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ABSTRACT

Many real-world reinforcement learning tasks require multiple agents to make se-
quential decisions under the agents’ interaction, where well-coordinated actions
among the agents are crucial to achieve the target goal better at these tasks. One
way to accelerate the coordination effect is to enable multiple agents to communi-
cate with each other in a distributed manner and behave as a group. In this paper,
we study a practical scenario when (i) the communication bandwidth is limited
and (ii) the agents share the communication medium so that only a restricted num-
ber of agents are able to simultaneously use the medium, as in the state-of-the-art
wireless networking standards. This calls for a certain form of communication
scheduling. In that regard, we propose a multi-agent deep reinforcement learn-
ing framework, called SchedNet, in which agents learn how to schedule them-
selves, how to encode the messages, and how to select actions based on received
messages. SchedNet is capable of deciding which agents should be entitled to
broadcasting their (encoded) messages, by learning the importance of each agent’s
partially observed information. We evaluate SchedNet against multiple baselines
under two different applications, namely, cooperative communication and naviga-
tion, and predator-prey. Our experiments show a non-negligible performance gap
between SchedNet and other mechanisms such as the ones without communica-
tion and with vanilla scheduling methods, e.g., round robin, ranging from 32% to
43%.

1 INTRODUCTION

Reinforcement Learning (RL) has garnered renewed interest in recent years. Playing the game of
Go (Mnih et al.l 2015), robotics control (Gu et al., 2017 [Lillicrap et al., 2015), and adaptive video
streaming (Mao et al., 2017)) constitute just a few of the vast range of RL applications. Combined
with developments in deep learning, deep reinforcement learning (Deep RL) has emerged as an
accelerator in related fields. From the well-known success in single-agent deep reinforcement learn-
ing, such as Mnih et al|(2015), we now witness growing interest in its multi-agent extension, the
multi-agent reinforcement learning (MARL), exemplified in|Gupta et al.|(2017);|[Lowe et al.|(2017);
Foerster et al.| (2017a)); (Omidshafier et al.| (2017); [Foerster et al.| (2016); Sukhbaatar et al.| (2016);
Mordatch & Abbeel (2017); Havrylov & Titov| (2017); |[Palmer et al.| (2017); |[Peng et al.|(2017); [Fo-
erster et al.| (2017c);Tampuu et al.[(2017); [Leibo et al.| (2017); [Foerster et al.| (2017b)). In the MARL
problem commonly addressed in these works, multiple agents interact in a single environment re-
peatedly and improve their policy iteratively by learning from observations to achieve a common
goal. Of particular interest is the distinction between two lines of research: one fostering the direct
communication among agents themselves, as in [Foerster et al.| (2016); |[Sukhbaatar et al.| (2016) and
the other coordinating their cooperative behavior without direct communication, as inFoerster et al.
(2017b)); Palmer et al.|(2017)); |Leibo et al. (2017)).

In this work, we concern ourselves with the former. We consider MARL scenarios wherein the
task at hand is of a cooperative nature and agents are situated in a partially observable environment,
but each endowed with different observation power. We formulate this scenario into a multi-agent
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sequential decision-making problem, such that all agents share the goal of maximizing the same
discounted sum of rewards. For the agents to directly communicate with each other and behave
as a coordinated group rather than merely coexisting individuals, they must carefully determine
the information they exchange under a practical bandwidth-limited environment and/or in the case
of high-communication cost. To coordinate this exchange of messages, we adopt the centralized
training and distributed execution paradigm popularized in recent works, e.g.,[Foerster et al.|(2017a);
Lowe et al.|(2017); |Sunehag et al.|(2018)); Rashid et al.| (2018)); Gupta et al.[(2017).

In addition to bandwidth-related constraints, we take the issues of sharing the communication
medium into consideration, especially when agents communicate over wireless channels. The state-
of-the-art standards on wireless communication such as Wi-Fi and LTE specify the way of schedul-
ing users as one of the basic functions. However, as elaborated in Related work, MARL problems
involving scheduling of only a restricted set of agents have not yet been extensively studied. The key
challenges in this problem are: (i) that limited bandwidth implies that agents must exchange suc-
cinct information: something concise and yet meaningful and (ii) that the shared medium means that
potential contenders must be appropriately arbitrated for proper collision avoidance, necessitating a
certain form of communication scheduling, popularly referred to as MAC (Medium Access Control)
in the area of wireless communication. While stressing the coupled nature of the encoding/decoding
and the scheduling issue, we zero in on the said communication channel-based concerns and con-
struct our neural network accordingly.

Contributions In this paper, we propose a new deep multi-agent reinforcement learning architec-
ture, called SchedNet, with the rationale of centralized training and distributed execution in order to
achieve a common goal better via decentralized cooperation. During distributed execution, agents
are allowed to communicate over wireless channels where messages are broadcast to all agents in
each agent’s communication range. This broadcasting feature of wireless communication necessi-
tates a Medium Access Control (MAC) protocol to arbitrate contending communicators in a shared
medium. CSMA (Collision Sense Multiple Access) in Wi-Fi is one such MAC protocol. While prior
work on MARL to date considers only the limited bandwidth constraint, we additionally address the
shared medium contention issue in what we believe is the first work of its kind: which nodes are
granted access to the shared medium. Intuitively, nodes with more important observations should be
chosen, for which we adopt a simple yet powerful mechanism called weight-based scheduler (WSA),
designed to reconcile simplicity in training with integrity of reflecting real-world MAC protocols in
use (e.g., 802.11 Wi-Fi). We evaluate SchedNet for two applications: cooperative communication
and navigation and predator/prey and demonstrate that SchedNet outperforms other baseline mech-
anisms such as the one without any communication or with a simple scheduling mechanism such as
round robin. We comment that SchedNet is not intended for competing with other algorithms for
cooperative multi-agent tasks without considering scheduling, but a complementary one. We believe
that adding our idea of agent scheduling makes those algorithms much more practical and valuable.

Related work We now discuss the body of relevant literature. Busoniu et al.|(2008) and|Tan/(1993)
have studied MARL with decentralized execution extensively. However, these are based on tabular
methods so that they are restricted to simple environments. Combined with developments in deep
learning, deep MARL algorithms have emerged (Tampuu et al., 2017} [Foerster et al.| 2017a; |Lowe
et al., 2017). Tampuu et al.| (2017 uses a combination of DQN with independent Q-learning. This
independent learning does not perform well because each agent considers the others as a part of envi-
ronment and ignores them. [Foerster et al.| (2017a)); Lowe et al.|(2017); |Gupta et al.[|(2017); Sunehag
et al.| (2018), and [Foerster et al.| (2017b)) adopt the framework of centralized training with decen-
tralized execution, empowering the agent to learn cooperative behavior considering other agents’
policies without any communication in distributed execution.

It is widely accepted that communication can further enhance the collective intelligence of learning
agents in their attempt to complete cooperative tasks. To this end, a number of papers have previ-
ously studied the learning of communication protocols and languages to use among multiple agents
in reinforcement learning. We explore those bearing the closest resemblance to our research. |Foer-
ster et al.| (2016); Sukhbaatar et al.[(2016)); Peng et al.| (2017); |Guestrin et al.| (2002), and Zhang &
Lesser|(2013) train multiple agents to learn a communication protocol, and have shown that commu-
nicating agents achieve better rewards at various tasks. [Mordatch & Abbeel (2017)) and Havrylov &
Titov| (2017) investigate the possibility of the artificial emergence of language. Coordinated RL by
Guestrin et al.| (2002)) is an earlier work demonstrating the feasibility of structured communication
and the agents’ selection of jointly optimal action.
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Only DIAL (Foerster et al.l 2016)) and|Zhang & Lesser| (2013)) explicitly address bandwidth-related
concerns. In DIAL, the communication channel of the training environment has a limited bandwidth,
such that the agents being trained are urged to establish more resource-efficient communication pro-
tocols. The environment in|[Zhang & Lesser (2013) also has a limited-bandwidth channel in effect,
due to the large amount of exchanged information in running a distributed constraint optimization
algorithm. Recently, Jiang & Lu| (2018)) proposes an attentional communication model that allows
some agents who request additional information from others to gather observation from neighboring
agents. However, they do not explicitly consider the constraints imposed by limited communication
bandwidth and/or scheduling due to communication over a shared medium.

To the best of our knowledge, there is no prior work that incorporates an intelligent scheduling entity
in order to facilitate inter-agent communication in both a limited-bandwidth and shared medium
access scenarios. As outlined in the introduction, intelligent scheduling among learning agents is
pivotal in the orchestration of their communication to better utilize the limited available bandwidth
as well as in the arbitration of agents contending for shared medium access.

2 BACKGROUND

Reinforcement Learning We consider a standard RL formulation based on Markov Decision Pro-
cess (MDP). An MDP is a tuple < S, A, r, P,y > where S and A are the sets of states and actions,
respectively, and v € [0, 1] is the discount factor. A transition probability function P : S x A — S
maps states and actions to a probability distribution over next states, and r : S x A — R denotes
the reward. The goal of RL is to learn a policy 7 : & — A that solves the MDP by maximiz-
ing the expected discounted return Ry = E[>_7- ) v*rs1x|m]. The policy induces a value function
V7 (s) = E,[R¢|st = s], and an action value function Q™ (s,a) = E[R:|st = s,a: = a].

Actor-critic Method The main idea of the policy gradient method is to optimize the policy,
parametrized by 6™, in order to maximize the objective J(0) = Esupr amr, [R] by directly ad-
justing the parameters in the direction of the gradient. By the policy gradient theorem [Sutton et al.
(2000), the gradient of the objective is:

VQJ('/T()) = Eswp“,awﬂ'g [VG log e (a|s)Qﬂ(sv G)L (1)

where p™ is the state distribution. Our baseline algorithmic framework is the actor-critic approach
Konda & Tsitsiklis|(2003)). In this approach, an actor adjusts the parameters 6 of the policy 7y (s) by
gradient ascent. Instead of the unknown true action-value function Q™ (s, a), its approximated ver-
sion Q¥ (s, a) is used with parameter w. A critic estimates the action-value function Q¥ (s, a) using
an appropriate policy evaluation algorithm such as temporal-difference learning [Tesauro| (1995). To
reduce the variance of the gradient updates, some baseline function b(s) is often subtracted from
the action value, thereby resulting in Q™ (s,a) — b(s) [Sutton & Barto| (1998). A popular choice
for this baseline function is the state value V'(s), which indicates the inherent “goodness” of the
state. This difference between the action value and the state value is often dubbed as the advantage
A(s, a) whose TD-error-based substitute §; = r; +~V (s;41) — V(s¢) is an unbiased estimate of the
advantage as in|Mnih et al.|(2016). The actor-critic algorithm can also be applied to a deterministic
policy pg : S — A. By the deterministic policy gradient theorem [Silver et al.| (2014), we update the
parameters as follows:

Vo (ko) = Esmpi [Vorio(5)Va@Q" (8, ) laz=pg ()] 2)

MARL: Centralized Critic and Distributed Actor (CCDA) We formalize MARL using DEC-
POMDP (Oliehoek et al.,[2016)), which is a generalization of MDP to allow a distributed control by
multiple agents who may be incapable of observing the global state. A DEC-POMDP is described
by a tuple < S, A,r, P,Q), O,y >. We use bold-face fonts in some notations to highlight the
context of multi-agents. Each agent ¢ € A chooses an action a; € A, forming a joint action
vector a = [a;] € A™ and has partial observations o; € ) according to some observation function
O(s,7) : S XN = Q. P(s'|s,a) : S x A™ ~ [0,1] is the transition probability function. All
agents share the same reward r(s,u) : S x A™ — R. Each agent 7 takes action a; based on its
own policy 7¢(a;|0;). As mentioned in Section our particular focus is on the centralized training
and distributed execution paradigm, where the actor-critic approach is a good fit to such a paradigm.
Since the agents should execute in a distributed setting, each agent, say ¢, maintains its own actor
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that selects ¢’s action based only on what is partially observed by 7. The critic is naturally responsible
for centralized training, and thus works in a centralized manner. Thus, the critic is allowed to have
the global state s as its input, which includes all agents’ observations and extra information from
the environment. The role of the critic is to “criticize” individual agent’s actions. This centralized
nature of the critic helps in providing more accurate feedback to the individual actors with limited
observation horizon. In this case, each agent’s policy, 7°, is updated by a variant of (1)) as:

Vo (1h) = Eampr ammy [V l0g 7 (a5100) (r + 7V (8141) — V(5,))] 3

3 METHOD

3.1 COMMUNICATION ENVIRONMENT AND PROBLEM

In practical scenarios where agents are typically separated but are able to communicate over a shared
medium, e.g., a frequency channel in wireless communications, two important constraints are im-
posed: bandwidth and contention for medium access (Rappaport, [2001). The bandwidth constraint
entails a limited amount of bits per unit time, and the contention constraint involves having to avoid
collision among multiple transmissions due to the natural aspect of signal broadcasting in wireless
communication. Thus, only a restricted number of agents are allowed to transmit their messages
each time step for a reliable message transfer. In this paper, we use a simple model to incorporate
that the aggregate information size per time step is limited by Lpang bits and that only Kcpeq Out of
n agents may broadcast their messages.

Weight-based Scheduling Noting that distributed execution of agents is of significant importance,
there may exist a variety of scheduling mechanisms to schedule Keq agents in a distributed man-
ner. In this paper, we adopt a simple algorithm that is weight-based, which we call WSA (Weight-
based Scheduling Algorithm). Once each agent decides its own weight, the agents are scheduled
based on their weights following a class of the pre-defined rules. We consider the following two
specific ones among many different proposals due to simplicity, but more importantly, good approx-
imation of wireless scheduling protocols in practice.

o Top(k). Selecting top k agents in terms of their weight values.
o Softmax(k). Computing softmax values o;(w) = 2:77677116% for each agent 4, and then randomly

selecting k agents acoording to the probability distribution [o; (w)]?_;.

Since distributed execution is one of our major operational constraints in SchedNet or other CTDE-
based MARL algorithms, Top(k) and Softmax(k) should be realizable via a weight-based mech-
anism in a distributed manner. In fact, this has been an active research topic to date in wireless
networking, where many algorithms exist (Tassiulas & Ephremides| [1992; Y1 et al., [2008; Jiang &
Walrand, 2010). Due to space limitation, we present how to obtain distributed versions of those two
rules based on weights in our supplementary material. To summarize, using so-called CSMA (Car-
rier Sense Multiple Access) (Kurosel [2005), which is a fully distributed MAC scheduler and forms
a basis of Wi-Fi, given agents’ weight values, it is possible to implement Top(k) and Softmax(k).

Our goal is to train agents so that every time each agent takes an action, only K neq agents can
broadcast their messages with limited size Lyanq With the goal of receiving the highest cumulative
reward via cooperation. Each agent should determine a policy described by its scheduling weights,
encoded communication messages, and actions.

3.2 ARCHITECTURE

To this end, we propose a new deep MARL framework with scheduled communications, called
SchedNet, whose overall architecture is depicted in Figure [Tl SchedNet consists of the following
three components: (i) actor network, (ii) scheduler, and (iii) critic network. This section is devoted
to presenting the architecture only, whose details are presented in the subsequent sections.

Neural networks The actor network is the collection of n per-agent individual actor networks,
where each agent ¢’s individual actor network consists of a triple of the following networks: a
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message encoder, an action selector, and a

[
weight generator, as specified by: 1

Scheduler
0, sz
e WG,
[m=[ml, @c
fmyixo (01, m) Uq
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55

message encoder f.

enc - Oi = my,

action selector f’ : (0;, m ® c) — u;,

weight generator f,, : 0; — w;. 01

0, Critic

Here, m = [mi]nﬂis the vector of each ¢’s
encoded message m;. An agent schedule
vector ¢ = [¢;ln, ¢; € {0,1} represents
whether each agent is scheduled. Note that
agent i’s encoded message m; is generated
by a neural network f¢. : 0; — m;. The
operator “®” concatenates all the sched-
uled agents’ messages. For example, for m = [010,111,101] and ¢ = [110], m ® ¢ = 010111.
This concatenation with the schedule profile ¢ means that only those agents scheduled in ¢ may
broadcast their messages to all other agents. We denote by 67, ijg, and 6’ the parameters of
the action selector, the weight generator, and the encoder of agent 7, respectively, where we let
0,5 = [0, and similarly define Oy, and Gepc.

Coupling: Actor and Scheduler Encoder, weight generator and the scheduler are the modules
for handling the constraints of limited bandwidth and shared medium access. Their common goal is
to learn the state-dependent “importance” of individual agent’s observation, encoders for generating
compressed messages and the scheduler for being used as a basis of an external scheduling mech-
anism based on the weights generated by per-agent weight generators. These three modules work
together to smartly respond to time-varying states. The action selector is trained to decode the in-
coming message, and consequently, to take a good action for maximizing the reward. At every time
step, the schedule profile c varies depending on the observation of each agent, so the incoming mes-
sage m comes from a different combination of agents. Since the agents can be heterogeneous and
they have their own encoder, the action selector must be able to make sense of incoming messages
from different senders. However, the weight generator’s policy changes, the distribution of incoming
messages also changes, which is in turn affected by the pre-defined WSA. Thus, the action selector
should adjust to this changed scheduling. This also affects the encoder in turn. The updates of the
encoder and the action selector trigger the update of the scheduler again. Hence, weight generators,
message encoders, and action selectors are strongly coupled with dependence on a specific WSA,
and we train those three networks at the same time with a common critic.

(0]

Figure 1: Architecture of SchedNet with three agents.
Agents 1 and 3 have been scheduled for this time step.

Scheduling logic The schedule profile c is determined by the WSA module, which is mathemat-
ically a mapping from all agents’ weights w (generated by f\fvg) to c. Typical examples of these
mappings are Top(k) and Softmax(k), as mentioned above. The scheduler of each agent is trained
appropriately depending on the employed WSA algorithm.

3.3 TRAINING AND EXECUTION

In the centralized training with distributed execution, for a given . Update
WSA, we include all components and modules in Figure[T]to search Critic ﬁ WG
for By, Oy, and O.,c, whereas in execution, each agent 4 runs a cer- = | IR
tain shared medium access mechanism, well-modeled by a weight- FC H~ Q(5,w)
based scheduler, and just needs three agent-specific parameters 0, J:
Org> and OF,,. ST FCHFCT VE)
3.3.1 CENTRALIZED TRAINING Update
ENC and AS

Centralized critic The actor is trained by dividing it into two
parts: (i) message encoders and action selectors, and (ii) weight
generators. This partitioning is motivated by the fact that it is
hard to update both parts with one backpropagation since WSA is
not differentiable. To update the actor, we use a centralized critic

Figure 2: Architecture of the
critic. FC stands for fully con-
nected neural network.

"We use [-], to mean the n-dimensional vector, where n is the number of agents.
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parametrized by 6, to estimate the state value function Vp,_(s) for the action selectors and message
encoders, and the action-value function QF (s, w) for the weight generators. The critic is used only
when training, and it can use the global state s, which includes the observation of all agents. All net-
works in the actor are trained with gradient-based on temporal difference backups. To share common
features between Vy, (s) and QF (s, w) and perform efficient training, we use shared parameters in
the lower layers of the neural network between the two functions, as shown in Figure 2]

Weight generators We consider the collection of all agents” WGs as a single neural network
I, (0) mapping from o to w, parametrized by 6y,. Noting that w; is a continuous value, we apply
the DDPG algorithm (Lillicrap et al. 2015)), where the entire policy gradient of the collection of
WGs is given by:

Vew‘gJ(OWg7 )= ]EleLeWg [VBW/LGWg (0)VwQe, (s, w) |w=ugwg(o)]'

We sample the policy gradient for sufficient amount of experience in the set of all scheduling profiles,
ie,C={c|) . <k} The valuesof Qp (s, w) are estimated by the centralized critic, where s is
the global state corresponding to o in a sample.

Message encoders and action selectors The observation of each agent travels through the encoder

and the action selector. We thus serialize f2,. and f together and merge the encoders and actions
selectors of all agents into one aggregate network mg, (u|o, ¢), which is parametrized by 8, =
{Bcnc, Oas }- This aggregate network g, learns via backpropagation of actor-critic policy gradients,

described below. The gradient of this objective function, which is a variant of (3), is given by
Vou J(" 011) = ESNP”,UNﬂeu [Veu log 6, (u‘ov C) [7“ + 7V9c (SI) - Vgc (S)H’ 4

where s and s’ are the global states corresponding to the observations at current and next time step.
We can get the value of state Vp, (s) from the centralized critic and then adjust the parameters 6, via
gradient ascent accordingly.

3.3.2 DISTRIBUTED EXECUTION

In execution, each agent ¢ should be able to determine the scheduling weight w;, encoded message
my;, and action selection u; in a distributed manner. This process must be based on its own obser-
vation, and the weights generated by its own action selector, message encoder, and weight genera-
tor with the parameters 6%, 62, and vag, respectively. After each agent determines its scheduling
weight, Kcheq agents are scheduled by WSA, which leads the encoded messages of scheduled agents
to be broadcast to all agents. Finally, each agent finally selects an action by using received messages.

This process is sequentially repeated under different observations over time.

4 EXPERIMENT

Environments To evaluate SchedNeﬂ we consider two different environments for demonstrative
purposes: Predator and Prey (PP) which is used in|Stone & Veloso| (2000), and Cooperative Com-
munication and Navigation (CCN) which is the simplified version of the one in|Lowe et al.| (2017).
The detailed experimental environments are elaborated in the following subsections as well as in
supplementary material. We take the communication environment into our consideration as follows.
k out of all agents can have the chance to broadcast the message whose bandwidt is limited by (.

Tested algorithms and setup We perform experiments in aforementioned environments. We com-
pare SchedNet with a variant of DIALE] (Foerster et al.| 2016) which allows communication with
limited bandwidth. During the execution of DIAL, the limited number (k) of agents are scheduled
following a simple round robin scheduling algorithm, and the agent reuses the outdated messages of
non-scheduled agents to make a decision on the action to take, which is called DIAL(k). The other
baselines are independent DQN (IDQN) (Tampuu et al., 2017) and COMA (Foerster et al., [2017al)
in which no agent is allowed to communicate. To see the impact of scheduling in SchedNet, we

>The code is available on https://github.com/rhoowd/sched net

3The unit of bandwidth is 2 bytes which can express one real value (float16 type)

*We train and execute DIAL without discretize/regularize unit (DRU), because in our setting, agents can
exchange messages that can express real values.
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(a) PP: Comparison with other baselines. (b) PP: Comparison with scheduling schemes. (C) CCN: Comparison with scheduling
k=1,1=2 1=2 schemes. k = 1,1 =1
Figure 3: Learning curves during the learning of the PP and CCN tasks. The plots show the average time taken
to complete the task, where shorter time is better for the agents.

compare SchedNet with (i) RR (round robin), which is a canonical scheduling method in communi-
cation systems where all agents are sequentially scheduled, and (ii) FC (full communication), which
is the ideal configuration, wherein all the agents can send their messages without any scheduling
or bandwidth constraints. We also diversify the WSA in SchedNet into: (i) Sched-Softmax(1) and
(ii) Sched-Top(1) whose details are in Section [3.1] We train our models until convergence, and then
evaluate them by averaging metrics for 1,000 iterations. The shaded area in each plot denotes 95%
confidence intervals based on 6-10 runs with different seeds.

4.1 PREDATOR AND PREY

In this task, there are multiple agents who must capture a randomly moving prey. Agents’ observa-
tions include position of themselves and the relative positions of prey, if observed. We employ four
agents, and they have different observation horizons, where only agent 1 has a 5 x 5 view while
agents 2, 3, and 4 have a smaller, 3 x 3 view. The predators are rewarded when they capture the
prey, and thus the performance metric is the number of time steps taken to capture the prey.

Result in PP Figure illustrates the learning curve of 750,000 steps in PP. In FC, since the
agents can use full state information even during execution, they achieve the best performance.
SchedNet outperforms IDQN and COMA in which communication is not allowed. It is observed
that agents first find the prey, and then follow it until all other agents also eventually observe the
prey. An agent successfully learns to follow the prey after it observes the prey but that it takes a long
time to meet the prey for the first time. If the agent broadcasts a message that includes the location
information of the prey, then other agents can find the prey more quickly. Thus, it is natural that
SchedNet and DIAL perform better than IDQN or COMA, because they are trained to work with
communication. However, DIAL is not trained for working under medium contention constraints.
Although DIAL works well when there is no contention constraints, under the condition where only
one agent is scheduled to broadcast the message by a simple scheduling algorithm (i.e., RR), the
average number of steps to capture the prey in DIAL(1) is larger than that of SchedNet-Top(1),
because the outdated messages of non-scheduled agents is noisy for the agents to decide on actions.
Thus, we should consider the scheduling from when we train the agents to make them work in a
demanding environment.

Impact of intelligent scheduling In Figure we observe that IDQN, RR, and SchedNet-
Softmax(1) lie more or less on a comparable performance tier, with SchedNet-Softmax(1) as the
best in the tier. SchedNet-Top(1) demonstrates a non-negligible gap better than the said tier, im-
plying that a deterministic selection improves the agents’ collective rewards the best. In particular,
SchedNet-Top(1) improves the performance by 43% compared to RR. Figure [3b]lets us infer that,
while all the agents are trained under the same conditions except for the scheduler, the difference
in the scheduler is the sole determining factor for the variation in the performance levels. Thus,
ablating away the benefit from smart encoding, the intelligent scheduling element in SchedNet can
be accredited with the better performance.

Weight-based Scheduling We attempt to explain the internal behavior of SchedNet by investi-
gating instances of temporal scheduling profiles obtained during the execution. We observe that
SchedNet has learned to schedule those agents with a farther observation horizon, realizing the ra-
tionale of importance-based assignment of scheduling priority also for the PP scenario. Recall that
Agent 1 has a wider view and thus tends to obtain valuable observation more frequently. In Fig-
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ure [d we see that scheduling chances are distributed over (14, 3, 4, 4) where corresponding average
weights are (0.74, 0.27, 0.26, 0.26), implying that those with greater observation power tend to be
scheduled more often.

Message encoding We now attempt to understand what the
predator agents communicate when performing the task. Fig-

ure 5] shows the projections of the messages onto a 2D plane, T A
which is generated by the scheduled agent under SchedNet- Time

Top(1) with [ = 2. When the agent does not observe the prey Figure 4: Instances of scheduling re-
(blue circle in Figure), most of the messages reside in the sults over 25 time steps in PP

bottom or the left partition of the plot. On the other hand, the
messages have large variance when it observes the prey (red
‘x’). This is because the agent should transfer more informa-
tive messages that implicitly include the location of the prey,
when it observes the prey. Further analysis of the messages is
presented in our supplementary material.

Agent ID
—“NWp
L1 1l

|

4.2 COOPERATIVE COMMUNICATION AND NAVIGATION

In this task, each agent’s goal is to arrive at a pre-specified
destination on its one-dimensional world, and they collect a Figure 5: Encoded messages projected
joint reward when both agents reach their respective destina- onto 2D plane in PP task

tion. Each agent has a zero observation horizon around itself,

but it can observe the situation of the other agent. We introduce heterogeneity into the scenario,
where the agent-destination distance at the beginning of the task differs across agents. The metric
used to gauge the performance is the number of time steps taken to complete the CCN task.

Result in CCN  We examine the CCN environment whose results are shown in Figure Sched-
Net and other baselines were trained for 200,000 steps. As expected, IDQN takes the longest time,
and FC takes the shortest time. RR exhibits mediocre performance, better than IDQN, because
agents at least take turns in obtaining the communication opportunity. Of particular interest is Sched-
Net, outperforming both IDQN and RR with a non-negligible gap. We remark that the deterministic
selection with SchedNet-Top(1) slightly beats the probabilistic counterpart, SchedNet-Softmax(1).
The 32% improved gap between RR and SchedNet clearly portrays the effects of intelligent schedul-
ing, as the carefully learned scheduling method of SchedNet was shown to complete the CCN task
faster than the simplistic RR.

Scheduling in CCN As Agent 2 is farther from its desti-

nation than Agent 1, we observe that Agent 1 is scheduled o

more frequently to drive Agent 2 to its destination (7 vs. 18), ‘é?j A
as shown in Figure [§] This evidences that SchedNet flex- <
ibly adapts to heterogeneity of agents via scheduling. To-
wards more efficient completion of the task, a rationale of more
scheduling for more important agents should be implemented. Figure 6: Instances of scheduling re-
This is in accordance with the results obtained from PP envi- sults over 25 time steps in CCN
ronments: more important agents are scheduled more.

5 CONCLUSION

We have proposed SchedNet for learning to schedule inter-agent communications in fully-
cooperative multi-agent tasks. In SchedNet, we have the centralized critic giving feedback to the
actor, which consists of message encoders, action selectors, and weight generators of each individ-
ual agent. The message encoders and action selectors are criticized towards compressing observa-
tions more efficiently and selecting actions that are more rewarding in view of the cooperative task
at hand. Meanwhile, the weight generators are criticized such that k agents with apparently more
valuable observation are allowed to access the shared medium and broadcast their messages to all
other agents. Empirical results and an accompanying ablation study indicate that the learnt encoding
and scheduling behavior each significantly improve the agents’ performance. We have observed that
an intelligent, distributed communication scheduling can aid in a more efficient, coordinated, and
rewarding behavior of learning agents in the MARL setting.
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SUPPLEMENTARY MATERIAL

A SCHEDNET TRAINING ALGORITHM

The training algorithm for SchedNet is provided in Algorithm [I] The parameters of the message
encoder are assumed to be included in the actor network. Thus, we use the notation f; (o', c) =
L (0%, f&.(0") ® c) to simplify the presentation.

as ) Jenc

Algorithm 1 SchedNet

1: Initialize actor parameters ),,, scheduler parameters 6y, and critic parameters 6.
2: Initialize target scheduler parameters G(Ng, and target critic parameters 6,
3: for episode =1 to M do

4 Observe initial state s

5: fort =1to 7T do
6‘
7
8

w;  the priority w* = f, (o) of each agent i
Get schedule ¢; from wy
: u; < the action u’ = f{ (0%, ¢;) of each agent i
9: Execute the actions u, and observe the reward r; and next state s,
10: Store (8¢, Uy, ¢, St4+1, Ct, Wy) in the replay buffer B
11: Sample a minibatch of S samples (sy, Uk, Tk, Sk+1, Ck, Wi) from B
12: Setyp =1k + YV (Spt1)
13: Set g, = 1% + YQ(Sk+1, fug(Ok+1, Cht1))
14: Update the critic by minimizing the loss:

L= 3 (0~ Vo) + (i — QUs,we)?)
k

15: Update the actor along with the encoder using sampled policy gradient:

Vo, J(-,0u) = Banpr unn([Vo, log m(ulo, €)[r + V5, (s') — Vo (s)]]

16: Update scheduler using sampled policy gradient:
vagJ(ewg7 .) = Ewwy, [Vewg/’l’(o)V'UJQec (87 w) ‘w:ll’(o)]
17: Update target network parameters:

G(Vg — TOwg + (1 — T)H(,vg

0« 70, + (1 —1)0.,

18: end for
19: end for

B DETAILS OF ENVIRONMENTS AND IMPLEMENTATION

e Obs [ [ [ [o] [ [v[]
b o Agent 1
(4] (Goaliy LL T X[ F@F T T] [(TTI@ [ TTT]
@ heduled
Schec?uled (Drrey ‘ O ) 8 cgrcmiulrjﬂiation
Agent Agent 2 Tl ~T@®
L0 Q&3 (T T 9ok T W] [T [ [I-fole[wl ]
Agent All agent can see prey
(a) Predator and prey (PP) (b) Cooperative communication and navigation
(CCN)

Figure 7: Illustrations of the experimental environment
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B.1 ENVIRONMENTS: PP AND CCN

Predator and prey We assess SchedNet in this predator-prey setting as in|Stone & Veloso|(2000),
illustrated in Figure This setting involves a discretized grid world and multiple cooperating
predators who must capture a randomly moving prey. Agents’ observations include position of
themselves and the relative positions of the prey, if observed. The observation horizon of each
predator is limited, thereby emphasizing the need for communication. The termination criterion for
the task is that all agents observe the prey, as in the right of Figure The predators are rewarded
when the task is terminated. We note that agents may be endowed with different observation hori-
zons, making them heterogeneous. We employ four agents in our experiment, where only agent 1
has a 5 x 5 view while agents 2, 3, and 4 have a smaller, 3 x 3 view. The performance metric is the
number of time steps taken to capture the prey.

Cooperative communication and navigation We adopt and modify the cooperative communica-
tion and navigation task in|Lowe et al.|(2017), where we test SchedNet in a simple one-dimensional
grid as in Figure[7b] In CCN, each of the two agents resides in its one-dimensional grid world. Each
agent’s goal is to arrive at a pre-specified destination (denoted by the square with a star or a heart
for Agents 1 and 2, respectively), and they collect a joint reward when both agents reach their target
destination. Each agent has a zero observation horizon around itself, but it can observe the situation
of the other agent. We introduce heterogeneity into the scenario, where the agent-destination dis-
tance at the beginning of the task differs across agents. In our example, Agent 2 is initially located
at a farther place from its destination, as illustrated in Figure The metric used to gauge the
performance of SchedNet is the number of time steps taken to complete the CCN task.

B.2 EXPERIMENT DETAILS

Table [T| shows the values of the hyperparameters for the CCN and the PP task. We use Adam opti-
mizer to update network parameters and soft target update to update target network. The structure
of the networks is the same across tasks. For the critic, we used three hidden layers, and the critic
between the scheduler and the action selector shares the first two layers. For the actor, we use one
hidden layer; for the encoder and the weight generator, three hidden layers each. Networks use rec-
tified linear units for all hidden layers. Because the complexity of the two tasks differ, we sized the
hidden layers differently. The actor network and the critic network for the CCN have hidden layers
with 8 units and 16 units, respectively. The actor network and the critic network for the PP have
hidden layers with 32 units and 64 units, respectively.

Table 1: List of hyperparameters

Hyperparameter Value Description

training step 750000  Maximum time steps until the end of training
episode length 1000 Maximum time steps per episode

discount factor 0.9 Importance of future rewards

learning rate for actor 0.00001  Actor network learning rate used by Adam optimizer
learning rate for critic 0.0001 Critic network learning rate used by Adam optimizer
target update rate 0.05 Target network update rate to track learned network
entropy regularization weight  0.01 Weight of regularization to encourage exploration
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Figure 8: Performance evaluation of SchedNet. The graphs show the average time taken to complete the task,
where shorter time is better for the agents.

C ADDITIONAL EXPERIMENT RESULTS

C.1 PREDATOR AND PREY

Impact of bandwidth (L) and number of schedulable agents () Due to communication con-
straints, only k agents can communicate and scheduled agents can broadcast their message, each of
which has a limited size [ due to bandwidth constraints. We see the impact of [ and & on the perfor-
mance in Figure[8a] As L increases, more information can be encoded into the message, which can
be used by other agents to take action. Since the encoder and the actor are trained to maximize the
shared goal of all agents, they can achieve higher performance with increasing /. In Figure we
compare the cases where k = 1, 2, 3, and FC in which all agents can access the medium, with [ = 1.
As we can expect, the general tendency is that the performance grows as k increases.

Table 2: Performance with/without encoder

SchedNet  Schedule w/
-Top(1) auto-encoder

1 2.030 3.408

FC

Impact of joint scheduling and encoding To study the effect of jointly coupling scheduling and
encoding, we devise a comparison against a pre-trained auto-encoder (Bourlard & Kamp, [1988;
Hinton & Zemell, [1994). An auto-encoder was trained ahead of time, and the encoder part of this
auto-encoder was placed in the Actor’s ENC module in Figure I} The encoder part is not trained
further while training the other parts of network. Henceforth, we name this modified Actor “AE”.
Figure [8c|shows the learning curve of AE and other baselines. Table 2] highlights the impact of joint
scheduling and encoding. The numbers shown are the performance metric normalized to the FC case
in the PP environment. While SchedNet-Top(1) took only 2.030 times as long as FC to finish the
PP task, the AE-equipped actor took 3.408 times as long as FC. This lets us ascertain that utilizing a
pre-trained auto-encoder deprives the agent of the benefit of joint the scheduler and encoder neural
network in SchedNet.

What messages agents broadcast In Section we attempted to understand what the predator
agents communicate when performing PP task where £ = 1 and [ = 2. In this section, we look into
the message in detail. Figure [0 shows the projections of the messages generated by the scheduled
agent based on its own observation. In the PP task, the most important information is the location of
the prey, and this can be estimated from the observation of other agents. Thus, we are interested in
the location information of the prey and other agents. We classify the message into four classes based
on which quadrant the prey and the predator are included, and mark each class with different colors.
Figure Oa] shows the messages for different relative location of prey for agents’ observation, and
Figure [9b| shows the messages for different locations of the agent who sends the message. We can
observe that there is some general trend in the message according to the class. We thus conclude that
if the agents observe the prey, they encode into the message the relevant information that is helpful
to estimate the location of the prey. The agents who receive this message interpret the message to
select action.
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Figure 9: Projection of encoded messages into 2D plane in PP.

C.2 PARTIAL OBSERVABILITY ISSUE IN SCHEDNET

(b) Messages for different location of agent.

In MARL, partial observability issue is one of the major problems, and there are two typical ways
to tackle this issue. First, using RNN structure to indirectly remember the history can alleviate
the partial observability issues. Another way is to use the observations of other agents through
communication among them. In this paper, we focused more on the latter because the goal of this
paper is to show the importance of learning to schedule in a practical communication environment

in which the shared medium contention is inevitable.

Enlarging the observation through communication is
somewhat orthogonal to considering temporal correlation.
Thus, we can easily merge SchedNet with RNN which can
be appropriate to some partially observable environments.
We add one GRU layer into each of individual encoder,
action selector, and weight generator of each agent, where
each GRU cell has 64 hidden nodes.

Figure [10]shows the result of applying RNN. We imple-
ment IDQN with RNN, and the results show that the aver-
age steps to complete tasks of IDQN with RNN is slightly
smaller than that of IDQN with feed-forward network. In
this case, RNN helps to improve the performance by tack-

Steps to terminate

100+

— IDQN
IDQN-RNN

— SchedNet-RNN

— SchedNet

— FC

0 T
0 2.5x10°
Training step

T
5.0x10°

7.5x10°

Figure 10: Impact of applying RNN (k =
landl = 2)

ling the partial observable issue. On the other hand, SchedNet-RNN and SchedNet achieve similar
performance. We think that the communication in SchedNet somewhat resolves the partial observ-
able issues, so the impact of considering temporal correlation with RNN is relatively small. Al-
though applying RNN to SchedNet is not really that helpful in this simple environment, we expect
that in a more complex environment, using the recurrent connection is more helpful.

C.3 COOPERATIVE COMMUNICATION AND NAVIGATION

Result in CCN  Figure [[T]illustrates the learning curve
of 200,000 steps in CCN. In FC, since all agents can broad-
cast their message during execution, they achieve the best
performance. IDQN and COMA in which no commu-
nication is allowed, take a longer time to complete the
task compared to other baselines. The performances of
both are similar because no cooperation can be achieved
without the exchange of observations in this environment.
As expected, SchedNet and DIAL outperform IDQN and
COMA. Although DIAL works well when there is no con-
tention constraint, under the contention constraint, the av-
erage number of steps to complete the task in DIAL(1) is
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larger than that of SchedNet-Top(1). This result shows the same tendency with the result in PP
environment.

D SCHEDULER FOR DISTRIBUTED EXECUTION

Issues. The role of the scheduler is to consider the constraint due to accessing a shared medium,
so that only £ < m agents may broadcast their encoded messages. k£ is determined by the wireless
communication environment. For example, under a single wireless channel environment where each
agent is located in other agents’ interference range, k = 1. Although the number of agents that can
be simultaneously scheduled is somewhat more complex, we abstract it with a single number &
because the goal of this paper lies in studying the importance of considering scheduling constraints.

There are two key challenges in designing the scheduler: (i) how to schedule agents in a distributed
manner for decentralized execution, and (ii) how to strike a good balance between simplicity in
implementation and training, and the integrity of reflecting the current practice of MAC (Medium
Access Control) protocols.

o~ l— ™
oz [l

on— Il wn 1

Figure 12: Proposed scheduling architecture. Each agent i calculates its scheduling weight w; from weight
generator (WG), and the corresponding scheduling profile ¢ € {0,1}" is determined by the scheduling algo-
rithm (k) (WSA(k)), satisfying the condition ||c||1 = k.

ay
I

Weight-based scheduling To tackle the challenges addressed in the previous paragraph, we pro-
pose a scheduler, called weight-based scheduler (WSA), that works based on each agent’s individ-
ual weight coming from its observation. As shown in Figure [I2} the role of WSA is to map from
w = [w;], to e. This scheduling is extremely simple, but more importantly, highly amenable to the
philosophy of distributed execution. The remaining checkpoint is whether this principle is capable
of efficiently approximating practical wireless scheduling protocols. To this end, we consider the
following two weight-based scheduling algorithms among many different protocols that could be
devised:

o Top(k). Selecting top k agents in terms of their weight values.

o Softmax(k). Computing softmax values o(w); = ﬁ for each agent i, and then randomly
j=1

selecting k agents with probability in proportion to their softmax values.

Top(k) can be a nice abstraction of the MaxWeight (Tassiulas & Ephremides), [1992) scheduling
principle or its distributed approximation (Y1 et al., 2008), in which case it is known that different
choices of weight values result in achieving different performance metrics, e.g., using the amount of
messages queued for being transmitted as weight. Softmax(k) can be a simplified model of CSMA
(Carrier Sense Multiple Access), which forms a basis of 802.11 Wi-Fi. Due to space limitation, we
refer the reader to Jiang & Walrand| (2010) for detail. We now present how Top(k) and Softmax(k)
work.

D.1 CARRIER SENSE MULTIPLE ACCESS (CSMA)

CSMA is the one of typical distributed MAC scheduling in wireless communication system. To
show the feasibility of scheduling Top(k) and Softmax(k) in a distributed manner, we will explain
the variant of CSMA. In this section, we first present the concept of CSMA.

How does CSMA work? The key idea of CSMA is “listen before transmit”. Under a CSMA
algorithm, prior to trying to transmit a packet, senders first check whether the medium is busy or
idle, and then transmit the packet only when the medium is sensed as idle, i.e., no one is using the
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channel. To control the aggressiveness of such medium access, each sender maintains a backoff
timer, which is set to a certain value based on a pre-defined rule. The timer runs only when the
medium is idle, and stops otherwise. With the backoff timer, links try to avoid collisions by the
following procedure:

e Each sender does not start transmission immediately when the medium is sensed idle, but
keeps silent until its backoff timer expires.

o After a sender grabs the channel, it holds the channel for some duration, called the holding
time.

Depending on how to choose the backoff and holding times, there can be many variants of CSMA
that work for various purposes such as fairness and throughput. Two examples of these, Top(k) and
Softmax(k), are introduced in the following sections.

D.2 A VERSION OF Distributed Top(k)

In this subsection, we introduce a simple distributed scheduling algorithm, called Distributed Top(k),
which can work with SchedNet-Top(k). It is based on CSMA where each sender determines backoff
and holding times as follows. In SchedNet, each agent generates the scheduling weight w based on
its own observation. The agent sets its backoff time as 1 — w where w 1is its schedule weight, and
it waits for backoff time before it tries to broadcast its message. Once it successfully broadcasts
the message, it immediately releases the channel. Thus, the agent with the highest w can grab the
channel in a decentralized manner without any message passing. By repeating this for k times, we
can realize decentralized Top(k) scheduling.

To show the feasibility of distributed scheduling, we implemented the Distributed Top(k) on Con-
tiki network simulator (Dunkels et al., 2004) and run the trained agents for the PP task. In our
experiment, Top(k) agents are successfully scheduled 98% of the time, and the 2% failures are due
to probabilistic collisions in which one of the colliding agents is randomly scheduled by the de-
fault collision avoidance mechanism implemented in Contiki. In this case, agents achieve 98.9%
performance compared to the case where Top(k) agents are ideally scheduled.

D.3 0OCSMA ALGORITHM AND Softmax(k)

In this section, we explain the relation between Softmax(k) and the existing CSMA-based wireless
MAC protocols, called oCSMA. When we use Softmax(k) in the case of k& = 1, the scheduling
algorithm directly relates to the channel selection probability of oCSMA algorithms. First, we
explain how it works and show that the resulting channel access probability has a same form with
Softmax(k).

How does oCSMA work? It is also based on the basic CSMA algorithm. Once each agent gen-
erates its scheduling weight w;, it sets b; and h; to satisfy w; = log(b;h;). It sets its backoff and
holding times following exponential distributions with means 1/b; and h;, respectively. Based on
these backoff and holding times, each agent runs the oCSMA algorithm. In this case, if all agents
are in the communication range, the probability that agent ¢ is scheduled over time is as follows:

exp(w;)
Z?:l eXp<w]) '
We refer the readers to|Jang et al.| (2014) for detail.

si(w) =
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