
Learning Parametric Constraints in High
Dimensions from Demonstrations

Glen Chou, Dmitry Berenson, Necmiye Ozay
Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, Michigan, 48910
Email: {gchou, dmitryb, necmiye}@umich.edu

I. INTRODUCTION

Inverse optimal control and inverse reinforcement learning
(IOC/IRL) [6] can enable robots to perform complex goal-
directed tasks by learning a cost function which replicates the
behavior of an expert demonstrator when optimized. However,
planning for many robotics and automation tasks also requires
knowing constraints, which define what states or trajectories
are safe. Existing methods learn local trajectory-based con-
straints [4, 5] or a cost penalty to approximate a constraint
[2], neither of which extracts states that are guaranteed unsafe
for all trajectories. In contrast, recent work [3] recovers a
binary representation of globally-valid constraints from expert
demonstrations by sampling lower cost (and hence constraint-
violating) trajectories and then recovering a constraint consis-
tent with the data by solving an integer program over a gridded
constraint space. The learned constraint can be then used
to inform a planner to generate safe trajectories connecting
novel start and goal states. However, the gridding restricts the
scalability of this method to higher dimensional constraints.
The contributions of this workshop paper are twofold:
• By assuming a known parameterization of the constraint,

we extend [3] to higher dimensions by writing a mixed
integer program over parameters which recovers a con-
straint consistent with the data.

• We evaluate the method by learning a 6-dimensional pose
constraint on a 7 degree-of-freedom (DOF) robot arm.
II. PRELIMINARIES AND PROBLEM STATEMENT

We consider a state-control demonstration (ξ∗x
.
=

{x0, . . . , xT }, ξ∗u
.
= {u0, . . . , uT−1}) which steers a control-

constrained system xt+1 = f(xt, ut, t), ut ∈ U for all t, from
a start state x0 to a goal state xT , while minimizing cost
c(ξx, ξu) and obeying safety constraints φ(ξ)

.
= φ(ξx, ξu) ∈ S

and φ̄(ξ)
.
= φ̄(ξx, ξu) ∈ S̄. Formally, a demonstration solves

the following problem1:
Problem 1 (Demonstrator’s problem).

min
ξx,ξu

c(ξx, ξu)

s.t. φ(ξx, ξu) ∈ S ⊆ C
φ̄(ξx, ξu) ∈ S̄ ⊆ C̄

Here, φ(·) and φ̄(·) are known functions mapping (ξx, ξu) to
some constraint spaces C and C̄, where subsets S ⊆ C and
S̄ ⊆ C̄ are considered safe. In particular, S̄ is known and
represents the set of all constraints known to the learner.

In this paper, we consider the problem of learning the
unsafe set A .

= Sc, given Ns demonstrations {(ξ∗x, ξ∗u)i}Ns
i=1,

each with different start and goal states. We assume that the
dynamics, control constraints, and start and goal constraints
are known and are embedded in φ̄(ξx, ξu) ∈ S̄. We also
assume the cost function c(·, ·) is known.

1Details for continuous-time and suboptimal demonstrations are in [3].

ξ0

ξ1

ξ2

ξ3 ξ4

ξ5 ξ6

ξ7

ξ0ξ1

ξ2

ξ3
ξ4

ξ5ξ6ξ7

Fig. 1.Left: hit-and-run in trajectory space. Right: associated trajectories (red:
lower-cost, thus violating the orange constraint; green: demonstration) in C.

III. LEARNING CONSTRAINTS ON A GRID

We review [3], which reduces the ill-posedness of the
constraint learning problem by using the insight that each safe,
optimal demonstration induces a set of lower-cost trajectories
that must be unsafe. These unsafe trajectories are sampled
(Section III-A) and used with the demonstrations to reduce the
number of consistent unsafe sets. Then, an integer program is
used to find a gridded representation of A consistent with both
safe and unsafe trajectories (Section III-B).
A. Sampling lower-cost trajectories

We are interested in sampling from the set of lower-cost
trajectories which are dynamically feasible, satisfy the control
constraints, and have fixed start and goal state x0, xT :

Aξ
.
= {(ξx, ξu) | c(ξx, ξu) < c(ξ∗x, ξ

∗
u), xt+1 = f(xt, ut), ∀t,

ut ∈ U , ∀t, ξx(0) = x0, ξx(T ) = xT }
(1)

Each trajectory ξ¬s ∈ Aξ is unsafe, since the optimal
demonstrator would have provided any safe lower-cost tra-
jectory, and thus at least one state in ξ¬s belongs to A.
We sample from Aξ using hit-and-run [1, 3] (see Figure
1), providing a uniform distribution of samples in the limit.
Furthermore, if the demonstrator is boundedly suboptimal
and satisfies c(ξdem

x , ξdem
u ) ≤ (1 + δ)c(ξ∗x, ξ

∗
u) for known δ,

guaranteed unsafe trajectories can be sampled by replacing
c(ξx, ξu) < c(ξ∗x, ξ

∗
u) in (1) with c(ξx, ξu) <

c(ξdem
x ,ξdem

u )
1+δ [3].

B. Recovering the gridded unsafe set
As the constraint is not assumed to have any parametric

structure, the constraint space C is gridded into G cells
z1, . . . , zG, and we recover a safety value for each grid cell
O(zi) ∈ {0, 1} which is consistent with the Ns safe and N¬s
sampled unsafe trajectories by solving the integer problem:
Problem 2 (Grid-based constraint recovery problem).

find O(z1), . . . ,O(zG) ∈ {0, 1}G

s.t.
∑

zi∈{φ(ξ∗sj (1)),...,φ(ξ
∗
sj

(Tj))}

O(zi) = 0, ∀j = 1, . . . , Ns∑
zi∈{φ(ξ¬sk (1)),...,φ(ξ¬sk (Tk))}

O(zi) ≥ 1, ∀k = 1, . . . , N¬s

Here, O(zi) = 1 if cell zi is considered unsafe, and 0 other-
wise. The first constraint restricts all cells that a demonstration



passes through to be marked safe, while the second constraint
restricts that for each unsafe trajectory, at least one grid cell
it passes through is unsafe. Furthermore, denote as Gz¬s the
set of guaranteed learned unsafe cells. One can check if cell
zi ∈ Gz¬s by checking the feasibility of Problem 2 with an
additional constraint that O(zi) = 0 (forcing zi to be safe).

IV. LEARNING PARAMETRIC CONSTRAINTS
Suppose that the unsafe set can be described by some

parameterization A(θ)
.
= {k ∈ C | g(k, θ) ≤ 0}, where

constraint state k is some element of C, g(·, ·) is known, and θ
are parameters to be learned. Then, another feasibility problem
analogous to Problem 2 can be written to find a feasible θ
consistent with the data:
Problem 3 (Parametric constraint recovery problem).

find θ
s.t. g(ki, θ) > 0, ∀ki ∈ φ(ξsj ), ∀j = 1, . . . , Ns

∃ki ∈ φ(ξ¬sk), g(ki, θ) ≤ 0, ∀k = 1, . . . , N¬s

Denote Gs and G¬s as the set of guaranteed learned safe and
unsafe constraint states. One can check if a constraint state
k ∈ G¬s or k ∈ Gs by enforcing g(k, θ) > 0 or g(k, θ) ≤ 0,
respectively, and checking feasibility of Problem 3. Crucially,
G¬s and Gs are guaranteed underapproximations of A and Ac
(for space, we omit the proof; c.f. [3]).

A particularly common parameterization of an unsafe set is
as a polytope A(θ) = {k | H(θ)k ≤ h(θ)}, where H(θ) and
h(θ) are affine in θ. In this case, θ can be found by solving a
mixed integer feasibility problem:
Problem 4 (Polytopic constraint recovery problem).

find θ, {bis}Ns
i=1, {b

i
¬s}N¬si=1

s.t. H(θ)ki > h(θ)−M(1− bis), bisj ∈ {0, 1}
Nh ,

Nh∑
i=1

bisj ≥ 1,∀ki ∈ φ(ξsj ), i = 1, . . . , Tj , j = 1, . . . , Ns

(2a)

H(θ)ki ≤ h(θ) +M(1− bi¬sk )1Nh , bi¬sk ∈ {0, 1},
Tj∑
i=1

bi¬sk ≥ 1, ∀ki ∈ φ(ξ¬sk ), ∀k = 1, . . . , N¬s (2b)

where M is a large positive number and 1Nh
is a column

vector of ones of length Nh. Constraints (2a) and (2b) use
big-M formulations to enforce that each safe constraint state
lies outside A(θ) and that at least one constraint state on each
unsafe trajectory lies inside A(θ).

A few remarks are in order:
• If the safe set is a polytope or if the safe set or unsafe

set is a union of polytopes, a mixed integer feasibility
program similar to Problem 4 can be solved to find θ.
A more general case where g(k, θ) is described by a
Boolean conjunction of convex inequalities can be solved
using satisfiability modulo convex optimization [7].

• In addition to recovering sets of guaranteed learned
unsafe and safe constraint states, a probability distribution
over possibly unsafe constraint states can be estimated by
sampling unsafe sets from the feasible set of Problem 3.

• For suboptimal demonstrations or imperfect lower-cost
trajectory sampling, Problem 4 can become infeasible. To
address this, slack variables can be introduced: replace
constraint

∑Tj

i=1 b
i
¬s ≥ sk, sk ∈ {0, 1} and change the

feasibility problem to minimization of
∑N¬s
k=1(1− sk).

x y

z

Fig. 2. 7-DOF arm setup. End effector position constraint (green box).
Demonstrations (position component) color-coded to match with Figure 3.

-0.03
0.04

-0.02

-0.01

0.02 3

0

2

0.01

0 1

0.02

0

0.03

-0.02 -1
-2

-0.04 -3

Fig. 3. End effector orientation constraint (green box) and demonstrations
(orientation component).

V. EVALUATION ON 6D CONSTRAINT

In this example, we learn a 6D hyper-rectangular pose
constraint for the end effector of a 7-DOF Kuka iiwa arm. In
this scenario, the robot’s task is to pick up a cup and bring it to
a human, all while ensuring the cup’s contents do not spill and
proxemics constraints are satisfied (i.e. the end effector never
gets too close to the human). To this end, the end effector ori-
entation (parametrized in Euler angles) is constrained to satisfy
(α, β, γ) ∈ [α, ᾱ] × [β, β̄] × [γ, γ̄] = [−π, π] × [− π

60 ,
π
60 ] ×

[− π
60 ,

π
60 ] (see Figure 3), while the end effector position is

constrained to lie in (x, y, z) ∈ [x, x̄] × [y, ȳ] × [z, z̄] =
[−0.51, 0.51]× [−0.3, 1.1]× [−0.51, 0.51] (see Figure 2). Six
demonstrations optimizing c(ξx, ξu) =

∑T−1
i=1 ‖xi+1 − xi‖22

are generated by solving trajectory optimization problems
for the kinematic, discrete-time model in 7D joint space,
where for each demonstration T = 6 and control constraints
ut ∈ [−2, 2]7, for all t (see Figures 2, 3).

The constraint is recovered with Problem 4, where H(θ) =
[I,−I]> and h(θ) = θ = [x̄, ȳ, z̄, ᾱ, β̄, γ̄, x, y, z, α, β, γ]>.
From this data, Problem 4 is solved in 1.19 seconds on a
2017 Macbook Pro and returns the true θ and Gs = S. Gs
is efficiently recovered using the insight that the axis-aligned
bounding box of any two constraint states in Gs must be
contained in Gs, since Gs is the union of axis-aligned boxes
and therefore must also be an axis-aligned box.

VI. CONCLUSION

In this paper, we extend [3] to learn higher dimensional
constraints by leveraging a known parameterization. We show
that the constraint recovery problem for the parameterized
case can be solved with mixed integer programming, and
evaluate the method on learning a 6D pose constraint for
a 7-DOF robot arm. Future work involves using learned
constraints for probabilistically safe planning and developing
safe exploration strategies and active demonstration-querying
strategies to reduce the uncertainty in the learned constraint.



ACKNOWLEDGEMENTS

This work was supported in part by ONR grants N00014-18-1-
2501 and N00014-17-1-2050, and NSF grants ECCS-1553873
and IIS-1750489.

REFERENCES

[1] Yasin Abbasi-Yadkori, Peter L. Bartlett, Victor Gabillon,
and Alan Malek. Hit-and-run for sampling and planning
in non-convex spaces. In AISTATS 2017, 2017.

[2] Kareem Amin, Nan Jiang, and Satinder P. Singh. Repeated
inverse reinforcement learning. In NIPS, pages 1813–
1822, 2017.

[3] Glen Chou, Dmitry Berenson, and Necmiye Ozay.
Learning constraints from demonstrations. Workshop
on the Algorithmic Foundations of Robotics (WAFR),
abs/1812.07084, 2018. URL http://arxiv.org/abs/1812.
07084.

[4] Changshuo Li and Dmitry Berenson. Learning object
orientation constraints and guiding constraints for narrow
passages from one demonstration. In ISER. Springer,
2016.

[5] N. Mehr, R. Horowitz, and A. D. Dragan. Inferring and
assisting with constraints in shared autonomy. In (CDC),
pages 6689–6696, Dec 2016. doi: 10.1109/CDC.2016.
7799299.

[6] Andrew Y. Ng and Stuart J. Russell. Algorithms for
inverse reinforcement learning. In ICML ’00, pages 663–
670, San Francisco, CA, USA, 2000.

[7] Yasser Shoukry, Pierluigi Nuzzo, Alberto L. Sangiovanni-
Vincentelli, Sanjit A. Seshia, George J. Pappas, and Paulo
Tabuada. SMC: satisfiability modulo convex program-
ming. Proceedings of the IEEE, 106(9):1655–1679, 2018.

http://arxiv.org/abs/1812.07084
http://arxiv.org/abs/1812.07084

	Introduction
	Preliminaries and Problem Statement
	Learning Constraints on a Grid
	Sampling lower-cost trajectories
	Recovering the gridded unsafe set

	Learning Parametric Constraints
	Evaluation on 6D Constraint
	Conclusion

