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Abstract

Several recent works have aimed to explain why severely overparameterized models,
generalize well when trained by Stochastic Gradient Descent (SGD). The emergent
consensus explanation has two parts: the first is that there are “no bad local minima,”
while the second is that SGD performs implicit regularization by having a bias
towards low complexity models. We revisit both of these ideas in the context of
image classification with common deep neural network architectures. Our first
finding is that there exist bad global minima, i.e., models that fit the training set
perfectly, yet have poor generalization. Our second finding is that given only
unlabeled training data, we can easily construct initializations that will cause
SGD to quickly converge to such bad global minima that exhibit a test accuracy
degradation of up to 40% compared to training from a random initialization. Finally,
we show that regularization seems to provide SGD with an escape route: once
heuristics such as data augmentation are used, starting from a complex model
(adversarial initialization) has no effect on the test accuracy.

1 Introduction
In [1] it was shown that several popular deep neural network architectures for image classification
have enough capacity to perfectly memorize the CIFAR10 training set. That is, they can achieve zero
training error, even after the training examples are relabeled with uniformly random labels. Moreover,
such memorizing models are not even hard to find; they are reached by standard training methods such
as stochastic gradient descent (SGD) in about as much time as it takes to train with the correct labels.
It would stand to reason that since these architectures have enough capacity to “fit anything,” models
derived by fitting the correctly labeled data, i.e., “yet another anything,” would fail to generalize. Yet,
miraculously, they do not: models trained by SGD on even severly overparameterized architectures
generalize spectacularly. Following recent work [2, 3, 4, 5, 6, 7], our study is motivated by the
desire to shed some light onto this miracle which stands at the center of the recent machine learning
revolution.

When the training set is labeled randomly, all models that minimize the corresponding loss function
are equivalent in terms of generalization, in the sense that, we expect none of them to generalize. The
first question we ask is: when the true labels are used, are all models that minimize the loss function
equivalent in terms of generalization, or are some better than others? We show that not all global
minima are created equal: there exist bad global minima, i.e., global minima that generalize poorly.

The existence of bad global minima implies that the optimization method used for training, i.e., to
select among the (near-)global minima, has germane effect on generalization. In practice, SGD
appears to avoid bad global minima, as different models produced by SGD from independent random
initializations tend to all generalize equally well, a phenomenon attributed to an inherent bias of
the algorithm to converge to models of low complexity [8, 9, 10, 11, 12, 13]. This brings about
our second question: does SGD deserve all the credit for avoiding bad global minima, or are there
also other factors at play? More concretely, can we initialize SGD so that it ends up at a bad global
minimum? Of course, since we can always start SGD at a bad global minimum, our question has
a trivial positive answer as stated. We show that initializations that cause SGD to converge to bad
global minima can be constructed given only unlabeled training data, i.e., without any idea of the
true loss landscape.



The fact that we can construct adversarial initializations without knowledge of the loss landscape
suggests that these initializations correspond to models whose inherently undesirable characteristics
persist, at least partially, in the trained models that perfectly fit the training examples with correct
labels. Such a priori undesirability justifies a priori preference of some models over others, i.e.,
regularization. In particular, if a regularization term makes an adversarial initialization appear
a far worse model than before, this correspondingly incentivizes SGD to move away from it, a
tendency amplified by the use of momentum during optimization. This is precisely what we find
in our experiments: adding regularization and momentum allows SGD to overcome our adversarial
initializations and end up at good global minima. In other words, in penalizing inherent characteristics
of models, it appears that regularization plays a role beyond that of distinguishing between different
models that fit the data equally well: it affects training dynamics, making good models easier to find,
perhaps by making bad models more evidently bad.

A Sketch of the Phenomenon Consider training a two-layer, fully-connected, neural network for
a binary classification task, where the training data are sampled from two identical, well-separated
2-dimensional Gaussians. Each class comprises 50 samples, while the network has 100 hidden units
in each layer and uses ReLU activations. In Figure 1, we show the decision boundary of the model
reached by training with SGD with a batch size of 10 until 100% accuracy is reached under the
following four settings: 1) True labels, random initialization; 2) Random labels, random initialization;
3) True labels, initialization at the model in Fig. 1(b) (reached after training under setting 2); 4) Same
as setting 3, but with data augmentation, l2 regularization, and momentum1

(a) Setting 1 (b) Setting 2 (c) Setting 3 (d) Setting 4

Figure 1: The decision boundary of the model reached by SGD in Settings 1–4, respectively.

Figure 1(a) shows that from a random initialization, SGD converges to a model with near max margin,
which may attributed to its implicit bias. Figure 1(b) shows that when fitting random labels, the
decision margin becomes extremely complex and has miniscule margin. Figure 1(c) shows that when
SGD is initialized at such an extremely complex model, it converges to a “nearby” model whose
decision boundary is unnatural and has small margin. Finally, in Figure 1(d), we see that when data
augmentation, regularization and momentum are added, SGD escapes the bad initialization and again
reaches a model with a max margin decision boundary.

In the next section, we show that the phenomenon sketched above in a toy setting persists in state-of-
the-art-neural network architectures over real data sets. We specifically examine VGG16, ResNet18,
ResNet50, and DenseNet40, when trained on CIFAR, CINIC, and a restricted version of ImageNet.
We consistently observe the following: 1) bad global minima exist; 2) initializations that cause
SGD to converge to them can be easily derived given only unlabeled training data; 3) each of
data augmentation, regularization, and momentum help SGD avoid reaching bad global minima by
allowing the model to escape far away from such adversarial initializations.

2 Experimental Setup, Findings and Observed Phenomena
Datasets and Architectures We ran experiments on the CIFAR [14] data set (including both
CIFAR10 and CIFAR100), CINIC10 [15] and a resized Restricted ImageNet [16]. We train on them
four models: VGG16 [17], ResNet18 and ResNet50 [18] and DenseNet40 [19].
Implementation and Reproducibility We run our experiments on PyTorch 3.0. Our figures,
models, and all results can be reproduced using the code available at this git repository.
Training methods We consider state-of-the-art (SOTA) SGD training and vanilla SGD training.
The former corresponds to SGD with `2-regularization, data augmentation (random crops and flips),
and momentum. The latter to SGD without any of these features.

1Data augmentation was performed by replicating each training point twice and adding Gaussian noise.
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Initialization We consider two kinds of initialization: random and adversarial. For random initial-
izations we use the PyTorch default. To create an adversarial initialization, we train the model on an
augmented version of the original training dataset in which we have labeled every example uniformly
at random.

Algorithm 1 Adversarial initialization
Input: Original training dataset S; Replication factor R; Noise factor N
C = ∅
for every image x ∈ S do

for i from 1 to R do
xi ← zero-out a random subset comprising N% of the pixels in x
yi ← Uniformly random label
Add (xi, yi) to C

Train the architecture to 100% accuracy on C from a random initialization using vanilla SGD
Output: The weight vector of the architecture when training ends

Hyperparameters For CIFAR, CINIC10, and Restricted ImageNet, we use batch size 128, while
the momentum term is set to 0.9 when it is used. When we use `2 regularization, the regularization
parameter is 5 · 10−4 for CIFAR and Restricted ImageNet and 10−4 for CINIC10. We use the
following learning rate schedule for CIFAR: 0.1 for epochs 1 to 150, 0.01 for epoch 151 to 250, and
0.001 for epochs 251 to 350. We use the following learning rate schedules for CINIC and Restricted
ImageNet: 0.1 epochs 1 to 150, 0.01 for epoch 151 to 225, and 0.001 for epochs 226 to 300. The
CIFAR training set consists of 50k data points and the test set consists of 10k data points. The
CINIC10 training set consists of 90k data points and the test set consists of 90k data points. The
Restricted ImageNet training set consists of approximately 123k data points and the test set consists
of 4.8k data poitns.

2.1 Findings and Observed Phenomena
The motivation behind our adversarial initialization comes from our expectation that memorizing
random labels will consume some of the learning capacity of the network, and potentially reduce
the positive effects of overparametrization. Furthermore, as seen in our toy example in Section 1,
adversarial initialization tends to encourage SGD towards extremely complex decision boundaries,
i.e., decision regions that look surprising given the expectation of an implicit SGD bias toward
simplicity. We first report the test error curves for our 16 setups (4 data sets and 4 models), followed
by the impact of the replication parameter R on the test error.

Our main observations as taken from the figures below and our experimental data are as follows:

1. Vanilla SGD with random initialization reaches 100% training accuracy for all models and data
sets tested, which is consistent with [1].

2. Vanilla SGD with adversarial initialization suffers up to a 40% test accuracy degradation compared
to random initialization. That is, SGD models that are near global optima can have a
difference of up to 40% in test accuracy: not all training global optima are equally good.

3. SOTA SGD with explicit regularization, converges to the same test error from random vs. adver-
sarial initialization.

Test accuracy Our most important findings are the test accuracy curves shown in Figure 2, showing
the test accuracy convergence during training. We see that the test accuracy of adversarially initialized
vanilla SGD flattens out significantly below the corresponding accuracy under a random initialization,
even though both methods achieve 100% training accuracy. The test error degradation can be up to
40% on CIFAR100, while for DenseNet the test degradation is comparatively smaller.

At the same time, we see that the detrimental effect of adversarial initialization vanishes once we use
data augmentation, momentum, and `2 regularization. This demonstrates that by also changing the
optimization landscape far from good models, regularization plays a role that has not received much
attention, namely effecting the dynamics of the search for good models.
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Figure 2: Test accuracy (%) vs number of epochs on CIFAR, CINIC10 and Restricted ImageNet on all four
neural network models.

The Effect of the Replication Factor R on Test Error Here, we report the test accuracy effect
of the replication factor R, i.e., the number of randomly labeled augmentations that are applied
to each point during adversarial initialization. In Figure 3, we plot the test accuracy performance
for all networks we tested as a function of the number of the randomly labeled augmentations R.
When we vary R we observe that SOTA SGD essentially achieves the same test error, while the test
performance of vanilla SGD degrades, initially fast, and then slower for larger R.

We would like to note that although it would be interesting to make R even bigger, the time needed to
generate the adversarial initializer grows proportional to R, as it requires training a data set (of size
proportional to R) to full accuracy.
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Figure 3: The effect of R on CIFAR10, the zero-out ratio is fixed to 10%. Clearly, increasing R causes vanilla
SGD to suffer more. In contrast, SOTA SGD is always unaffected.

3 Conclusion

In this work, we show that not only bad global minima exist, i.e., models that fit the training set
perfectly, yet have poor generalization but, moreover, that these bad global minima are attractive to
SGD even from initializations constructed from unlabeled data. We also demonstrate empirically that
regularization rescues SGD from these adversarial initializations.

We believe that the main value of our work is in pointing out the role played by regularization
in enabling SGD to escape from our adversarial initializations. Not because we consider such
initializations particularly important in and of themselves, but because the phenomenon observed
highlights the role of regularization in altering the dynamics of the search for good models. In other
words, while the typical view of regularization is as a way to distinguish between good models
(by minimizing risk), our work shows that the alteration of the optimization landscape induced by
regularization is highly relevant even very far from good models. In that sense, we view the value of
our work as an invitation for further work on this seemingly germane but largely unexplored point.
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