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Abstract—The financial contagion describes a widespread phe-
nomenon of the interdependency for pairs of stock time series
during the market abnormality periods. Since the interdependen-
cy rule between stocks varies in different periods, it is difficult to
capture the interdependency rule for stocks related to the market
status effectively. We define this interdependency rule as, the co-
movement pattern, a high-dimensional co-varying relationship
between pairs of stock time series and propose a Co-movement
Attention Model (CAM) to discover the co-movement patterns
for the stocks related to the market status. With the discovered
patterns, CAM focuses on the stock-level abnormality periods
by the co-movement attention automatically. CAM is trained
under the supervision of the stock sector label information. CAM
has the ability to model financial contagion and detect global
market abnormality periods, by modeling co-movement patterns
on every pair-wise stocks. We verify our methods on the real-
world stock data and compare it with state of the art methods.
The experimental result shows that our method not only captures
the co-movement attentions with better quantitative metric values
but also covers more real market abnormalities than the other
alternatives.

Index Terms—Financial data mining, co-movement pattern,
co-movement attention, stock-level abnormality, market-level ab-
normality

I. INTRODUCTION

The financial contagion [1] describes the phenomenon when
the interdependency on the changing trends of pairs of stocks
becomes strong and widespread in a market or even across
different markets during the market abnormality periods (e.g.
market crashes or bear market). This phenomenon relates to
the interdependency patterns and the co-occurring temporal
contextual information for all the stock time series in a market.
However, since most existing works [2] [3] neither fully
address the interdependency patterns nor utilize the temporal
contextual information of stocks, they may face the following
challenges when studying the financial contagion in the real-
world market.
• Effective interdependency pattern learning. Many

works apply the pre-defined framework (e.g. correlation
[4], wavelet scoring [5], etc.) to discuss the interde-
pendency pattern between a pair of stock time series.
However, since these methods discard the information
beyond their pre-defined framework, it is very challenging

Manuscript received December 1, 2012; revised August 26, 2015. Corre-
sponding author: Lu Bai (email: bailucs@cufe.edu.cn).

to figure out whether or not these methods capture
the interdependency patterns between stock time series
effectively.

• Automatically stock-level abnormality periods detect-
ing. With the obtained interdependency patterns for a
pair of stock time series, recent state of the art methods
apply a sliding window framework [2] [3] to detect the
stock-level abnormality periods (or time windows) with
the high interdependency degrees for a specific pair of
stocks. However, since the sliding window framework
ignores the temporal contextual information along the
time dimension of stock time series between the time
windows, it is difficult to automatically detect the stock-
level abnormality periods along the time dimension with
these methods.

• Automatically market-level abnormality periods de-
tecting. Although the abnormality or outlier detection in
time series [6] [7] [8] addresses a hot issue in data mining
field, none of them aims to detect the market abnormality
periods based on the interdependency patterns between
pairs of stocks. According to the rules about the financial
contagion, it is promising to detect the market-level ab-
normality by fusing the stock-level abnormality periods,
and in turn, the consistency of the detected abnormalities
and real market abnormality events can also be used to
measure the quality of the obtained stock interdependency
patterns. However, since most existing works do not relate
the stock-level abnormalities with the market-level abnor-
malities, it is also a challenge to design a mechanism to
utilize all the stock-level abnormalities to automatically
reveal the undistorted market-level abnormalities which
are consistent with the real market abnormality events.

To address the aforementioned challenges, we formalize the
interdependency rule between a pair of stock time series as,
the co-movement pattern, a corresponding high-dimensional
co-varying relationship. Then, we propose a Co-movement
Attention Model, namely CAM, to recognize the co-movement
patterns and focus on the stock-level abnormality periods for
the stocks in a market automatically. CAM captures the co-
movement patterns and collects the evidence satisfied the co-
movement patterns for a pair of time series by the convolution
technology. It also learns the temporal contextual relationships
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between the evidence in different time windows through a BiL-
STM process. By obtaining the co-movement attention with
the captured co-movement patterns and temporal contextual
relationships for stock time series, CAM focuses on the peri-
ods where two stock time series are strongly interdependent.
CAM is supervised by the stock sector information since the
stocks in the same sector may behave similarly during the
trading process [9]. As the obtained co-movement patterns
reveal the stock-level abnormality rules in different sectors, we
propose a mechanism to fuse all the stock-level abnormalities
to the market-level abnormalities in a bottom-up way. We
verify the effectiveness of CAM on the real-world stock data
and compare our method with state of the art methods on the
market abnormality detection task.

In summary, the main contribution of this work including:
• We formalize and learn the interdependency rule between

the stock time series as, the co-movement pattern, a high-
dimensional co-varying relationship between two stock
time series.

• We propose a neural network model CAM to automati-
cally compute the co-movement attentions and the stock-
level abnormality periods by utilizing the interdependen-
cy rules between pairs of stocks and the temporal con-
textual information of stock time series simultaneously.

• We propose a mechanism to detect the market-level ab-
normality periods by the obtained stock-level abnormality
periods in a bottom-up way.

• Our model is supervised by the stock sector information,
and we observe that CAM not only predicts the stock
sector accurately but also discovers the co-movement
attentions which can be used to detect both the stock-
level and market-level abnormalities for the stock market
that performs consistently with the real known financial
crisis events.

II. PRELIMINARY

In Economics, most related studies in stock market dynam-
ics are related to the price, this work discusses the problem
with the time series as the one-dimensional sequence. Note
that this can be extended easily to the problems with the multi-
feature time series. To explore the interdependency patterns
between a pair of time series, we concatenate two aligned
time series into a matrix which we define as the dyadic time
series.

Definition 1: (Dyadic Time Series) A dyadic time series d
is denoted as an R2×T matrix d = [s0, s1]

T , where each si =
(si(0), si(1), ...si(t), ...si(T )) (i = 0 or 1) is an RT vector
which represents monadic time series (or a one-dimensional
sequence) with T time windows.
In the practical applications, the monadic time series usually
refers to the observation from a single source (e.g. the price
time series from a given stock), and the dyadic time series
records the observation about the interdependency for any pair
of specific stocks.

We define the interdependency rule between a pair of
monadic time series as a high-dimensional co-varying rela-

tionship as Definition 2.
Definition 2: (Co-movement Pattern) Given a length T

dyadic time series d, the co-movement pattern is denoted as
an RK×2×T tensor C, where K controls the dimension of the
co-varying between the two related monadic time series of d.

After a convolution operation between the co-movement
pattern and the raw dyadic time series, we obtain the evidence
of the interdependency between two related time series. We
leave the detail computation to the next section and define the
co-movement attention as a vector which is computed based
on the obtained evidence.

Definition 3: (Co-movement Attention) Given a length T
dyadic time series d, the co-movement attention is denoted
as an RT ′

(T ′ < T ) vector a = (a(0), a(1), a(2), ..., a(T ′ −
1)), where a(i) (0 ≤ i ≤ T ′ − 1) refers to the co-movement
attention value of d at the i-th window.

The co-movement attention records the evidence of in-
terdependency relationship between two related time series.
That is, the bigger value ai has at timestamp i, the stronger
interdependency between the two related time series (or the
dyadic time series) in the i-th time window is. This value is
summarized from the raw time series by CNN [10] and BiL-
STM [11] module of our model. The computation process of
co-movement attention also considers the temporal contextual
information along the time dimension of the time series and
thus the resulted attention values will not be overfitted to the
local abnormalities. Since some operations in our model which
will squeeze the original length of the dyadic time series into
a dense representation that still preserves the original temporal
order, the length of the co-movement attention |a| or T ′ is an
integer which is smaller than T . We leave the details to obtain
T ′ in Section III .

As it is discussed in the introduction, during the market
abnormality periods, the pairs of stock time series in a market
are generally considered to be more interdependent than
normal periods. Therefore, we define the concept, significant
co-movement period, to describe and record this stock-level
phenomenon.

Definition 4: (Significant Co-movement Period) Given
the co-movement attention a, the significant co-movement
period is a set of time windows I ′, for which ∀i ∈ I ′, a(i)
is bigger than the attention values a(j) (∀j ∈ I − I ′), where
I = {0, 1, 2, ..., T ′} is the set of all the time window of a,
|I ′|/|I| = α and α (0 < α < 1) is the significant degree for
the obtained significant co-movement period.

With the notations of co-movement attention and the signif-
icant co-movement period, our system can focus on different
parts of dyadic time series with the significant degree α, e.g.
we can set α = 0.01 to make the system focus on the windows
where the corresponding attention values are bigger than the
values in the 99% remaining windows. Since the detection
of the significant co-movement period is based on the co-
movement attention, how to learn the co-movement attention
is the first step for this work. We describe the problem to learn
the co-movement attention as follows:

Definition 5: (Co-movement Attention Learning) Given a
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set of length T dyadic time series D with the corresponding
sector label set L, L(d) is the sector label of d (∀d ∈ D),
A is a set of the co-movement attentions for all the dyadic
time series in D and ad (ad ∈ A) is the corresponding co-
movement attention for d (d ∈ D). Then our goal is to estimate
the optimal co-movement attention set A which generates the
most approximate sector labels to the real corresponding sector
labels. This problem can be formalized as:

argmin
A
−

∑
d∈D

p(L(d|A) log(p(L(d))), (1)

where p(L(d)) is the ground-truth probability to observe label
L(d) from the data and p(L(d|A) is the probability to estimate
d as with the label L(d|A) by the model .

The reason to use the sector information as the supervision
for this problem is that the sectors play an important role
in affecting the co-movement patterns between the stocks
[12] and the co-movement patterns tend to be similar for
the stocks in the same sector or industry [13]. Since the
co-movement attention is obtained based on the computation
result of co-movement pattern and raw dyadic time series, the
co-movement attentions of the dyadic time series from the
same sector are also tend to be analogs.

What’s more, this problem is an NP-hard combinatorial
optimization as it requires enumerating different combinations
of co-movement attention values for all the time windows, and
we propose a deep learning model to solve it. We leave the
details about the model and training process in Section III .

After solving the aforementioned problem in Definition 5,
we obtain the co-movement attention for each pair of stocks in
a market and thus can get the related significant co-movement
periods. However, since the obtained significant co-movement
period only reveals the stock-level abnormalities, we need
to further analyze them in order to detect the market-level
abnormalities. Therefore, we define the following notation to
describe the market-level abnormality.

Definition 6: (Market Abnormality Period) Given a set of
length T dyadic time series D for all the stock time series in
a market, A is the corresponding co-movement attention set
for D and the related significant co-movement period I ′(a)
for ∀a ∈ A. Then the market abnormality period is a set of
time windows I ′′, where for ∀i ∈ I ′′, the i-th window is
in the significant co-movement periods, with a cutoff ratio β
(0 ≤ β ≤ 1), of all the dyadic time series in D.

As we introduced in Section I , the co-movement between
the stocks in a market will become widespread during the
hazardous periods [1] and thus the market abnormality period
can be defined as the period when a certain ratio (β) of dyadic
time series are strongly co-movement. To get the market
abnormality period, it is necessary to aggregate all the co-
movement attentions in the dyadic time series set D for a
market. We formalize the detection of the market abnormality
period in the following.

Definition 7: (Market Abnormality Period Detection)
Given a set of length T dyadic time series D for all the stock
time series in a market, A is the corresponding co-movement

attention set for D and the related significant co-movement
period I ′(a) for ∀a ∈ A. The objective is to get the set of
windows I ′′ which covers the real market abnormality periods
with the stock-level abnormality periods I ′(a) for ∀a ∈ A.

The key to solving this problem is to get the aggregated
abnormality periods which can represent the abnormality co-
movement attentions of the dyadic time series with a certain
ratio. We first apply a naive method to detect the market
abnormality periods by counting the significant co-movement
periods for the related time series. However, since this method
faces the information loss problem by discarding too many
insignificant results, we also propose a method to detect
the market abnormality periods with Dempster-Shafer fusion
from the evidence theory [14]. The Dempster-Shafer fusion
mechanism allows our model to utilize the information from
the data in the remaining (1 − α) windows when computing
the significant co-movement periods. Since its fusion process
is commutative, the aggregation using Dempster-Shafer fusion
is also commutative: the aggregation process can be in any
order without affecting the final result. We discuss the details
in Section III and verify this method covers more real
market abnormalities than the naive voting-based method in
the experiment with more information.

The whole solution for Definition 5 and 7 results in our
framework and the obtained market abnormality periods can
also be used to evaluate the qualities of the learned co-
movement attentions.

III. OUR FRAMEWORK

We propose the Co-movement Attention Model (CAM) to
learn the co-movement attentions automatically. As it is shown
in Figure 1, during the training process, the CAM model
captures the co-movement evidences for pairs of stocks and the
co-movement attention vectors by further utilizing the tempo-
ral contextual information along the time dimension. After the
training of the CAM model, stock-level abnormality periods
are obtained. Then, to explore the market-level abnormality
periods, we propose the market abnormality detection module
to detect the market abnormality periods by fusing all obtained
stock-level abnormality periods.

A. Capture Co-movement Evidences for Pairs of Stocks

This process applies two convolution neural networks [10]
and a max pooling [15] to capture the co-movement evidences
for pairs of stocks. Its output is a RT vector E which records
the co-movement evidence between a specific pair of stocks.
The kernel size or scan window for each related convolution or
max pooling operation is N . The first convolution transforms
the R2×T input dyadic time series as the RK×2×T tensor
and its convolution kernel is the co-movement pattern for the
specific pair of stocks. The second convolution transforms the
RK×2×T tensor obtained by the first convolution to a RT

vector as the output E. Therefore, this process tracks the K-
dimension co-varying rules between the specific pair of stocks.
All the convolution operations are the one-stride convolution
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Figure 1. The framework of Co-movement Attention Model CAM. CAM captures both the interdependency patterns between pairs of stocks and the temporal
contextual information along the time dimension. Supervised by the sector label information, it focuses on the stock-level abnormality periods automatically.

along the time dimension and this process is computed by
Equation (2).

E = max(d⊗ C1 +B1)⊗ C2 +B2, (2)

where ⊗ is the convolution operator, max(∗) is the max-
pooling operation, B1 and B2 are the corresponding biases,
C1 and C2 are the convolution kernels for the first and second
convolutions shared by all the dyadic time series. Since both
the convolution and max-pooling operations will change the
length of the original time series, the length of the resulted
vector E can be computed by the following equation.

|E| = T − 3(N + 1), (3)

where T is the length of the original time series (e.g. T = |S1|
or |S2|), and thus E is an RT−3(N+1) vector. Note that E
collects the basic co-movement evidence between two time
series in the same window and it has the same length as the
final attention vector.

B. Capture the Temporal Contextual Information

With the basic evidence within the window for a specific
pair of stocks, CAM further explores the temporal contextual
information for pair of stocks between the time windows by
a Bidirectional LSTM (BiLSTM) [11] with 2H hidden states.
This BiLSTM represents E as a R|E|×2H matrix X which
incorporates the temporal contextual information along the
time dimension and X is computed by Equation (4).

X =

[
h1(1), h1(2), ...., h1(|E|)
h2(1), h2(2), ...., h2(|E|)

]
, (4)

where h1(t) and h2(t) are the forward and backward hidden
state values at time t respectively. They can be computed by
the following equations.

i(t) = δ(Wii ⊗ E(t) + bii +Whi ⊗ hx(t− 1) + bhi)

f(t) = δ(Wif ⊗ E(t) + bif +Whf ⊗ hx(t− 1) + bhf )

g(t) = tanh(Wig ⊗ E(t) + big +Whg ⊗ hx(t− 1) + bhg)

o(t) = δ(Wio ⊗ E(t) + bio +Who ⊗ hx(t− 1) + bho)

c(t) = f(t)c(t− 1) + i(t)g(t)

hx(t) = o(t)tanh(c(t))

where x = 1 or 2, E(t) ∈ E, δ(∗) is the sigmoid function,
and tanh is the hyperbolic tangent function. The Wi∗s are
the weights from the input to the different gates and the
Wh∗s are the weights between the hidden states and the
different gates. All the b∗s are the corresponding biases.
Since h1(t) and h2(t) are trained simultaneously, BiLSTM
learns the contextual relationship between the different time
windows in two directions. This bidirectional trait improves
the model’s ability to early warn the risk of abnormality before
it actually happens. We provide detail discussion about this in
the experiment section.

C. Generate the Co-movement Attention

With the R|E|×2H matrix X of temporal contextual infor-
mation, CAM generates the co-movement attention through a
linear transformation method. As we introduced in Section II ,
the co-movement attention is a vector a which indicates the co-
movement degrees based on the co-movement evidence. The
length of a is the same as E (|a| = |E|), so that each element
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a(i) of a can be associated to a section of co-movement
evidence Ei in a corresponding time window i (i ∈ [0, |a|−1]).

To get co-movement attention vector a, inspired by the self-
attention in NLP [16], we design an R|2H| vector m which
records the contributions of the corresponding BiLSTM hidden
states for the related co-movement attention and it can be
obtained by the following equation.

m = wT
2 · tanh(W1 ·X), (5)

where W1 is an Rf×|E| matrix, w2 is an Rf vector and the
parameter f is an integer constant which refers to the latent
embedding dimension. With the hidden state contribution vec-
tor m, the co-movement attention vector a can be calculated
in Equation (6).

a = softmax(X ·mT ) (6)

This design allows our model to utilize all the temporal
contextual information from the BiLSTM hidden states and get
the correct co-movement attentions for the dyadic time series.
We verify that this method can get the better co-movement
attentions than the existing methods in the experiments.

D. Training with Sector Classification

As it is mentioned in Section II , the sector information af-
fects the co-movement patterns between the stocks. Therefore
CAM learns the co-movement attentions under the supervision
of the sector label information. Suppose A is the set of all
the obtained co-movement attentions, and we represent it as
a R|D|×|a| matrix, where D is the set for all the dyadic time
series and a is any obtained co-movement attention (a ∈ A).
Then we use a fully connected layer to get the estimated
probabilities of the sector label for the corresponding co-
movement attention in A by Equation (7).

[p(L(d1)|A), ..., p(L(d|D|)|A)]T = A · F, (7)

where F is a R|a|×|L| matrix which transforms the co-
movement attention values to the corresponding estimated
probability distribution for all the labels in L. The parameters
of our model are optimized by Equation (1) with the Adam
optimizer [17] in the backpropagation way.

E. Market Abnormality Detection

Based on the proposed neural network model, we obtain
the co-movement attention which represents the degree of co-
movement for each pair of time series and thus can get the
significant co-movement periods with the attentions. Since the
obtained significant co-movement periods are only the stock-
level abnormalities, how to use these stock-level abnormalities
to generate the market-level abnormality periods is the next
primary issue. This requires the modeling of the relationship
between the stock-level abnormalities and market abnormali-
ties for each window of the co-movement attentions. To this
end, we propose two bottom-up methods, VOTE, and DSE,
to detect the market-level abnormality based on the stock-
level abnormality. While VOTE is based on the naive voting
mechanism, and the DSE based on the evidence theory [14].

VOTE mechanism. VOTE follows on a naive idea that if
more sectors vote for a time window as the abnormality period,
then the market status in this time window will have higher
possibility to be abnormal. It adds up the observation value
of corresponding time windows for the top valued weights in
each co-movement attention vector a (∀a ∈ A). The details of
VOTE is in Algorithm 1.

Data: The co-movement attention set A with significant degree
α, cutoff ratio β.

Result: Market abnormality period I ′′.
begin

I ′′ ← φ
Initialize P as an R|a| vector with all 0 elements
for each a in A do

/* stock-level abnormality periods */
I ′(a)←find the top α valued indices from a
for ∀i in I ′(a) do

P [i]← P [i] + 1 /* count the
observations in the i-th window */

end
end
/* market-level abnormality periods */
I ′′ ←get the top β valued indices from P
Output I ′′

end
Algorithm 1: VOTE

Since the main computing process of VOTE relates to the
numbers of the attention vectors |A| and the number of the
elements in I ′(a), the time complexity for VOTE is O(|A| ×
|a|). The problem of the VOTE mechanism is that it only
uses the data in the significant co-movement periods above
the significant degree α, and the most remaining observations
are ignored by VOTE: it generates results with low coverage
of the real market abnormalities.

Data: The co-movement attention set A with significant degree
α, cutoff ratio β, the set I which contains all the
window indices of A.

Result: Market abnormality period I ′′.
begin

I ′′ ← φ
Initialize P , P0, P1, and P10 as R|a| vectors with all 0
elements
for ∀a ∈ A do

I ′t ←find the top α valued indices from a
I ′b ←find the bottom α valued indices from a
for ∀i ∈ I ′t do P1[i]← P1[i] + 1
for ∀i ∈ I ′b do P0[i]← P0[i] + 1
for ∀i ∈ I − I ′t − I ′b do P10[i]← P10[i] + 1

end
for i ∈ [0, |P |] do

P [i]←Dempster-Shafer fusion with P0, P1, and P10

end
I ′′ ←get the top β valued indices from P
Output I ′′

end
Algorithm 2: DSE

DSE mechanism. To make use of the information which
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is totally discarded by VOTE, we propose the DSE mech-
anism by applying the Dempster-Shafer fusion [14] from
the evidence theory. As it is shown in Algorithm 2, DSE
extends the significant degree α to determine both the top
and bottom significant co-movement periods. Therefore, the
market can be in one of the hypothesis abnormality statuses
(“Yes”, “No”, or ”Unknown”) at each time window, where the
“Yes” or “No” status of a window is decided by whether the
attention value of that time window is in the top or bottom
α ratio of the time windows for an attention vector, and the
remaining time windows are in the “Unknown” statues. We
provide the vector P1, P0, and P10 to record the frequencies
of “Yes”, “No”, or “Unknown” in each window and get the
prior probabilities with them for the corresponding statues at
different time windows. Then, we use the Dempster-Shafer
framework [14] to compute the posterior probabilities for
the market abnormality periods at the corresponding time
windows. We verify that the result of DSE better covers real
market abnormalities than VOTE with more information in the
experiment.

What’s more, to visualize the market abnormality period
on the original time axis needs a process to convert the time
windows of the market abnormality period into the originally
covered range since the CNN changes the size of the window
of the time series. According to the CNN structure in III.A,
the size of the practically covered time window N ′ can be
obtained by N ′ = 3N −2, where N is the size of the original
time window.

IV. EXPERIMENTS AND DISCUSSION

A. Dataset

We compare our methods with other methods on the S&P
5001 and NASDAQ 100 datasets [18]. The details are shown
in Table I .

Property S&P500 NASDAQ100

Company number 470 100
Time stamps 1,762 2,000
Original instants 851,264 200,000
Dyadic time series number 110,215 4,950
Practical instants 194,198,830 9,900,000
Sector combination number 66 21
Start date 2010-01-04 2016-07-26
End date 2016-12-30 2017-08-26

TABLE I
DATASET STATISTICS

In order to learn the co-movement attentions between differ-
ent pairs of stock time series and detect the market abnormality
periods for the stock market, we enumerate and concatenate
all the pairs of the stock time series in each dataset, and this
results in the dataset containing over 100,000 dyadic time
series (S&P 500). Since every dyadic time series has the same
number of time stamps as the original time series, the final
instant number for the resulted set of dyadic time series is
over 100 million. The sector combination number refers to the

1https://www.kaggle.com/dgawlik/nyse

different sector combinations for these dyadic time series, e.g.
the sector combination could be “Energy and Health Care”,
“Energy and Financial”, etc.

B. Experiment settings and benchmark.

Our experiment consists of four parts. First, we demonstrate
the capability to learn the co-movement attention with CAM
and other methods. Second, we compare the learned attentions
from all the methods on the market abnormality periods
detection task by using the market index data and the real-
world financial abnormality events as the ground truths. Third,
we analyze the training process of CAM with the sector
classification task. Last but not least, we analyze the scalability
of all mentioned methods.

Labeling methods. Since the sector classification task needs
a sector label for each pair of dyadic time series, we label the
dyadic time series according to the alphabetic order numbers
of all the section combinations. e.g. 0 for a pair of time series
which belongs to the sector “Energy and Financial”, 1 for a
pair of time series which belongs to the sector “Energy and
Health Care”, etc.

Implementation of CAM. We implement two versions
of CAM-LCNN and CAM-BLCNN to show the different
performances of LSTM and BiLSTM on our tasks. In the
remaining part, we simplify CAM-LCNN and CAM-BLCNN
to LCNN and BLCNN respectively for brevity.

Comparison methods. Our methods are compared with
state-of-the-art methods which widely adopted in most related
studies and a neural network model based on the original self-
attention mechanism.
• Sliding Window Correlation (SWC) [19]. SWC is the

classic method in many related studies, where the main
idea of SWC is to divide the two related time series into
sections with the same window size, and then calculate
the Pearson correlation coefficient for each corresponding
pair of the time series section in a window. The result of
SWC is an attention weight vector for each window.

• Wavelet Coherence Correlation (WCC) [5]. Wavelet co-
herence is used in many recent works to study the inter-
dependency patterns between time series. However, since
most current wavelet coherence methods only give a heat
map according to the wavelet coherence for each pair of
time series which indicates the related correlation degree
on each scales, it can not discover the co-movement atten-
tions automatically. Therefore, we implement WCC based
on the Morlet wavelet to compute the attention weight
vector. WCC first calculates the wavelet coherence for a
pair of time series. the wavelet coherence is an RJ×T

matrix which means the different correlation degrees on
J scales. Then, WCC computes the sum along the J
dimension, and get an RT vector which refers to the
correlation degree of each time stamp for the time series.
In order to keep in accordance with other methods, we
apply a sliding window framework to convert its result
into an attention weight vector of the same size as other
methods.
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• SELF. We also implement a dyadic time series version
of the original self-attention model [16] which could also
be used to collect the co-movement attention vectors for
comparison.

Ground truths for abnormality detection. Since Eco-
nomic studies support that when the stock market declines
the interdependency between related stock time series will
become strong and widespread [20], we use the real stock
market declines as the ground truth to measure the quality
of the obtained co-movement attention which represents the
co-movement degrees of the stocks.

Concretely, we provide two ground truths to verify the
learned results by our methods. First, we collect the periods of
the major stock market declines2 from 2010.01 to 2016.12, and
check whether or not the methods covered the related events.
Second, we measure the market fluctuations and bubbles based
on the market indices of “SPDR S&P 500 ETF Trust Index”
(SPY) and INDEXNASDAQ (NDX) for all the methods.

We implement all the models in a prototype system which
is based on the GPU version Pytorch3, and thus they can be
compared equally with the GPU environment. Our experiments
are completed on a workstation with E3 CPU, 64 GB RAM,
and Quadro P5000 GPU.

C. Co-movement Attention

To figure out the parts in which the related time series
have strong interdependency patterns, we make our models
focus on the top α (α = 0.01 in this experiment) ratio of
the attention values of the corresponding attention vector. We
show the significant co-movement periods for a specific dyadic
time series in the S&P 500 dataset in Figure 2, where we
highlight the obtained significant co-movement periods as the
yellow bars. From Figure 2, we can notice that our methods

 

   (a) BLCNN
 

(b) LCNN

Figure 2. Co-movement attention results (2010.1-2016.12)

show the capability to focus on some parts of the related two
stock time series. Intuitively, this means the related stocks
are interdependent strongly in the highlighted periods. To
figure out whether or not these found results (or stock-level
abnormalities) are related to the real market abnormalities,
we provide experiments in the next section to compare the

2https://www.cnbc.com/2018/01/16/us-stock-market-is-a-bubble-says-
sovereign-wealth-fund-advisor.html

3https://github.com/hkharryking/comovement

market-level abnormalities fused by the obtained co-movement
attentions.

D. Market Abnormality Period Detection

In this experiment, We first compare the performances on
detecting the market abnormalities with two fusion mecha-
nisms (VOTE and DSE) on WCC and BLCNN, since WCC
is the most efficient traditional algorithm and BLCNN is the
best version of CAM. Then we compare the abilities of all
mentioned methods to capture the market abnormality periods.
The remaining experiment is twofold: to begin with, we
compare the detected abnormality periods on the market index
with several quantitative metrics for all mentioned methods,
and then we illustrate the detection results on the real market
crashes or bear market. For all the experiments in this part,
the result for each deep learning model is obtained by the
average after training and testing for 5 times independently
and the cutoff ratio β is set to 0.03. Since the detected
market abnormalities are based on the obtained co-movement
attentions, the detection performance indicates the qualities of
these discovered co-movement attentions.
VOTE v.s. DSE. We compare the coverage ratio of VOTE
and DSE for WCC and BLCNN on the ground truth market
declines (during 2010.01-2016.12). This comparison is con-
ducted on the S&P 500 dataset. We list the result in Table II ,
and it shows noticeably that DSE can capture more ground
truths than VOTE. This proves that the ignorant information
of VOTE indeed helps DSE get better results. Therefore, all
the rest comparisons are conducted with the DSE fusion.

Ticker number 25 50 100 200 470

WCC DSE 30% 40% 50% 40% 40%
VOTE 0% 0% 0% 20% 20%

BLCNN DSE 10% 40% 50% 80% 90%
VOTE 0% 0% 10% 20% 80%

TABLE II
VOTE V.S. DSE (COVERAGE RATIO) ON S&P 500 DATASET

Date Decline BLCNN LCNN SELF WCC SWC

2010.03-05 -16%
√ √ √ √

2011.05-09 -19.4%
√ √ √ √

2011.11 -9.8%
√ √

2012.03-05 -9.9%
√ √

2012.08-11 -7.7%
√ √ √

2013.05 -5.8%
√ √

2014.01 -5.8%
√ √ √ √

2014.08 -7.9%
√ √ √

2015.05-08 -12.4%
√ √ √ √ √

2015.10-2016.01 -13.3%
√ √ √ √ √

TABLE III
COVERAGE OF THE MAJOR MARKET DECLINES ON S&P 500 DATASET

Coverage comparison of all methods. By specifying the DSE
fusion mechanism, we compare the coverage ratio of each
method on detecting the ground truth major declines for the
stock market which consists of 470 stock time series of S&P
500 dataset during 2010.01-2016.12. This result is shown in
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Table III . We can observe that, with the same cutoff value,
both BLCNN and LCNN cover the most (90%) real market
declines than others; SELF cover 80% declines. We could
also note that SWC only covers 50% declines, and this is
because its local computational structure cannot capture the
contextual information between the different windows. What’s
more, since WCC treats the information on each of its scales
equally, it can not focus on the market-level abnormalities
automatically. Therefore, it performs the worst in this task.
Quantitative comparison of all methods. We provide two
metrics, the accumulative market fluctuation (AF) and bubble
(AB), to further measure the abnormality periods quantitative-
ly. To compute the two metrics, we merge all the continuous
periods in the market abnormality period results to obtain a
continuous period set W ′′c , and then add up different metrics
on the market indices within each period in W ′′c to get the
accumulative result for each method. Generally speaking, the
bigger the AF value is, the riskier the detected periods are; AB
is the metric which reveals the risk of the “market bubble” [21]
before the market crash or bear market. The detail for each
metric is listed in the following.

AF =
∑

∀i∈|W ′′
c |

max(Sm, i)−min(Sm, i), (8)

AB =
∑

∀i∈|W ′′
c |

maxgain(Sm, i), (9)

where function max(Sm, i) and min(Sm, i) return the biggest
and smallest values of the series of market index Sm on the
i-th period respectively, the function maxgain(Sm, i) return
the maximum continuous gain of the series Sm on the i-
th period. Note that, our method can be used to detect the
abnormalities for any customized market or even the unknown
market although we use the Sm as the ground truth for the
market status in this work. We list the comparison results on
all two metrics in Figure 3.

We can observe from the Figures 3, the BLCNN performs
the best among all methods and we can observe that BLCNN
can detect the market abnormality well even with a relatively
small scale of data. This proves that the BiLSTM helps to
capture the contextual information of the dyadic time series,
and it is effective to utilize the latent information in Equation
(5). We find that much to our surprise, the SWC beats the
WCC on all the data scales. This is because the WCC method
aggregates the latent information for all scale just in an equal
way without further exploration. It is interesting that according
to Figure 3 (b), BLCNN gets higher AB value than others
and this shows its ability to discover the risky periods of
the “market bubble” before the real market declines. This is
very important to early detect the market abnormalities in the
practical applications.

We also demonstrate the visual results of the abnormality
detection of BLCNN on different data scales of S&P 500
dataset in Figure 4. It can be clearly seen that, with the
increasing of the number of time series (from 25 to 470
stock time series), BLCNN can find the real-world abnormality

 

 

   

0 20000 40000

BLCNN
LCNN
SELF
WCC
SWC

BLCNN
LCNN
SELF
WCC
SWC

Accumulative fluctuation (AF)

S&
P
 5
0
0
   
   
   
   
N
A
SD

A
Q
 1
0
0

470

200

100

50

25

(a) AF results

 

0 200000 400000 600000

BLCNN
LCNN
SELF
WCC
SWC

BLCNN
LCNN
SELF
WCC
SWC

Accumulative bubble (AB)
S&

P
 5
0
0
   
   
   
   
N
A
SD

A
Q
 1
0
0

470

200

100

50

25

(b) AB results

Figure 3. Quantitative comparison on AF and AB

periods more accurately. The result in Figure 4 (d), where
the abnormality events are explicitly labeled, illustrates that
BLCNN has good capability to capture the co-movement
patterns, and it even captures the abnormality market status
before some market crashes (e.g. 2015.05-08 crash) based on
its learned co-movement attentions.

E. Training of neural network models

This section demonstrates the effectiveness of stock sector
classification using the proposed CAM model. Since tradi-
tional methods (WCC and SWC) compute the co-movement
attentions without considering sector information, they are not
included in this part. We select the data of 50 time series
(that is 1,225 dyadic time series) in the period “1/4/2010 to
12/30/2016” for this experiment, where we sample 70% of the
data for training and 30% of the data for testing. We use AUC
to compare the classification performances over all sectors in
different training epochs as shown in Table IV .

Epoch BLCNN LCNN SELF

1 0.5884±0.0032 0.5597±0.0002 0.5041±0.0004
5 0.6922±0.0010 0.6262±0.0004 0.6081±0.0000
10 0.7262±0.0008 0.7234±0.0015 0.6552±0.0000
15 0.7626±0.0013 0.7399±0.0007 0.7085±0.0003
20 0.7861±0.0000 0.7533±0.0005 0.7311±0.0003

TABLE IV
COMPARISON ON CLASSIF. PERFORM. (AUC) ON S&P 500 DATASET
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Figure 4. Market abnormality detection by BLCNN on S&P 500 dataset

From the results in Table IV , we can find that the proposed
CAM methods perform well on the classification task with the
increasing of epoches. BLCNN performs the best among all
the mentioned methods on the classification task. This result is
also in accordance with the experiment in Section IV.D where
CAM captures the information about the market abnormality
more accurately than other alternatives.

F. Scalability

As we implement all the methods on the GPU version
Pytorch, we could discuss the scalability for all the methods
mentioned in this work on the same hardware environment.
Since the neural network models need training before detec-
tion, we first list and compare the training scalability for 15
epochs of the neural network models in Table V , and then we
list the detection scalability for all the methods in Table V I .
One can observe from Table V , LCNN is the most efficient
neural network model in the training process since the size
of hidden states in its LSTM layer is one half of the ones in
BLCNN or SELF, and thus BLCNN and SELF take almost
twice longer than LCNN during the training. As it is shown
in Table V I , both the deep learning methods and WCC are
efficient in the detection process, whereas SWC is the slowest
method of all. This is because that SWC needs to compute the
correlation in every window while other methods can extract
the latent information from the whole time series.

Ticker num. LCNN SELF BLCNN

25 20.68 42.22 42.99
50 93.12 191.28 193.20

100 382.56 781.14 806.89
200 1564.48 3222.99 3246.03
470 8682.95 18491.42 18239.78

TABLE V
COMPARISON ON TRAINING SCALABILITY (SEC.)

V. RELATED WORKS

The interdependency between pairs of time series is a
prevalent phenomenon in many fields such as stock market
[22], recommendation system [23], Astronomy [24] or even
molecular biology [25]. Current related methods primarily
focus on analyzing the interdependency patterns between a
pair of time series based on the pre-defined sliding window

Ticker num. LCNN SELF BLCNN WCC SWC

25 3.49 4.94 4.39 22.46 113.86
50 9.06 10.58 10.04 125.66 688.27

100 25.58 29.11 30.03 525.76 2905.44
200 89.64 104.48 107.17 2071.49 11791.04
470 474.33 565.36 555.36 11563.14 64594.44

TABLE VI
COMPARISON ON DETECTION SCALABILITY (SEC.)

framework [1] such as the sliding window correlation methods
[19] [4]. Since the correlation methods ignore the information
beyond their pre-defined correlation framework, they are dif-
ficult to fully address the interdependency patterns between
pairs of time series. Therefore, recent works also try to apply
the wavelet transformation methods (many are the Wavelet
Coherence, WC) [5] to explore more in-depth interdependency
patterns for the related dyadic time series. However, although
the wavelet transformation methods can compute the interde-
pendency trends for time series on different scales respectively,
they can hardly get an aggregated result which is related to
the real market abnormality automatically. One solution is to
provide the “heat map” [26] chart to show the interdependency
patterns on different resulted scales for the time series and
leave the identification works to human. Nevertheless, this
is extremely labor-intensive for the human to monitor the
abnormality status in a stock market with hundreds or even
thousands of time series.

To further explore the relationship between pairs of time
series, Lee et al. [27] concatenate the time series to a matrix
and apply the convolution method to study the potential
relationship with the resulted matrix. We follow this convolu-
tion method to track the interdependency patterns for pairs
of stocks. Our work is the first to capture the stock-level
abnormality by utilizing the interdependency patterns between
pairs of stocks and the temporal contextual information along
the time dimension simultaneously. Our work is also the first
to detect the market abnormality based on the learned stock-
level abnormalities in a bottom-up way.

VI. CONCLUSION

In this work we propose a neural network model, Co-
movement Attention Model (CAM), to learn the co-movement
patterns between pairs of time series and detect the market
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abnormality periods automatically. Our main contribution in-
cludes: we formalize the notations about the co-movement
patterns and the co-movement attentions to address the inter-
dependency rules between pairs of stock time series. We use
the sector label information to supervise the learning process
to get the co-movement attentions and patterns automatically.
We detect the stock-level abnormality period with the obtained
co-movement attention. Then, we propose a mechanism which
is based on the Dempster-Shafer framework of the evidence
theory to detect the market-level abnormality periods based on
the stock-level abnormality periods without supervision. The
experimental results on the real-world stock data verify that
the sector label information is helpful to supervise the learning
of the co-movement attentions, and the trained CAM model
can also classify the dyadic time series to the correct sector
label. The experiment about the market abnormality periods
with the found co-movement attentions provides a quantitative
way to compare the qualities of the co-movement attentions
from all mentioned methods, and the result proves that CAM
has captured the useful co-movement pattern which is related
to the real market status. Besides, since our prototype system
can solve the similar problem in any system which consists of
numbers of dyadic time series, it could also be used to find
out the abnormalities in any customized market.
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