enforces higher-order
consistency without being limited to a very specific class of high-order potentials.
Experimental results demonstrate that this method leads to improvement on a va-
riety of different structured prediction tasks including image synthesis, semantic
segmentation, and depth estimation.

1 INTRODUCTION

Convolutional neural networks (CNNs) have demonstrated groundbreaking results on a variety of
different learning tasks. However, on tasks where high dimensional structure in the data needs to
be preserved, per-pixel regression losses typically result in unstructured outputs since they do not
take into consideration non-local dependencies in the data. Structured prediction frameworks such
as graphical models and joint CNN-graphical model-based architectures e.g. CNN-CRFs have been
used for imposing spatial contiguity using non-local information (Lin et al., 2016; Chen et al.,
2018a; Schwing & Urtasun, 2015; Mahmood & Durr, 2018). The motivation to use CNN-CRF
models stems from their ability to capture some structured information from second order statis-
tics using the pairwise part. However, statistical interactions beyond the second-order are tedious
to incorporate and render the models complicated (Arnab et al., 2016; Kohli et al., 2009). Other
approaches have used task-specific perceptual losses to solve this problem (Johnson et al., 2016).

Generative models provide another way to represent the structure and spacial contiguity in large
high-dimensional datasets with complex dependencies. Implicit generative models specify a
stochastic procedure to produce outputs from a probability distribution. Such models are appeal-
ing because they do not demand parametrization of the probability distribution they are trying to
model. Recently, there has been great interest in CNN-based implicit generative models using au-
toregressive (Chen et al., 2018b) and adversarial training frameworks (Luc et al., 2016).

Generative adversarial networks (GANs) (Goodfellow et al., 2014) can be seen as a two player min-
imax game where the first player, the generator, is tasked with transforming a random input to a
specific distribution such that the second player, the discriminator, can not distinguish between the
true and synthesized distributions. The most distinct feature of adversarial networks is the discrim-
inator that assesses the discrepancy between the current and target distributions. The discriminator
acts as a progressively precise critic of an increasingly accurate generator. Despite their structured
prediction capabilities, such a training paradigm is often unstable and can suffer from mode col-
lapse. However, recent work on spectral normalization (SN) and gradient penalty has significantly
increased training stability (Miyato et al., 2018; Gulrajani et al., 2017). Conditional GANs (cGANs)
(Mirza & Osindero, 2014) incorporate conditional image information in the discriminator and have
been widely used for class conditioned image generation (Miyato et al., 2018; Miyato & Koyama,
2018). To that effect, unlike in standard GANs, a discriminator for cGANs discriminates between
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Figure 1: Discriminator models for image condi-
tioning. We propose fusing the features of the in-
put and the ground truth or generated image rather
than concatenating.

the generated distribution and the target distri-
bution on pairs of samples y and conditional in-
formation x.

For class conditioning, several unique strate-
gies have been presented to incorporate class
information in the discriminator (Reed et al.,
2016; Miyato & Koyama, 2018; Odena et al.,
2016). However, a cGAN can also be con-
ditioned by structured data such as an image.
Such conditioning is much more useful for
structured prediction problems. Since the dis-
criminator in image conditioned-GANs has ac-
cess to large portions of the image the adversar-
ial loss can be interpreted as a learned loss that
incorporates higher order statistics, essentially
eliminating the need to manually design higher
order loss functions. Consequently, this vari-
ation of cGANs has extensively been used for
image-to-image translation tasks (Isola et al.,
2017; Zhu et al., 2017). However, the best way
of incorporating image conditional information
into a GAN is not always clear and methods
of feeding generated and conditional images to
the discriminator tend to use a naive concatenation approach. In this work we address this gap by
proposing a discriminator architecture specifically designed for image conditioning. Such a discrim-
inator can contribute to the promise of generalization GANs bring to structured prediction problems
whereby a singular and simplistic setup can be used for capturing higher order non-local structural
information from higher dimensional data without complicated modeling of energy functions.

Contributions. We propose an approach to incorporating conditional information into a cGAN
using a fusion architecture (Fig. 1b). In particular, we make the following key contributions:

1. We propose a novel discriminator architecture optimized for incorporating conditional in-
formation in cGANs for structured prediction tasks. The method is designed to incorporate
conditional information in feature space and thereby allows the discriminator to enforce
higher-order consistency in the model. At the same time, this method is conceptually sim-
pler than alternative structured prediction methods such as CNN-CRFs where higher-order
potentials have to be manually incorporated in the loss function.

2. We demonstrate the effectiveness of this method on a variety of structured prediction tasks
including semantic segmentation, depth estimation, and generating real images from se-
mantic masks. Our empirical study demonstrates that using a fusion discriminator is more
effective in preserving high-order statistics and structural information in the data.

2 RELATED WORK

2.1 CNN-CRF MODELS

Models for structured prediction have been extensively studied in computer vision. In the past these
models often entailed the construction of hand-engineered features. In 2015, Long et al. (2015)
demonstrated that a fully convolutional approach to semantic segmentation could yield state-of-
the-art results at that time with no need for hand-engineering features. Chen et al. (2014) showed
that post-processing the results of a CNN with a conditional Markov random field led to significant
improvements. Subsequent work by many authors have refined this approach by incorporating the
CRF as a layer within a deep network and thereby enabling the parameters of both models to be
learnt simultaneously (Knöbelreiter et al., 2017). Many researchers have used this approach for
other structured prediction problems, including image-to-image translation and depth estimation
(Liu et al., 2015; Mahmood & Durr, 2018; Mahmood et al., 2018).
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In most cases CNN-CRF models only incorporate unary and pairwise potentials. Recent work by
Arnab et al. (2016) has investigated incorporating higher-order potentials into CNN-based models
for semantic segmentation, and has found that while it is possible to learn the parameters of these
potentials, they can be tedious to incorporate and render the model quite complex. There is a need
for developing methods that can incorporate higher-order statistical information with out manual
modeling of higher order potentials.

2.2 GENERATIVE ADVERSARIAL NETWORKS

Adversarial Training. Generative adversarial networks were introduced in Goodfellow et al.
(2014). A GAN consists of a pair of models (G,D), where G attempts to model the distribution of
the source domain and D attempts to evaluate the divergence between the generative distribution q
and the true distribution p. GANs are trained by training the discriminator and the generator in turn,
iteratively refining both the quality of the generated data and the discriminator’s ability to distin-
guish between p and q. The result is that D and G compete to reach a Nash equilibrium that can be
expressed by the training procedure. While GAN training is often unstable and prone to issues such
as mode collapse, recent developments such as spectral normalization and gradient penalty have
increased GAN training stability (Miyato et al., 2018; Gulrajani et al., 2017). Furthermore, GANs
have the advantage of being able to access the joint configuration of many variables, thus enabling
a GAN to enforce higher-order consistency that is difficult to enforce via other methods (Luc et al.,
2016; Isola et al., 2017).

Conditional GANs. A conditional GAN (cGAN) is a GAN designed to incorporate conditional
information (Mirza & Osindero, 2014). cGANs have shown promise for several tasks such as class
conditional image synthesis and image-to-image translation (Mirza & Osindero, 2014; Isola et al.,
2017). There are several advantages to using the cGAN model for structured prediction, including
the simplicity of the framework. Image conditioned cGANs can be seen as a structured predic-
tion problem tasked with learning a new representation given an input image while making use of
non-local dependencies. However, the method by which the conditional information should be in-
corporated into the model is often unmotivated. Usually, the conditional data is concatenated to
some layers in the discriminator (often the input layers). A notable exception to this methodology
is the projection cGAN, where for data is either known or assumed to follow certain simple dis-
tributions and a hard mathematical rule for incorporating conditional data can be derived from the
underlying probabilistic graphical model (Miyato & Koyama, 2018). As mentioned in Miyato &
Koyama (2018), the method is more likely to produce good results if the data follows one of the
prescribed distributions. For structured prediction tasks where the GAN framework has to be con-
ditioned by an image, this is often not the case. In the following section we introduce the fusion
discriminator and explain the motivation behind it.

3 PROPOSED METHOD: CGANS WITH FUSION DISCRIMINATOR

As mentioned, the most significant part of cGANs for structured prediction is the discriminator. The
discriminator has continuous access to pairs of the generated data or real data y and the conditional
information (i.e. the image) x. The cGAN discriminator can then be defined as, DcGAN (x, y, θ) :=
A(f(x, y, θ)), whereA is the activation function, and f is a function of x and y and θ represents the
parameters of f . Let p and q designate the true and the generated distributions. The adversarial loss
for the discriminator can then be defined as

L(D) = −Eq(y)[Eq(x|y) log(D(x, y, θ)]− Ep(y)[Ep(x|y)[log(1−D(x,G(x), θ)]. (1)

Here, A represents the sigmoid function, D represents the conditional discriminator, and G repre-
sents the generator. By design, this frameworks allows the discriminator to significantly effect the
generator (Goodfellow et al., 2014). The most common approach currently in use to incorporate
conditional image information into a GAN is to concatenate the conditional image information to
the input of the discriminator at some layer, often the first (Isola et al., 2017). Other approaches for
conditional information fusion are limited to class conditional fusion where conditional information
is often a one-hot vector rather than higher dimensional structured data. Since the discriminator
classifies pairs of input and output images, concatenating high-dimensional data may not exploit
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Figure 2: Fusion discriminator architecture.

some inherent dependencies in the structure of the data. Fusing the input and output information
in an intuitive way such as to preserve the dependencies is instrumental in designing an adversarial
framework with high structural capacity.

We propose the use of a fusion discriminator architecture with two branches. The branches of this
discriminator are convolutional neural networks, say φ(x) and ψ(y), that extract features from both
the conditional data and the generated or real data respectively. The features extracted from the
conditional data are then fused with the features from the real or generated data at various stages
(Fig. 2). The proposed discriminator architecture is similar to the encoder-part of the FuseNet ar-
chitecture, which has been used to incorporate depth information from RGB-D images for semantic
segmentation (Hazirbas et al., 2017). In Figure 2, we illustrate a four layer and a VGG16-style fu-
sion discriminator, in which both branches are similar in depth and structure to the VGG16 model
(Simonyan & Zisserman, 2014). The key ingredient of the fusion discriminator architecture is the
fusion block, which combines the feature maps of x and y. The fusion layer (red, Fig. 2) is im-
plemented as element-wise summation and is always inserted after a convolution → spectral nor-
malization→ ReLU instance. By making use of this fusion layer the discontinuities in the features
maps of x and y are added into the y branch in order to enhance the overall feature maps. This pre-
serves representation from both x and y. For structured prediction tasks x and y often have features
that complement each other; for instance, in tasks like depth estimation, semantic segmentation, and
image synthesis x and y all have complimentary features.

3.1 MOTIVATION

Theoretical Motivation. When the data is passed through two networks with identical architectures
and the activations at corresponding layers are added, the effect in general is to pass forward through
the combined network (the upper branch in Fig. 2) a stronger signal than would be passed forward
by applying an activation to concatenated data.

To see this, suppose the kth feature map in the lth layer is denoted by h
(l)
k . Let the weights and

biases for this feature and layer be denotedW (l)
K = [U

(l)
k V

(l)
K ]T and b(l)k = [c

(l)
k d

(l)
k ]T respectively.

Further, let h =
[
xT yT

]T
, where x and y represent the learned features from the conditional and

real or generated data respectively. Assuming a ReLU activation function,
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Figure 3: Visualizing Discriminator features using gradient-weighted Class Activation Maps (Grad-
CAM) to produce a coarse localization map of the important regions in the image. The fusion
discriminator passes a stronger and more structured signal on important features in comparison to a
concatenated discriminator.
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Based on the inequality in Eq. 4 we demonstrate that the fusion of the activations in ψ(x) and φ(y)
produces a stronger signal than the activation on concatenated inputs. Indeed, strengthening some
of the activations is not by any means a guarantee of improved performance in general. However,
using the fusion discriminator not only increases the neuron-wise activation values but also preserves
activations at different neuron locations. In the context of conditional GANs the fusing operation
results in the strongest signals being passed through the discriminator specifically at those places
where the model finds useful information simultaneously in both the conditional data and the real or
generated data. In addition, the model preserves a signal, albeit a weaker one, when either x or y
contain useful information both for the learning of higher-level features and for the discriminator’s
eventual classification of the data.

Empirical Motivation. We use gradient-weighted Class Activation Mapping (Grad-CAM) (Sel-
varaju et al., 2017) which uses the class-specific gradient information going into the final convolu-
tional layer of a trained CNN to produce a coarse localization map of the important regions in the
image. We visualized the outputs of a fusion and concatenated discriminator for several different
tasks to observe the structure and strength of the signal being passed forward. We observed that the
fusion discriminator architecture always had a visually strong signal at important features for the
given task. Representative images from classifying x and y pairs as ’real’ for two different struc-
tured prediction tasks are shown in Fig. 3. This provides visual evidence that a fusion discriminator
preserves more structural information from the input and output image pairs and classifies overlap-
ping patches based on that information. Indeed, this is not evidence that a stronger signal will lead
to a more accurate classification, but it is a heuristic justification that more representative features
from x and y will be used to make the determination.

4 EXPERIMENTS

In order to evaluate the effectiveness of the proposed fusion discriminator we conducted three sets
of experiments on structured prediction problems: 1) generating real images from semantic masks
(Cityscapes); 2) semantic segmentation (Cityscapes); 3) depth estimation (NYU v2). For all three
tasks we used a U-Net based generator. We applied spectral normalization to all weights of the
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Figure 4: Comparative analysis of concatenation and fusion discriminators on three different struc-
tured prediction tasks, a) Semantic masks to real image transformation b) Semantic segmentation c)
Depth Estimation. The fusion discriminator preserves more structural details.

generator and discriminator to regularize the Lipschitz constant. The Adam optimizer was used for
all experiments with hyper-parameters α = 0.0002, β1 = 0, β2 = 0.9.

4.1 IMAGE-TO-IMAGE TRANSLATION

In order to demonstrate the structure preserving abilities of our discriminator we use the proposed
setup in the image-to-image translation setting. We focus on the application of generating realistic
images from semantic labels. This application has recently been studied for generating realistic syn-
thetic data for self driving cars (Wang et al., 2018; Chen & Koltun, 2017). Unlike recent approaches
where the objective is to generate increasingly realistic high definition (HD) images, the purpose
of this experiment is to explore if a generic fusion discriminator can outperform a concatenated
discriminator when using a simple generator. We used 2,975 training images from the Cityscapes
dataset (Cordts et al., 2016) and re-scaled them to 256 × 256 for computational efficiency. The
provided Cityscapes test set with 500 images was used for testing. Our ablation study focused on
changing the discriminator between a standard 4-layer concatenation discriminator used in seminal
image-to-image translation work (Isola et al., 2017), a combination of this 4-layer discriminator with
spectral normalization (SN) (Miyato et al., 2018), a VGG-16 concatenation discriminator and the
proposed 4-layer and VGG-16 fusion discriminators.

4.1.1 EVALUATION

Since standard GAN evaluation metrics such as inception score and FID can not directly be applied
to image-to-image translation tasks we use an evaluation technique previously used for such image
synthesis Isola et al. (2017); Wang et al. (2017). To quantitatively evaluate and comparatively ana-
lyze the effectiveness of our proposed discriminator architecture we perform semantic segmentation
on synthesized images and compare the similarity between the predicted segments and the input.
The intuition behind this kind of experimentation is that if the generated images corresponds to
the input label map an existing semantic segmentation model such as a PSPNet (Zhao et al., 2017)
should be able to predict the input segmentation mask. Similar experimentation has been suggested
in Isola et al. (2017) and Wang et al. (2017). Table 1 reports segmentation both pixel-wise accu-
racy and overall intersection-over-union (IoU), the proposed fusion discriminator outperforms the
concatenated discriminator by a large margin. Our result is closer to the theoretical upper bound
achieved by real images. This confirms that the fusion discriminator contributes to preserving more
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Figure 5: A comparative analysis of concatenation, projection and fusion discriminators on three
different structured prediction tasks, i.e., image synthesis, semantic segmentation, and depth estima-
tion.

Table 1: PSPNet-based semantic segmentation IoU and accuracy scores using generated images
from different discriminators. Our results outperform concatenation-based methods by a large mar-
gin and is close to the accuracy and IoU on actual images (GT/Oracle).

Discriminator Mean IoU Pixel Accuracy
4-Layer Concat. (Isola et al. (2017)) 0.3617 74.34%
4-Layer Concat. + SN 0.4022 76.49%
4-Layer Fusion + SN 0.4569 79.23%
VGG16 Concat. + SN 0.4125 77.62%
Projection + SN (Miyato & Koyama (2018)) 0.4696 79.11%
VGG16 Fusion + SN 0.5483 83.07%
GT / Oracle 0.5937 85.13%

structure in the output image. The fusion discriminator could be used with high definition images,
however, such analysis is beyond the scope of the current study. Representative images for this task
are shown in Fig. 4. Fig. 5 shows a comparative analysis of the concatenation, projection and
fusion discriminators in an ablation study upto 550k iterations. The projection discriminator was
modified image conditioning according to the explanation given in Miyato & Koyama (2018) for
the super-resolution task.

4.2 SEMANTIC SEGMENTATION

Semantic segmentation is vital for visual scene understanding and is often formulated as a dense
labeling problem where the objective is to predict the category label for each individual pixel. Se-
mantic segmentation is a classical structured prediction problem and CNNs with pixel-wise loss
often fail to make accurate predictions (Luc et al., 2016). Much better results have been achieved
by incorporating higher order statistics in the image using CRFs as a post-processing step or jointly
training them with CNNs (Chen et al., 2018a). It has been shown that incorporating higher order
potentials continues to improve semantic segmentation improvement, making this an ideal task for
evaluating the structured prediction capabilities of GANs and their enhancement using our proposed
discriminator.

Here, we empirically validate that the adversarial framework with the fusion discriminator can pre-
serve more spacial context in comparison to CNN-CRF setups. We demonstrate that our proposed
fusion discriminator is equipped with the ability to preserve higher order details. For compara-
tive analysis we compare with relatively shallow and deep architectures for both concatenation and
fusion discriminators. We also conduct an ablation study to analyze the effect of spectral normal-
ization. The generator for all semantic segmentation experiments was a U-Net. For the experiment
without spectral normalization, we trained each model for 950k iterations, which was sufficient for
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Table 2: GAN-based semantic segmentation using different discriminators. Tested with cityscapes
dataset rescaled to 256× 256 images.

Discriminator Mean IoU Pixel Accuracy
4-Layer Concat. (Isola et al. (2017)) 0.2925 81.41%
4-Layer Concat. + SN 0.3162 83.49%
4-Layer Fusion + SN 0.4471 85.23%
VGG16 Concat. + SN 0.4066 84.62%
Projection + SN (Miyato & Koyama (2018)) 0.4687 85.97%
VGG16 Fusion + SN 0.6642 92.17%
CNN-CRF Postprocess 0.5425 87.41%
CNN-CRF Joint Training 0.6042 90.25%

Table 3: Depth Estimation results on NYU v2 dataset using various discriminators.

Discriminator relative error rms log10
4-Layer Concat. (Isola et al. (2017)) 0.1963 0.784 0.087
4-Layer Concat. + SN 0.1442 0.592 0.059
4-Layer Fusion + SN 0.1315 0.583 0.057
VGG16 Concat. + SN 0.1374 0.547 0.054
Projection + SN (Miyato & Koyama (2018)) 0.1417 0.573 0.059
VGG16 Fusion + SN 0.1254 0.491 0.052
CNN-CRF Postprocess 0.311 1.025 0.129
CNN-CRF Joint Training 0.232 0.824 0.094

the training of the concatenated discriminator to stabilize. For all other experiments, we trained for
800k iterations. The discriminator was trained twice as much as the generator.

4.3 DEPTH ESTIMATION

Depth estimation is another structured prediction task that has been extensively studied because of
its wide spread applications in computer vision. As with semantic segmentation, both per-pixel
losses and non-local losses such as CNN-CRFs have been widely used for depth estimation. State-
of-the art with depth estimation has been achieved using a hierarchical chain of non-local losses. We
argue that it is possible to incorporate higher order information using a simple adversarial loss with
a fusion discriminator.

In order to validate our claims we conducted a series of experiments with different discriminators,
similar to the series of experiments conducted for semantic segmentation. We used the Eigen test-
train split for the NYU v2 ? dataset containing 1449 images for training and 464 images for testing.
We observed that as with image synthesis and semantic segmentation the fusion discriminator out-
performs concatenation-based methods and pairwise CNN-CRF methods every time.

5 CONCLUSIONS

Structured prediction problems can be posed as image conditioned GAN problems. The discrim-
inator plays a crucial role in incorporating non-local information in adversarial training setups for
structured prediction problems. Image conditioned GANs usually feed concatenated input and out-
put pairs to the discriminator. In this research, we proposed a model for the discriminator of cGANs
that involves fusing features from both the input and the output image in feature space. This method
provides the discriminator a hierarchy of features at different scales from the conditional data, and
thereby allows the discriminator to capture higher-order statistics from the data. We qualitatively
demonstrate and empirically validate that this simple modification can significantly improve the
general adversarial framework for structured prediction tasks. The results presented in this paper
strongly suggest that the mechanism of feeding paired information into the discriminator in image
conditioned GAN problems is of paramount importance.
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6 SUPPLEMENTARY MATERIAL

6.1 CGAN OBJECTIVE

The objective function for a conditional GANs can be defined as,

LcGAN (G,D) = Ex,y[log(D(x, y)] + Ex,z[log(1−D(x,G(x))]. (5)

The generator G tries to minimize the loss expressed by equation 5 while the discriminator D tries
to maximize it. In addition, we impose an L1 reconstruction loss:

LL1(G) = Ex,y[||y −G(x)||1], (6)

leading to the objective,

G∗ = argmin
G

max
D
LcGAN (G,D) + λLL1(G). (7)

6.2 GENERATOR ARCHITECTURE

We adapt our network architectures from those explained in (Isola et al., 2017). Let CSRk denote
a Convolution-Spectral Norm -ReLU layer with k filters. Let CSRDk donate a similar layer with
dropout with a rate of 0.5. All convolutions chosen are 4 × 4 spatial filters applied with a stride 2,
and in decoders they are up-sampled by 2. All networks were trained from scratch and weights were
initialized from a Gaussian distribution of mean 0 and standard deviation of 0.02. All images were
cropped and rescaled to 256× 256, were up sampled to 268× 286 and then randomly cropped back
to 256× 256 to incorporate random jitter in the model.

Encoder: CSR64→CSR128→CSR256→CSR512→CSR512→CSR512→CSR512→CSR512
Decoder: CSRD512→CSRD1024→CSRD1024→CSR1024→CSR1024→CSR512→CSR256→CSR128

The last layer in the decoder is followed by a convolution to map the number of output channels
(3 in the case of image synthesis and semantic labels and 1 in the case of depth estimation). This
is followed by a Tanh function. Leaky ReLUs were used throughout the encoder with a slope of
0.2, regular ReLUs were used in the decoder. Skip connections are placed between each layer l in
the encoder and layer ln in the decoder assuming l is the maximum number of layers. The skip
connections concatenate activations from the lth layer to layer (l − n)th later.
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