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Abstract

The peripheral nervous system represents the input/output system for the brain.
Cuff electrodes implanted on the peripheral nervous system allow observation and
control over this system, however, the data produced by these electrodes have a
low signal-to-noise ratio and a complex signal content. In this paper, we consider
the analysis of neural data recorded from the vagus nerve in animal models, and
develop an unsupervised learner based on convolutional neural networks that is
able to simultaneously de-noise and cluster regions of the data by signal content.

1 Introduction
Recent advances have made chronic observation [1] of, and limited control [2] over the peripheral
nervous system possible. To characterise the dynamics of the signals passing to and from the brain,
we wish to categorise patterns of activity within the peripheral nervous system. However, consistent
detection of single neuron activity remains a challenge with current cuff electrode technology suitable
for in vivo neural data acquisition. The relative position of an extracellular recording electrode and
neuronal axons close enough to sit above the noise floor affects the polarity of presented signal
components [3], and their summation at the electrode occludes the presence of individual action
potentials during periods of neuronal activity. Instead, local field potentials (LFPs), the combination of
many neuronal responses arriving concurrently at the electrode are observed. These population level
responses are potentially informationally richer [4], but preclude the use of conventional spike-sorting
[5] methodologies on such data.

Instead, we develop a method based on convolutional neural networks (CNN) that simultaneously
de-noises the data and categorises the observed signals. We train this model on approximately one
hour of data taken from a single subject approximately twelve hours post surgical implantation. We
further show that it is applicable without further training to data from a second subject thirty days post
surgical implantation, demonstrating cross-time, cross-subject applicability of the trained models.

2 Methods
Neural data are collected from two nerve cuffs implanted on the vagus nerve, each recording LFP
data at 30000Hz using a chronically implanted ITX PNS (peripheral nervous system) implant (BIOS,
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Figure 1: The architecture of the Coordinate-VAE. The input signal is encoded via a series of
convolutional/pooling/leaky-ReLu/dropout blocks to a categorical latent vector representing the core
process observed in the input signal. To allow the decoder to account for phase shifts, time warping,
et cetara, a set of time coordinates for which the signal is closest to zero are sampled from each
channel of the input signal. These pass through a ‘coordinate encoder’, before being concatenated
with the latent vector. The decoder then upsamples with convolution to reconstruct the original signal.

Cambridge, UK). We begin by standardising the mean and standard deviation of the data coming
from each cuff, and applying a fifth-order Butterworth bandpass (50-1000Hz) filter, before rescaling
such that the training data lie in the range (-1, 1). We then sample small time windows of equal size
w from the data as input to the Coordinate-VAE. In the results shown here, w is fixed at 256 samples,
that is, at 256

30000 seconds.

The basic model architecture is shown in Figure 1. For each window, the goal is to reduce the observed
data to a one-hot latent vector of size L. We achieve this by training a variational auto-encoder (VAE)
[6] with a Gumbel-Softmax [7] activation on the latent space. Encoding to the latent space is done
through a series of convolutional blocks, where parameters for each block in the encoder are kept
constant except for the number of filters in each convolutional layer, which doubles with each block.
Pooling takes place in each block where this would not reduce the dimension of the data to less than
the size of the convolutional layer. Decoding similarly follows a standard upsampling/convolutional
scheme, with a hyperbolic tangent activation following the final convolutional layer. The temperature
of the Gumbel layer is slowly annealed throughout training such that the temperature at epoch E is
2e−0.0003E . During inference, the temperature is fixed at 0.1. We define the loss as a weighted sum
of the mean squared error on the reconstruction and the negative of the Kullback–Leibler divergence.

Models were trained in Tensorflow (v 1.12.2) on a single Nvidia Tesla K80. Hyperparameter tuning
was carried out over one thousand evaluations for each model using a Tree-structured Parzen Estimator
as implemented in the hyperopt package [8]. For the primary data set, the data were divided at
random into training/validation/test sets comprising 70%, 20% and 10% of the data respectively.

With a small (L = 20) one-hot latent space, a standard VAE is unable to reconstruct any signal
(Fig. 2(a)). Given a sufficiently large (L = 50)) latent space, there is sufficient information to
reconstruct the signal, but at the cost of retaining much of the noise, signal artefacts, and increasing
the complexity of the latent space (Fig. 2(b)). We solve this by allowing the leakage of some
information directly from the original signal to the decoder, bypassing the latent space. For each
channel, we find the set of n time-coordinates at which the observed signal is closest to zero. To
prevent memorisation of the signal based on these coordinates, we randomly sample a subset n′ of
these coordinates. Since these data can be ordered over time, we then apply a 1-d convolutional
network to this input in a similar fashion to the encoder, giving an encoding of the signal as defined
by the sampling from the coordinates. This ‘coordinate encoding’ is concatenated to the upsampled
layers in each step of the decoder. This allows a small (L = 20) one-hot latent space to identify the
signal present in the data while removing the noise (Fig. 2(c)). For this analysis n = 5 and n′ = 1,
that is, a single value taken from the time-axis for each data channel and passed to the encoder via a
CNN is sufficient to allow reconstruction of the latent space. We are able to reduce the latent space
further (L = 10 and L = 5) while maintaining identification of the signal (data not shown).
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(a) No coordinate encoding,
small (L = 20) latent space.
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Figure 2: Latent space and signal reconstructions inferred from a second of input data from the test
set. The input data from the first (blue) and second (orange) cuffs is reduced to a single value in
the latent space which evolves over time, and is used to reconstruct the original signal. Without
the coordinate encoding, no reconstruction is possible using a small latent space (a). With a large
latent space (b), reconstruction is possible but with a complex latent space and the reconstruction of
noise in addition to signal. With a coordinate encoder (c) the latent space is relatively simple and the
reconstruction is effectively de-noised.

3 Results

Figure 2 demonstrates the ability of a Coordinate-VAE model to effectively de-noise peripheral
neural data and cluster the observed signals within a relatively simple latent space. Furthermore,
we can apply the model trained on data from a single subject to other subjects. Figure 3 shows
the latent space and reconstructed signal from vagus nerve recordings from a second subject taken
sixty days post surgical implantation. Despite the increased noise levels in this data set, the trained
model is able to de-noise the signal and characterise the signals within the data. Data from this
subject were human-labelled as containing regions of neural activity corresponding to respiration
modulation. There is a clear correlation between respiration modulation events and the amplitude of
the reconstructed signal, suggesting that the latent space is able to capture meaningful physiological
signals from neural data. Furthermore, the latent space shows strong differences between the latent
values prevalent within regions of respiration modulation and those without, with latent values 0, 7,
10, 13, 16 and 19 being significantly (χ2-test, moderated for dependence of neighbouring values)
over-represented within the respiration modulation events. This suggests that, in the absence of labels,
the latent space representation may still give useful information with which to identify physiological
events.

We explore the de-noising ability of this technique further through simulation studies (Figure 4). We
simulate noise in each channel by independently sampling from Morlet wavelets, whose parameters
are further sampled from independent normal distributions, and whose location on the time series are
uniformly distributed. We combine this ‘noise’ with ‘signal’, also sampled from Morlet wavelets, but
now located within short ‘impulse’ time periods and correlated between the two signal channels. We
then reconstruct the combined waveform and estimate the ratio of the power of the reconstruction
within the impulse regions to the power of the reconstruction outside the impulse regions. By
varying the amplitude of the ‘noise’ signal, we acquire different values for the true signal-to-noise
ratio (SNR) and compare this to the SNR post-reconstruction. Particularly for low true SNR, the
post-reconstruction data show a considerably improved SNR.
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Figure 3: Input data, reconstructed signal, and a smoothed latent space for approximately 100 seconds
from a second subject. Data were human-labelled as containing respiration modulation neural activity
(light-grey) or not (dark-grey). The reconstructed signal clearly identifies the respiration modulation
events. Values for the latent space are shown as a moving mean with a Gaussian kernel with a standard
deviation of 1

30 sec, and are shown as either green (within periods of human-identified respiration
modulation) or red (outside those periods), with the intensity indicating the prevalence of a particular
latent value. To allow visualisation, the intensities of latent value 17, which indicates the absence of
true signal and is by far the most frequent value, have been set to zero in this plot.
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Figure 4: An example simulation (a), showing noise, true signal, and reconstructed signal. ‘Impulse’
regions, containing true signal, are indicated by black lines in the reconstruction. SNR for recon-
structed signals against true SNR (b) for reconstructions based on Coordinate-VAE with a latent size
L = 20, 10 and 5.

4 Discussion
The recent development of chronic neural interfacing implant systems that are able to record neural
signals over period of months or years will create large sets of primarily unlabelled data, with numer-
ous signals occurring over a range of time-scales. These data are currently un-characterisable with
standard methods (e.g. spike-sorting). Previous work in this field has relied on mixing categorical and
real-valued latent vectors. Westhuizen et al [9] used an adversarial auto-encoder to project neural data
to labels, incorporating an approximately one-hot encoding in the latent space but also including an
approximately Gaussian vector to allow reconstruction. Since both vectors are trained simultaneously,
the Gaussian component of the latent space may contain the relevant labelling information for one
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or more true classes. InfoGAN [10], a GAN implementation in which the discriminator identifies
components of the latent space is similarly capable of one-hot latent representation of the data, but
without constraints on the information carried within the one-hot encoding.

The Coordinate-VAE approach, in restricting the information available to the encoder creating the
non-categorical portion of the latent space, allows unsupervised characterisation of the signals in time-
series data, while simultaneously de-noising the signal. Models are transferable between individuals,
suggesting that we may gain the ability to pre-train large models for the reduction to latent space
representations. As shown in Figure 3, there is some evidence to suggest that these latent space
representations are also informative for physiological features. We might then rapidly train a final
classifier or agent for monitoring or control of individual patients, as in Pandarianth et al [11], in
which an auto-encoder is used as a dimension reduction technique on collections of neural spiking
data acquired from macaque motor and pre-motor cortices, following which a GLM is used to map
the complex latent space to spiking activity.
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