
Under review as a conference paper at ICLR 2020

SUPERBLOOM: BLOOM FILTER MEETS TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

We extend the idea of word pieces in natural language models to machine learning
tasks on opaque ids. This is achieved by applying hash functions to map each id
to multiple hash tokens in a much smaller space, similarly to a Bloom filter. We
show that by applying a multi-layer Transformer to these Bloom filter digests, we
are able to obtain models with high accuracy. They outperform models of a similar
size without hashing and, to a large degree, models of a much larger size trained
using sampled softmax with the same computational budget. Our key observation
is that it is important to use a multi-layer Transformer for Bloom filter digests to
remove ambiguity in the hashed input. We believe this provides an alternative
method to solving problems with large vocabulary size.

1 INTRODUCTION

In natural language processing, one recent development, made popular by Wu et al. (2016) is to use a
smaller sub-word vocabulary (Sennrich et al., 2016), or so called word piece model. In such a model,
only frequent words and word pieces are kept in the vocabulary. Each word is then segmented as a
sequence of word pieces. Both the input and the prediction are then represented in the smaller word
piece space.

The word piece model has multiple benefits. Besides its generalizability and compact size, one
crucial benefit is that we can afford to compute the full softmax loss on its much smaller vocabulary.
This leads to more precise predictions, (measured e.g. using recall at k for small values of k),
compared to alternative approaches such as the sampled softmax method (Bengio & Sénécal, 2003;
2008) or the hierarchical softmax (Morin & Bengio, 2005). Word pieces have been shown to work
well for natural language understanding (NLU) tasks. For example, the recent break-through of
BERT (Devlin et al., 2018) uses a vocabulary of about 30K word pieces. The goal of this paper is
to extend this idea to machine learning tasks where we have to model a large number of categorical
values, which are represented by opaque ids (e.g. product ids, video ids) or named entities (e.g.
Wikipedia or Knowledge Graph entities).

While word pieces are a natural way for breaking up words, it is unclear how this could be done
for a set of arbitrary categorical values (referred to as vocabulary throughout the paper). We adopt a
technique proposed by Serrà & Karatzoglou (2017) of using multiple hashing to reduce the vocab-
ulary size while still keeping each entity identifiable. The idea is to map each id to multiple hash
tokens in a smaller space, similarly to a Bloom filter (Bloom, 1970), and then embed and predict
at the token, instead of the id, level. This way, the vocabulary is reduced to a much smaller size,
similar to the effect of word pieces. However, hashing introduces much ambiguity due to random
collisions. To solve this problem, we propose to use hashing in combination with a multi-layer
Transformer (Vaswani et al., 2017), based on observations that the Transformer can disambiguate
word meanings well using context. A hashed token can be viewed as a word piece with many dif-
ferent meanings. We hope that a Transformer model is also able to remove the ambiguity of hash
tokens using the context, i.e. the set of other input tokens.

With these motivations, we build Superbloom in which we apply a Transformer model to the Bloom
filter digest of the input. On the output side, the predictions are on the hashed tokens, similar
to (Serrà & Karatzoglou, 2017). We demonstrate, through experiments, that Superbloom works
well for tasks with a large vocabulary size – it can be efficiently trained and outperforms non-
hashed models of a similar size, and larger models trained with sampled softmax with the same
computational budget.

1

Under review as a conference paper at ICLR 2020

The key insight from our experiments is that the multiple-layer Transformer is effective for resolv-
ing the ambiguity in the hashed input, hence works particularly well for Bloom filter digests. For
instance, we find that the model quality gap between a one layer and a twelve layer Transformer
model is significantly larger when using Bloom filter digests, compared to that when the vocabulary
is not hashed. This capability of the Transformer to “unhash” the Bloom digest is a key differ-
ence to earlier work on feature hashing (Weinberger et al., 2009) and multiple hashing (Serrà &
Karatzoglou, 2017; Svenstrup et al., 2017; Daniely et al., 2017). In addition, we propose an efficient
approximate inference algorithm, by applying “beam search” in the much smaller token space. Such
fast inference is another useful property of Superbloom.

The Superbloom model is trained using BERT’s masked language model task, i.e. on predicting
hash tokens masked out from the input. Since the hashes have a much smaller vocabulary, this
aspect is closely related to the error-correcting output codes (ECOC) (Dietterich & Bakiri, 1994;
Berger, 1999)1. In the ECOC model, a multi-class classification is converted into many binary
classification problems where redundancy is added to improve the robustness of the model. The
prediction task of Superbloom can be viewed as reducing a large multi-class classification problem
to a few smaller multi-class classification problems. However, unlike the ECOC models, we do not
reduce the problem all way down to binary predictions. This might be the additional reason that
Superbloom is able to achieve high accuracy.

1.1 RELATED WORK

Learning with a large vocabulary is a well-studied but still open research problem. Weinberger
et al. (2009) proposed feature hashing which uses random hashing to reduce the input vocabulary
size, and then learns embeddings for hashed ids in the smaller vocabulary. Several follow-up works
propose to better resolve collisions by using multiple hashes: Svenstrup et al. (2017) proposed to
learn a weighted sum of hashed embeddings; Shu & Nakayama (2018) used an unweighted sum,
but proposed instead to learn the hash function itself; and Chen et al. (2018) proposed to learn both
the hash function and the combiner, for which they use either a linear function or an LSTM. A key
difference with the aforementioned work is that we do not resolve the hashing early at the input of
the model; instead, we feed all hashed embeddings to the Transformer and let it learn to resolve the
hashing collisions using the context. Our experiments show that multi-layer Transformer models
indeed have the capacity to resolve hashing collisions while learning a high quality model.

Besides reducing the input space and memory usage, another set of related work focuses on deal-
ing with large output vocabularies and improving training efficiency. A commonly used method is
sampled softmax (Bengio & Sénécal, 2003; 2008) where for each gradient update, only a subset of
the output vocabulary is considered. Another line of work is hierarchical softmax where classes are
organized in clusters (Goodman, 2001) or in a tree structure (Morin & Bengio, 2005) to allow for
efficient pruning of the output vocabulary. Through our experiments, we show that Superbloom,
which allows us to train a full softmax on the hashed vocabularies, can lead to more accurate results
than using sampled softmax on the larger output vocabulary. Serrà & Karatzoglou (2017) proposed
to use Bloom filters as a general tool in deep models, for both the input and output. Our work demon-
strates the efficiency of a multi-layer Transformer-like architecture to use contextual information to
resolve hash ambiguity. Indeed, we show that shallow models, even with attention, fail.

2 SUPERBLOOM MODEL ARCHITECTURE

Given discrete sets SI ,SO, representing respectively the input and output spaces (e.g. word tokens
or entities), the goal is to model a function that maps a sequence of n elements2 in SI , to a sequence
of probability distributions over SO. The space of probability distributions over a set S will be
denoted by ∆(S) = {p ∈ R|S|+ :

∑
s∈S ps = 1}.

The input and output entities are typically represented using embedding matrices EI ∈ R|SI |×d and
EO ∈ R|SO|×d, which map each entity to an embedding vector of dimension d. This makes training
and inference expensive if the number of entities is very large. In order to reduce the model size and

1This connection is suggested by an anonymous reviewer.
2We assume a fixed sequence length for simplicity. This is also a useful assumption for practical implemen-

tation on a TPU, which requires fixed input dimensions.

2

Under review as a conference paper at ICLR 2020

L layers

s1

...

sn

h

h1(s1)

...

hm(s1)

...

h1(sn)

...

hm(sn)

EI

x11
...
x1k
...

xn1
...
xnk

A
tt
en
ti
o
n

la
ye
r
n
o
rm

F
ee
d
F
or
w
ar
d

la
ye
r
n
or
m

y11
...
y1k
...

yn1
...
ynk

EO

p11
...
p1k
...

pn1
...
pnk

so
ft
m
ax

η1(t1)

...

ηm(t1)

...

η1(tn)

...

ηm(tn)

η

t1
...

tn

Loss

(SI)n (HI)mn Rmn×d Rmn×d ∆(HO)mn (HO)mn (SO)n

Input hashing Input embedding

Input layer Transformer layers Output layer Output hashing

Figure 1: Superbloom model architecture

improve efficiency, we hash each element as follows. Given m hash functions hj , j ∈ {1, . . . ,m},
each element s is represented by the hashes (h1(s), . . . , hm(s)), which we refer to as a Bloom
digest, given its similarity to the Bloom filter data structure. The set of values the hashes can take
is much smaller than the original spaces SI ,SO, which allows us to reduce the vocabulary size and
thus the size of embedding matrices.

We decompose the Superbloom model architecture into M = O ◦ (TL ◦ · · · ◦ T1) ◦ I , as illustrated
in Figure 1: an input layer (Sec. 2.1) I : (SI)n → Rmn×d which maps each item in the input
sequence to m embeddings of dimension d; L transformer layers (Sec. 2.2) Ti : Rmn×d → Rmn×d

which apply transformations in the embedding space; and an output layer (Sec. 2.3) O : Rmn×d →
∆(HO)mn mapping each embedding to a probability distribution. Since the model predicts distri-
butions overHO instead of SO, both training (Sec. 2.4) and inference (Sec. 2.5) need to be adapted
accordingly.

2.1 INPUT LAYER I : (SI)n → Rmn×d

The input layer consists of m hash functions3 hj : SI → HI , j ∈ {1, . . . ,m} and an embedding
matrix EI ∈ R|HI |×d. The input sequence (s1, . . . , sn) is mapped to the sequence of embeddings
(Eh1(s1), . . . , Ehm(s1), Eh1(sn), . . . , Ehm(sn)). For ease of notation, we will write xi,j = Ehj(si) ∈
Rd, and denote the sequence by (xi,j)

i=1,...,n
j=1,...,m. Throughout, we use subscripts i, j to denote the j-th

hash of the i-th element.

2.2 TRANSFORMER LAYERS T : Rmn×d → Rmn×d

The Transformer is an attention-based model that was initially proposed for sequence transduction
tasks, and that has been used in various other settings such as BERT. For the intermediate layers of
Superbloom, we use the same architecture as the original transformer model (Vaswani et al., 2017),
which we briefly summarize in Appendix A. Each transformer layer is a function T : Rmn×d →
Rmn×d which maps a sequence ofmn embeddings in Rd to another sequence in the same space. We
will denote by (yi,j)

i=1,...,n
j=1,...,m the output sequence of the last transformer layer, where each yi,j ∈ Rd.

2.3 OUTPUT LAYER: O : Rmn×d → ∆(HO)mn

Similarly to the input layer, we have m hash functions ηj : SO → HO, j ∈ {1, . . . ,m} for
the output space. We modify the original goal of predicting distribution over SO to predicting
distributions over HO, as follows. If (yi,j)

i=1,...,n
j=1,...,m is the output of the last transformer layer, then

the output layer O maps each yi,j to

pi,j := σ(yi,j(E
O)>) ∈ ∆(HO),

3The hash functions and their inverse mappings are randomly generated and stored as look-up tables. When
generating the hash functions, we make sure that each hash bucket is evenly sized, and that there are no complete
collisions.

3

Under review as a conference paper at ICLR 2020

where EO ∈ R|HO|×d is an output embedding matrix, and σ is the softmax function. Note that
in some problems, the input and output spaces coincide, so it can be advantageous to use identical
input and output hash functions, hj = ηj , and the same embedding matrices EI = EO.

2.4 TRAINING

If the target sequence in SO is (t1, . . . , tn), then the corresponding target sequence in HO is
(ηj(ti))

i=1,...,n
j=1,...,m. We define the training objective4 as

n∑
i=1

m∑
j=1

`(pi,j , ηj(ti)).

where pi,j ∈ ∆(HO) are the model’s output distributions, and ` : ∆(HO) × HO → R is a loss
function, e.g. the cross-entropy loss. Note that we can pre-process the training data to map the
elements in the original spaces (SI)n, (SO)n to the hash spaces (HI)mn, (HO)mn, and training
proceeds entirely in the hash spaces.

Model size and efficiency Compared to a model trained on the original space, the main advantage
of Superbloom is a reduction in the size of the embedding matrices EI , EO. For instance, if a α-to-
one hashing is used (i.e., each hash bucket contains α elements), then |H| = |S|/α and the size of the
input matrices is reduced by a factor α. This not only reduces the memory cost, but may also improve
the efficiency of gradient updates during training. Consider a cross-entropy loss, for each training
example, all elements in the output space have a non-zero gradient due to the partition function in
softmax, and thus the full matrix EO needs to be updated at each step, unless approximate methods
such as sampled softmax (Bengio & Sénécal, 2003) are used. Our experiments (see Section 3.3)
show that the cost of updating EO dominates that of training, and a reduction in vocabulary size
allows us to significantly reduce training time without resorting to negative sampling.

Algorithm 1 Approximate and exact inference in Superbloom
1: Input: Beam width B, a maximum iteration number N , model outputs pj ∈ ∆(HO) and hash

inverse look-up tables η−1j , for j = 1, . . . ,m.
2: For each j, sort pj
3: for b = B, . . . , NB do
4: Let pbj be the b-th largest value in pj .
5: For each j, compute Sb

j = {s ∈ SO : pj(ηj(s)) ≥ pbj}.
6: Score all candidates in Sb = Sb

1 ∪ · · · ∪ Sb
m. Let s? = arg maxs∈Sb γ(s).

7: if γ(s?) ≥∑j log pbj then break. . This guarantees γ(s) ≤ γ(s?) for all s.

8: return s?.

2.5 INFERENCE

For each position i in the sequence, the model outputs m distributions (pi,j)j=1,...m ∈ ∆(HO)m,
and our goal is to use these distributions to rank the elements of SO. To simplify notation, we
assume in this section that i is fixed and will omit it by writing pj instead of pi,j .

One simple way to rank items, as proposed by Serrà & Karatzoglou (2017), is to compute, for
each s, γ(s) :=

∑m
j=1 log pj(ηj(s)). When SO is very large, this can be expensive, so instead

of exhaustively scoring all items s, we propose an iterative beam-search, given in Algorithm 1
and illustrated in Figure 2, that can be used to compute the top-k elements5, either exactly, or
approximately by fixing a maximum iteration number.

Let us fix a beam width b, and let pbj be the b-th largest value of pj , and let Sb
j = {s ∈ SO :

pj(ηj(s)) ≥ pbj}. In words, Sb
j are elements whose hash is in the top b values according to pj .

4Note that unlike ECOC (Dietterich & Bakiri, 1994), the task is not to predict the individual bits in the
output Bloom digest, but rather to predict (a probability distribution over) the index of the m non-zero bits.

5For simplicity, we describe the algorithm for k = 1, but we apply it for larger k in our experiments.

4

Under review as a conference paper at ICLR 2020

SB
1

SB
2 SB

p1
p 2

SB

S2B

p1

p 2

Figure 2: Illustration of approximate and exact inference, with a number of hashes m = 2, a four-
to-one hashing scheme, and a beam width B = 2.

Sb
j is obtained by pre-computing and storing inverse look-up tables6 η−1j for each hash function, and

observing that Sb
j = ∪h:pj(h)≥pb

j
η−1j (h). This defines a set of candidates to score Sb := Sb

1 ∪ · · · ∪
Sb
m, and guarantees the following upper-bound: for all s /∈ Sb, γ(s) ≤∑j log pbj . If the best scored

element s? := arg maxs∈Sb γ(s) satisfies γ(s?) ≥ ∑j log pbj , then we have a certificate that s? is
the best element over the entire set and the algorithm terminates. Otherwise, we increase the beam
width and score a new set of candidates.

An example is illustrated in Figure 2 for m = 2, a beam width B = 2, and hash functions with
α = 4 (four elements share the same hash value along each dimension). The subset of candidates
to score during the first iteration is highlighted in blue. The top element s? is circled, and the solid
line shows its γ level set. In the left figure, the level set does not intersect the shaded area (unscored
elements), thus we have a certificate that s? is the exact maximizer. In the right figure, the level set
does intersect the shaded area, so to find the exact maximizer, a second iteration is performed where
the search region is extended (highlighted in red).

Computational complexity Consider an α-to-one hashing scheme. Sorting the vectors pj (line 2)
costs O(m|HO| log |HO|). Each iteration consists of computing Sb

j (line 5) then scoring candidates
in Sb (line 6) which costs O(m2Bα). The total cost for N iterations is O(m|HO| log |HO| +
m2NBα) which can be significantly cheaper than scoring all candidates O(|SO|). For example,
with the parameter setting described in Section 3.3, approximate inference is 10 times faster than
exhaustive scoring. In Appendix B, we study the effect of the beam width on the quality of the
model.

Remark 1. While we describe a particular choice of ranking function γ, it is possible to generalize
the algorithm to other ranking functions that are increasing, in a sense described in Appendix C.

3 WIKIPEDIA ENTITY PREDICTION

We apply Superbloom to the Wikipedia entity prediction task, in which we use surrounding links
on a Wikipedia page to predict a held-out link. This task is derived from the same data set as many
NLU tasks, but uses entities instead of natural language. We believe this study is complementary
to previous NLU models trained on Wikipedia, that focus on modeling language. Indeed, we show
through examples that the model can learn entity relations well and demonstrates a strong use of
contextual information.

The task needs to model about 5.3 million entity pages on Wikipedia. This vocabulary size is
two orders of magnitude larger than in previous work that applies a Transformer model with full
softmax loss (Devlin et al., 2018; Zhang et al., 2018; Sun et al., 2019). Other works, such as Zhang
et al. (2019) and Soares et al. (2019), train a Transformer model with a large number of entities
using sampled softmax, with either in-batch or in-example negative sampling. But as we shall show,
sampled softmax, even with a large number of 128K negative samples, results in much worse quality.

6The cost of storing inverse look-up tables is dominated by that of storing embedding tables as a long as
mα < d for an α-to-one hashing scheme, since the inverse lookups have total size O(mα|HO|), while the
embedding tables have size O(d|HO|). This is always the case in our experiments.

5

Under review as a conference paper at ICLR 2020

3.1 TASK

We take all the entity pages on the website en.wikipedia.org. For each page, we obtain the URL
links to other Wikipedia entity pages. We only use “raw” links, i.e. links that explicitly appear
on the page. We obtain 5,281,889 pages and 462,588,415 links. Since the Wikipedia site usually
removes duplicates of links on each page, the distribution of pages is rather long tail. For example,
the top 100 most frequent pages represent only 3.8% of the total links, and the top 10% most frequent
pages represent about 60% of the total links.

We hold out 10% random entity pages for testing. For the training data, we apply a masking similar
to BERT – from each page, we take a random contiguous segment of entities, of length up to n = 32,
and mask 15% of the segment. The task is then to predict the masked entities. We also apply the
same input perturbation, where for the input, each masked out link is either replaced with a special
[MASK] entity (with 80% probabilty), replaced with a random entity (with 10% probability), or
left unchanged (with 10% probability). For evaluation, we hold out (i.e. replace with the [MASK]
token) one random entity from a random segment on a test page. For quality evaluation, we use
recall at k metric (abbreviated as rec@k below), which represents the chance the held out entity is
in one of the top k predictions.

3.2 MODEL

To apply Superbloom, we first create m hash maps from entities to hash tokens with a given hash
density α. Each hash map is obtained by applying a random permutation to the vocabulary and map
every consecutive α entities to the same token. This way we guarantee each hash token to have
the same number of collisions α.7 Special tokens [CLS], [MASK], [SEP], are each mapped to m
tokens with no collisions. For example we create [MASK1], .., [MASKm] tokens corresponding to
[MASK].

We apply the hashing to the input and target, to map each entity tom tokens as described in Section 2.
We then apply the Transformer model to the input to predict the masked tokens. Unlike in BERT,
we do not use position embeddings, in other words, we treat the input as a set instead of a sequence.
Since the input and output spaces coincide, we use the same hash functions and the same embedding
matrices in the input and output layer.

We carry out experiments on both the full vocabulary as well as a smaller subset consisting of the
top 500K entity pages. On the smaller vocabulary, we are able to train a baseline model with large
capacity, with no hashing and no sampling, which is useful for understanding the best achievable
model quality.

We train all of our models on 16 Cloud TPUs. We use a batch size of 1024 for experiments with
full vocabulary and 4096 for experiments with 500K vocabulary. All the experiments use the Adam
optimizer (Kingma & Ba, 2014), and use a decreasing learning rate sequence with inverse square
root decay, and initial learning rate 1e-4 for the full vocabulary and 2e-4 for the 500K vocabulary.
All the experiments have been run for more than 1 million steps to reach near convergence.

3.3 SUPERBLOOM IS MORE ACCURATE

We experiment with two models of similar size: one is a baseline model (baseline) with full vo-
cabulary of sizeN equal to the number of entities; the other is a Superbloom model (superbloom)
with a heavy 50 to 1 hashing. We set other hyper-parameters (such as the embedding dimension) so
both models have a similar size. We also compare to a large model (sampled-softmax) trained
using sampled softmax. Table 1 lists the hyper-parameters of each model. Recall that α denotes
the number of collisions (1 if there is no hashing), d the embedding dimension, nA the number of
attention heads, dF the dimension of intermediate hidden layers, and L the number of transformer
layers. In all of our experiments, we use two hash functions for Superbloom models. Hence their
vocabulary size is 2N/α.

7The procedure described here is for simplicity. If we are concerned with space, we may use some space
efficient methods, for example a perfect hash function (Fredman et al., 1984).

6

Under review as a conference paper at ICLR 2020

model α d nA dF L #parameters #samples

baseline 1 48 4 1024 12 248M 5.3M
sampled-softmax 1 512 8 2048 12 2.6G 128K
superbloom 50 768 12 3072 12 229M 200K

Table 1: Model parameters. “#samples” lists the number of samples in the softmax loss computa-
tion. For baseline and superbloom, since there is no sampling, this number corresponds to the full
vocabulary, 5.3M and 200K, respectively. For sampled-softmax, we use 128K samples.

Table 2 shows the recall metrics of the models. For the Superbloom model, we set the beam width
to B = 20 (our experiments suggest that it is sufficient to set B = k in order to achieve the best
rec@k metric, see Appendix B for details).

model rec@1 rec@10 rec@20

baseline 36.2% 63.1% 68.2%
sampled-softmax 3.1% 36.2% 55.1%
superbloom 51.1% 72.3% 76.5%

Table 2: Recall metrics for different models.

The Superbloom model clearly outperforms, to a large extent, both the baseline and the sampled-
softmax model. We note that the sampled-softmax model has much worse rec@k than the other
two models, and this gap is larger for smaller k. This is not surprising given the relatively small
percentage (2.5%) of negative examples we can afford to sample.

While the Superbloom model performs well overall, there is a possibility that it devotes most of the
embedding capacity to the top entities, so it loses accuracy on the less frequent entities. To test this,
we plot the rec@1 value as a function of label frequency. In Figure 3, we show the mean rec@1
for every 10 percentile bucket in terms of the label frequency. We can observe that Superbloom
is more accurate than the baseline in all the buckets. Another interesting phenomenon is that the
most challenging labels are those in the 20 and 30 percentile. One possible reason is that they lack
the higher predictability of the most frequent labels, and also the strong regularity of less frequent
labels.

10 20 30 40 50 60 70 80 90 100

label frequency (percentile)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
c@

1

superbloom

baseline

Figure 3: Rec@1 with respect to label frequency, starting from the most frequent labels.

Besides the high predictive accuracy, the prediction from the model shows strong semantic ability
and context dependency. We show some examples of predictions in Figure 4 in Appendix E. In
one set of examples, we pair “Copenhagen” with different entities, and observe that the predictions
change accordingly, depending on the context. Another observation is that despite the heavy hash-
ing, there are almost no unrelated entities in the top 10 predictions. The model even exhibits an
ability to perform certain analogy tasks (without being trained on such tasks) – for example, given
“Tunisia Tunis Thailand”, it predicts “Bangkok” as the top result.

7

Under review as a conference paper at ICLR 2020

3.4 MULIT-LAYER TRANSFORMER IS IMPORTANT FOR SUPERBLOOM

Intuitively, given the large noise introduced by hashing, it is more important for Superbloom to
use multiple attention layers in Transformer to “remove” the noise. To test this intuition, we run
experiments with a smaller vocabulary size of the top 500K entity pages (about 60% of the links).
On this smaller vocabulary size, we can afford to run a full softmax model with a larger embedding
dimension.

model α d nA dF L #parameters rec@1 rec@10 rec@20

baseline-l1 1 256 1 1024 1 123M 51.0% 70.4% 75.5%
baseline-l12 1 256 8 1024 12 132M 55.0% 73.7% 77.3%

superbloom-d256l1 20 256 1 1024 1 13M 17.8% 35.8% 42.6%
superbloom-d384l1 20 384 1 1536 1 21M 30.6% 52.9% 58.7%
superbloom-d256l12 20 256 8 1024 12 21M 43.4% 60.1% 64.0%

Table 3: Model parameters and recall metrics.

We consider different embedding dimensions and model complexity. Table 3 lists the model pa-
rameters as well as the recall metrics for each model. We observe that for the baseline models, the
quality difference is small between models of different complexity. For example, rec@1 of baseline-
l12 (55.0%) is about 8% better than baseline-l1 (51.0%). Since a one layer Transformer is close to a
bag-of-words (BOW) model, one may argue that it may be unnecessary to use a Transformer in this
case – instead one can use a larger dimension BOW model to achieve a similar accuracy.

However, for Superbloom models, the quality improves significantly with more layers. When in-
creasing the number of layers from 1 (superbloom-d256l1) to 12 (superbloom-d256l12), rec@1
increases from 17.8% to 43.4%. The multi-layer model also performs much better than the single
layer model with the same size (superbloom-d384l1). Note that previous work on hashed vocabu-
laries relies on BOW models, which are less expressive than even a single-layer transformer. This
highlights one of our key observations that multi-layer Transformer models are more effective for
working with hashed vocabularies.

4 EXPERIMENTS ON NATURAL LANGUAGE DATA

In this section, we apply Superbloom to natural language data. We consider a large vocabulary that
contains frequent unigrams and bigrams and use it to tokenize the text, then apply a Bloom filter to
reduce the vocabulary size. We show that despite high hash collisions, the model can achieve high
accuracy on natural language data. Since many named entities appear in the large vocabulary, we
observe that the model seems to make better predictions of named entities than the BERT model.

While each hash id can be regarded as a word piece in an NLU model, there are important differ-
ences between hash ids and word pieces. First, hashing causes random collisions, while wordpiece
tokenization can be viewed as a special hashing scheme based on the spelling – there is often co-
herence between words that share a word piece. As suggested by the experiments in Appendix D,
random hashing with Superbloom digests may outperform coherent hashing. In addition, as every
token in the large vocabulary is hashed, we do not have unambiguous anchors (such as the exact
word pieces) to help bootstrap the disambiguation process. Despite these differences, our experi-
ments suggest that even with high hashing collision α = 40, the Transformer is capable of resolving,
or unhashing, the Bloom filter digest effectively and produces highly accurate predictions and mean-
ingful embeddings.

We construct a vocabulary of size 1M by taking the union of standard BERT word piece vocabulary
(∼ 30K) with the most frequent unigrams and bigrams, and follow the same procedure in BERT to
create training examples. For Superbloom, we apply random hash maps to the 1M vocabulary simi-
lar to the approach described in Section 3.2 to ensure an even number of collisions. The Superbloom
architecture is chosen to have a comparable model size to the baseline BERT model.

We compare four models: For the non-hashed baselines, we have a large model with embedding
dimension d = 256, and a small model with d = 64. And we have two Superbloom models with
similar model sizes. We list the parameters in Table 4. In Table 5 we list the recall metrics for the

8

Under review as a conference paper at ICLR 2020

model α d nA dF L #parameters

baseline-h64 1 64 4 256 12 62.6M
baseline-h256 1 256 8 1024 12 254.4M

hash40-h512 40 512 8 2048 12 62.3M
hash20-h1024 20 1024 16 4096 12 246.3M

Table 4: The model parameters.

models. We observe that with comparable model size, Superbloom outperforms the baseline model
in all the recall metrics, and the improvement is more significant for smaller model size.

model name rec@1 rec@10 rec@20 model name rec@1 rec@10 rec@20

baseline-h64 28.4% 44.9% 48.6% baseline-h256 37.2% 57.4% 63.3%
hash40-h512 31.7% 48.3% 52.9% hash20-h1024 39.2% 58.5% 64.5%

Table 5: Recall metrics.

Since many named entities are included in the larger vocabulary, the Superbloom model shows that
it may have better “understanding” or representation of those entities. We show some anecdotal
evidence in Appendix E by comparing predictions of pretrained BERT and Superbloom model on
some fill-in-the-blanks examples. The BERT model often predicts generic words, seemingly ignor-
ing other named entities in the sentence. The Superbloom model, on the other hand, can often fill in
the blank with related entities.

5 CONCLUSION

Our experiments show that the multi-layer Transformer is effective for achieving high accuracy
on hashed inputs, represented using Bloom filter digests. Besides applying it to tasks with large
vocabularies, it also points to a few interesting future research directions.

The Transformer model has been mostly studied in natural language settings and for sequence data.
In our setup, we show that it can work effectively with sets of hashed entities. We hope that by in-
vestigating this simpler setup, it can help us better understand the properties of the Transformer. For
example, due to hashing, each token is similar to words with multiple meanings, so its embedding
can be viewed as a combination, possibly linear (Arora et al., 2018), of the embeddings of multiple
entities. A multi-layer Transformer model may provide a mechanism for iteratively filtering such
noisy representations, using the context. It would be interesting to further study this mechanism.

While hashing adds noise to the learned representations, it can also increase the flexibility of these
representations – when we hash multiple entities to the same token, the model is free to allocate the
corresponding embedding unevenly among entities, which results in a different effective embedding
dimension for each entity. Such learned capacity allocation might be more efficient than using a
fixed embedding size or frequency-based allocation. Of course, an effective “denoising” model is a
pre-requisite for such an approach to work. Perhaps Superbloom, with its strong denoising ability,
can help further realize the potential of embedding models on hashed vocabularies.

REFERENCES

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear algebraic struc-
ture of word senses, with applications to polysemy. Transactions of the Association for Compu-
tational Linguistics, 6:483–495, 2018.

Yoshua Bengio and Jean-Sébastien Sénécal. Quick training of probabilistic neural nets by impor-
tance sampling. In Proceedings of the conference on Artificial Intelligence and Statistics (AIS-
TATS), 2003.

9

Under review as a conference paper at ICLR 2020

Yoshua Bengio and Jean-Sébastien Sénécal. Adaptive importance sampling to accelerate training of
a neural probabilistic language model. Transactions on Neural Networks, 19(4):713–722, April
2008. ISSN 1045-9227.

Adam Berger. Error-correcting output coding for text classification. In IJCAI-99: Workshop on
machine learning for information filtering, 1999.

Burton H Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of
the ACM, 13(7):422–426, 1970.

Ting Chen, Martin Renqiang Min, and Yizhou Sun. Learning k-way d-dimensional discrete codes
for compact embedding representations. In Proceedings of the 35th International Conference on
Machine Learning, pp. 854–863, 2018.

Amit Daniely, Nevena Lazic, Yoram Singer, and Kunal Talwar. Short and deep: Sketching and
neural networks. In ICLR Workshop, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Thomas G Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-correcting
output codes. Journal of artificial intelligence research, 2:263–286, 1994.

Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with 0(1) worst
case access time. J. ACM, 31(3):538–544, June 1984. ISSN 0004-5411.

Joshua Goodman. Classes for fast maximum entropy training. In IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP ’01). IEEE, 2001.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model. In
Robert G. Cowell and Zoubin Ghahramani (eds.), Proceedings of the Tenth International Work-
shop on Artificial Intelligence and Statistics, pp. 246–252. Society for Artificial Intelligence and
Statistics, 2005.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics, 2016.

Joan Serrà and Alexandros Karatzoglou. Getting deep recommenders fit: Bloom embeddings for
sparse binary input/output networks. In Proceedings of the Eleventh ACM Conference on Recom-
mender Systems, RecSys ’17, pp. 279–287, 2017.

Raphael Shu and Hideki Nakayama. Compressing word embeddings via deep compositional code
learning. In ICLR, 2018.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling, and Tom Kwiatkowski. Matching the
blanks: Distributional similarity for relation learning. arXiv preprint arXiv:1906.03158, 2019.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequen-
tial recommendation with bidirectional encoder representations from transformer. arXiv preprint
arXiv:1904.06690, 2019.

D. T. Svenstrup, J. Hansen, and O. Winther. Hash embeddings for efficient word representations. In
Advances in Neural Information Processing Systems, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Kilian Weinberger, Anirban Dasgupta, Josh Attenberg, John Langford, and Alex Smola. Feature
hashing for large scale multitask learning. In ICML, 2009.

10

Under review as a conference paper at ICLR 2020

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

Shuai Zhang, Yi Tay, Lina Yao, and Aixin Sun. Dynamic intention-aware recommendation with
self-attention. arXiv preprint arXiv:1808.06414, 2018.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, and Qun Liu. Ernie: Enhanced
language representation with informative entities. arXiv preprint arXiv:1905.07129, 2019.

11

Under review as a conference paper at ICLR 2020

A TRANSFORMER ARCHITECTURE

We briefly recall the Transformer architecture following Vaswani et al. (2017). Each transformer
layer is a function T : Rmn×d → Rmn×d which transforms a sequence of mn embeddings8 in Rd

to another sequence of mn embeddings in the same space. Identifying the sequence xi,j with the
matrix X ∈ Rmn×d, we can write T as the composition T = F ◦A, where

• A is an attention function,

A(X) =

nA∑
a=1

σ
(

(XQa)(XKa)>/
√
dA

)
XVaW

>
a , (1)

where a ∈ {1, . . . , nA} indexes attention heads, dA ≤ d is an internal embedding dimension
(usually dA = d/nA), and for each a, Qa,Ka, Va,Wa ∈ Rd×dA . Finally, σ : Rn×n → ∆([n])n

is the row-wise softmax function, given by

σ(Y)ij =
exp(Yij)∑n
l=1 exp(Yil)

. (2)

One interpretation of the attention function is that it forms the i-th output embedding by taking
a convex combination of input embeddings weighted by the softmax weights, followed by a
low-rank transformation VaW>a ∈ Rd×d.

• F is a fully connected feed-forward network given by F (X) = ReLU(XU1 + b1)U>2 + b2,
where Ui ∈ Rd×dF for some dF ≥ d.

A residual connection and layer normalization are also applied at each stage A,F .

B THE QUALITY OF BEAM SEARCH

We investigate the effect of beam search width (parameter B in Algorithm 1) on model quality.
Table 6 shows rec@k for k = 1, 10, 20 for different beam widths B, using a small number of
test examples, for the Superbloom model described in Section 3.2. In all our experiments, we run
approximate inference with one step.

We observe that while the quality generally increases with an increased beam width, the increase in
rec@k is only marginal when B ≥ k. Thus, to obtain highest rec@k, it is sufficient to set the beam
width to B = k.

beam width rec@1 rec@10 rec@20

B=1 53.0% 56.0% 56.0%
B=10 53.2% 68.2% 69.1%
B=20 53.2% 67.9% 71.0%
B=100 53.2% 67.8% 71.5%

Table 6: Recall metrics at different beam width.

C BEAM SEARCH WITH GENERAL SCORE FUNCTIONS

The beam search algorithm described in Algorithm 1 can be generalized to any ranking function that
is increasing, in the following sense.

The output of the model defines, for each candidate s ∈ SO, a vector of scores (pj(ηj(s))j=1,...,m.
To sort the candidates, one can define an aggregated score γ(s) = c((pj(ηj(s)))j) for any function
c : Rm → R that induces a total ordering over Rm. One natural assumption to require of c is
that it be increasing, in the sense that if ρ � ρ′ element-wise then c(ρ) ≥ c(ρ′). This holds for

8A minor difference with the original Transformer model is that we operate on Rmn×d instead of Rn×d,
since we have m embeddings for each element in the sequence.

12

Under review as a conference paper at ICLR 2020

c(ρ) =
∑

j log ρj (used in Section 2.5), but also includes a much larger class, e.g. c(ρ) = minj ρj
or c(ρ) = maxj ρj . The beam search Algorithm 1 can be immediately generalized to any such
function. The only required change is to replace the condition on line 7 (γ(s?) ≥∑j log(pbj)) with
γ(s?) ≥ c(pb). To prove correctness, one needs to verify that the optimality certificate holds in this
general case, i.e.,
Lemma 1. Let γ(s) = c((pj(ηj(s)))j), where c is increasing in the sense defined above, and let pb,
Sb
j be as defined in Algorithm 1. Then,

∀s /∈ Sb, γ(s) ≤ c(pb).

It follows from the lemma that the algorithm can terminate whenever γ(s?) ≥ c(pb), since γ(s?) ≥
γ(s) for all s ∈ Sb (by definition of s?) and for all s /∈ Sb (by the lemma).

Proof. Since Sb = ∪j{s : pj(ηj(s)) ≥ pb}, then the complement of Sb is the set {s : pj(ηj(s)) <
pbj∀j}. Thus, since c is increasing, it follows that for all s /∈ Sb, c((pj(ηj(s)))j) ≤ c(pb), as
claimed.

D COMPARISON OF DIFFERENT HASHING SCHEMES

We have used random hashing functions in Superbloom. One natural alternative is “coherent” hash-
ing, in which we map similar entities to the same hash bucket. A potential benefit of coherent
hashing is that it may use embedding capacity more effectively by sharing it among similar entities.
However, the downside is that it becomes difficult to distinguish those similar entities.

To create a coherent hashing function, we first run a co-occurrence factorization algorithm and then
group similar entities together using the following procedure, designed to guarantee equal-sized hash
buckets. For each entity, in decreasing frequency order, we compute the nearest neighbors (scored
using cosine similarity), then create a hash bucket that includes the elements and its α − 1 nearest
neighbors which have not been already assigned a bucket. When creating a second coherent hash
function, we add the constraint that any pair of elements that share a bucket for the first hash function
cannot be assigned to the same bucket in the second hash. This ensures that no two elements have
the same collision in both hash functions.

We carry out the experiments on the data set with smaller vocabulary (500K). We train different
models that all use two hash functions, with the following configurations: both random, one random
and one coherent; and both coherent. We also use different hashing densities α = 10 and α = 20.
All the models have the same hyper-parameters as the superbloom-l12 model in Section 3.4. The
results are given in the following table.

model α #coherent hashing token rec@1 entity rec@1

hash10-00 10 0 36.32% 52.50%
hash10-01 10 1 38.19% 50.20%
hash10-11 10 2 38.55% 34.70%

hash20-00 20 0 33.39% 43.70%
hash20-01 20 1 36.98% 41.10%
hash20-11 20 2 37.65% 30.20%

Table 7: Random hashing versus coherent hashing.

We observe that with coherent hashing, we get higher accuracy for predicting hash tokens but lower
accuracy for predicting entities. And the entity recall@1 is significantly lower when both hash
functions are coherent. This indicates that with higher coherence, it becomes increasingly difficult
for the model to make finer distinctions between similar items.

13

Under review as a conference paper at ICLR 2020

E EXAMPLES OF WIKIPEDIA ENTITY PREDICTIONS

1. Examples of pairing “Copenhagen” with different entities. The predictions vary according to the
context, from Danish cities, to major European cities, to Danish royalty, and Danish culture. There
is a one unrelated result (underlined), which disappears in the presence of additional context.

Copenhagen [MASK]
Denmark Oslo Stockholm Paris Berlin Aarhus Danish language University of Copenhagen Sweden
Copenhagen

Copenhagen Aarhus [MASK]
Denmark Odense Copenhagen Aalborg Aarhus Oslo Malmö Max Wilms Stockholm Esbjerg

Copenhagen Paris [MASK]
Berlin Denmark London Oslo Rome Vienna Stockholm New York City Brussels Hamburg

Copenhagen Dynasty [MASK]
Denmark Margrethe II of Denmark Danish language Copenhagen Catholic Church Rome Chris-
tian V of Denmark Jutland When We Wake Up Frederik, Crown Prince of Denmark

Copenhagen Dynasty Danish language [MASK]
Denmark German language Margrethe II of Denmark Catholic Church Copen-
hagen English language Princess Benedikte of Denmark Danish language Fred-
erik, Crown Prince of Denmark Christian V of Denmark

2. Examples of Jazz musicians. These relatively long and rare name entities would not appear in the
vocabulary of a word piece model.

Miles Davis [MASK]
Jazz Columbia Records Miles Davis John Coltrane Dizzy Gillespie Bill Evans Album
Sonny Rollins AllMusic Charles Mingus

John Coltrane [MASK]
Miles Davis AllMusic Jazz A Love Supreme Rolling Stone Elvin Jones Albert Ayler
Tenor saxophone New York City Drum kit

Miles Davis John Coltrane [MASK]
Jazz Charles Mingus Album AllMusic Miles Davis Dizzy Gillespie Thelonious Monk
Sonny Rollins Charlie Parker Bill Evans

3. Example showing that the prediction is the set union if two entities are not related.

Miles Davis Thailand [MASK]
Vietnam Bangkok Japan Miles Davis Cambodia Malaysia Jazz Indonesia Thai language Brazil
Myanmar Rock music Dizzy Gillespie John Coltrane

4. Examples for completing location analogy task!

Texas Austin, Texas Florida [MASK]
Miami Houston Orlando, Florida Dallas Jacksonville, Florida Fort Lauderdale, Florida
Tampa, Florida Georgia (U.S. state) Tallahassee, Florida St. Petersburg, Florida

Tunisia Tunis Thailand [MASK]
Bangkok Philippines Montcau Tokyo Malaysia Singapore Indonesia Pattaya Vietnam Thai language

Figure 4: Examples of Superbloom model predictions. For each example, we output the top 10
predictions of the model (computed using Algorithm 1 with a beam width B = 10). The entity
names shown here are obtained by removing the prefix “https://en.wikipedia.org/wiki/” from the
entity URL.

14

Under review as a conference paper at ICLR 2020

F EXAMPLES OF NATURAL LANGUAGE ENTITY PREDICTIONS

Miles Davis is a Jazz musician, he is similar to [MASK].

BERT: jazz himself beethoven him davis chopin bowie williams jones
baseline-h256: miles davis john coltrane bill evans charlie parker louis armstrong sonny rollins
keith jarrett thelonious monk jazz duke ellington
hash20-h1024: miles davis john coltrane charlie parker thelonious monk dizzy gillespie bill evans
billie holiday duke ellington humans is louis armstrong

Empire state building is an iconic site of [MASK1] , it is close to [MASK2] .

[MASK1]
BERT: architecture chicago manhattan downtown pittsburgh art philadelphia history washington
america
baseline-h256: architecture modern art contemporary art modern architecture national significance
new york art its day historical significance the city
hash20-h1024: the city new york lower manhattan manhattan the neighborhood downtown
wall street the area harlem architecture

[MASK2]
BERT: downtown it chicago philadelphia rome london broadway manhattan chinatown campus
baseline-h256: downtown downtown pittsburgh city hall new york the city times square
columbia university san francisco philadelphia the pentagon
hash20-h1024: central park city hall times square wall street union station broadway
lower manhattan the pentagon fifth avenue carnegie hall

Figure 5: Natural language fill-in-the-blank examples. BERT is the base BERT model in Devlin
et al. (2018); baseline-h256 and hash20-h1024 are the Superbloom models with 1M vocabulary,
with model parameters listed in Table 4.

15

	Introduction
	Related work

	Superbloom Model Architecture
	Input layer I : (SI)n Rmn d
	Transformer layers T: Rmnd Rmnd
	Output layer: O: Rmn d (HO)mn
	Training
	Inference

	Wikipedia entity prediction
	Task
	Model
	Superbloom is more accurate
	Mulit-layer Transformer is important for Superbloom

	Experiments on natural language data
	Conclusion
	Transformer architecture
	The quality of beam search
	Beam search with general score functions
	Comparison of different hashing schemes
	Examples of Wikipedia entity predictions
	Examples of natural language entity predictions

