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ABSTRACT

Collecting large-scale data with clean labels for supervised training of neural net-
works is practically challenging. Although noisy labels are usually cheap to ac-
quire, existing methods suffer severely for training datasets with high noise ra-
tios, making high-cost human labeling a necessity. Here we present a method to
train neural networks in a way that is almost invulnerable to severe label noise
by utilizing a tiny trusted set. Our method, named IEG, is based on three key
insights: (i) Isolation of noisy labels, (ii) Escalation of useful supervision from
mislabeled data, and (iii) Guidance from small trusted data. On CIFAR100 with a
40% uniform noise ratio and 10 trusted labeled data per class, our method achieves
80.2±0.3% classification accuracy, only 1.4% higher error than a neural network
trained without label noise. Moreover, increasing the noise ratio to 80%, our
method still achieves a high accuracy of 75.5±0.2%, compared to the previous
best 47.7%. Finally, our method sets new state of the art on various types of chal-
lenging label corruption types and levels and large-scale WebVision benchmarks.

1 INTRODUCTION

Training deep neural networks usually requires large-scale labeled data. However, the process of
data labelling by humans is challenging and expensive in practice, especially in domains where
expert annotators are needed such as medical imaging. A great number of methods have been
proposed to train neural networks from datasets with noisy labels due to cheap acquisition (e.g.
loosely-controlled procedures, crowd-sourcing, web search, text extraction, etc) (Zhang & Sabuncu,
2018). However, deep neural networks have high capacity for memorization. When noisy labels
become prominent, neural networks inevitably overfit to noisy labeled data (Zhang et al., 2017a;
Tanaka et al., 2018).

To overcome this problem, we argue that rethinking training dataset construction along with model
training is necessary. Most methods consider a setting where the entire training dataset is acquired
using the same labeling technique. However, when real-world constraints such as the labeling budget
are considered, it is often practically feasible to also construct a tiny dataset that contains highly-
trusted clean labels. If methods based on this setting can demonstrate high robustness even with
extremely noisy labels, new horizons can be opened in training data labeling practices. There are a
few recent methods that demonstrate strong performance by leveraging a small trusted dataset and
training on a large noisy dataset, including learning weights of training data (Jiang et al., 2018; Ren
et al., 2018), loss correction (Hendrycks et al., 2018), and knowledge graph (Li et al., 2017b). How-
ever, these methods still require a substantially large trusted set to reliably yield high performance.
We show that it is possible to significantly reduce the necessary size of the trusted set while main-
taining superior performance when suitable regularization is used (e.g. some methods use 10% of
the total training data while our method only uses 0.2%).

In this paper, we consider three key factors and demonstrate a new method towards a noise robust
neural net training strategy:

• Isolation: Reweigh training samples to isolate noisy labeled data and prevent mislabeled
data from misleading neural network training.

• Escalation: Escalate supervision from mislabeled data via pseudo labels to make use of
information in mislabeled data.
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Figure 1: Image classification results on CIFAR100 showing the benefit of IEG. IEG denotes our
method which outperforms semi-supervised learning methods at up to a 95% noise ratio. Fully-
supervised is trained with all labeled clean data. Semi-supervised is our extension of IEG for semi-
supervised setting, which has the best reported results. SoTA (noisy labels) denotes the previous
best results for noise robustness (50 trusted data per class are used). The noise ratio of random label
assignment is 0.99. 10 trusted labeled data per class are available for Semi-supervised and IEG. See
Section 3.4 for more details.

• Guidance: Use a tiny trusted dataset for guided training with strong regularization to pre-
vent overfitting.

Although previous work has attempted to deal with some of these factors, the performance gains
have been moderate. Ideally, even with a small amount of correct labels in the noisy training data,
a robust learning method should distill that information into model training and outperform the
semi-supervised learning scenario where labels are completely ignored. However, from a view
of comparison to state-of-the-art semi-supervised learning methods (Verma et al., 2019; Berthelot
et al., 2019) in Figure 1 (explained in experiments), we observe that state of the art in noise-robust
learning is inferior even with a 50% noise ratio (i.e. they cannot optimally distill the valuable
supervised signal from almost half of the data), suggesting there is significant amount of room for
improvement. This raises two important questions: 1. Should we discard noisy labels and opt in for
semi-supervised training at high noise regimes? 2. How can we better distill the useful knowledge
in noisy labels?

Contributions: First, we present a novel training method, named IEG, that tackles the above two
questions effectively in an unified framework. IEG is designed to be model-agnostic and to general-
ize to any type of label corruption. Figure 1 demonstrates that even with extremely noisy labels (as
high as 95%), our method is almost invulnerable to severe noise. We achieve the goal by addressing
the three key factors effectively with the following complementary objectives:

1. A meta learning based re-weighting and re-labelling objective to simultaneously learn to
weigh the per-datum importance and progressively escalate supervised losses of training
data using pseudo labels as a replacement of original labels.

2. A label estimation objective to serve as the initialization of the meta re-labelling step and
escalate supervision from mislabeled data.

3. An unsupervised regularization objective to enhance label estimation and improve overall
representation learning.

Second, our method sets new state of the art on CIFAR10, CIFAR100 and on the large-scale Web-
Vision, in many label corruption types by a large margin.
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2 METHOD

2.1 META OPTIMIZATION-BASED REWEIGHING AND RELABELING

We leverage the meta optimization to automatically 1) estimate the weight of each data point when it
is possibly mislabeled and 2) choose between pseudo labels and original labels when pseudo labels
make useful contributions to the trusted set performance.

Given a dataset of N inputs with noisy labels Du = {(xi, yi), 1 < i < N} and also a small dataset
(denoted as probe data) of M of samples with trusted labels Dp = {(xi, yi), 1 < i < M}, where
M � N . The main idea of learning-to-reweight (L2R) (Ren et al., 2018) is training neural networks
with a weighted cross-entropy loss for each training batch of size B:

Θ∗(ω) = arg min
Θ

N∑
i=1

ωiL(yi,Φ(xi; Θ)), (1)

where ω is a vector that its element ωi gives the weight for the loss of a training pair. Φ(·; Θ) is the
targeting neural network that outputs the class probability and

∑N
i=1 L(yi,Φ(xi; Θ)) is the standard

softmax cross-entropy loss for each training data pair (xi, yi). Note that Θ is a function of ω, but we
omit frequently for conciseness.

Treating ω as learnable parameters, the meta step behaves like a probe to seek for the optimal
ω for each training data in Du such that the trained model using equation 1 can obtain the best
performance on the trusted data Dp. However, it is computationally-costly to find optimal ω∗ since
each update step requires training the model until converge to get Θ. In practice, we can use an
online approximation (Ren et al., 2018; Finn et al., 2017) to perform a single meta gradient-descent
step Θt+1 = Θt − α∇Θ

∑N
i ωiL

(
yi,Φ(x; Θt)

)
, where α is the step size,

ω∗t = arg min
ω,ω≥0

1

M

M∑
i

Lp
(
yi,Φ(xi; Θt+1(ω))

)
, s.t.

∑
j

ωt,j = 1. (2)

We expect that the optimized ω∗ should assign almost-zero value to mislabeled data to isolate mis-
labeled data from clean data. Optimization of ω is based on back-propagation with second-order
derivatives.

When the noise ratio is high, a significant amount of data would be discarded. To address this in-
formation loss, we propose to generalize the meta update step to use information from the discarded
data through a pseudo-labeling strategy. Given the function of pseudo label estimator g(x,Φ) (in-
troduced in the next section), we generalize the meta optimization with the following objective to
utilize both the data weighting and re-labelling:

Θ∗(ω, λ) = arg min
Θ

N∑
i=1

ωiL
(
λiyi + (1− λi)g(xi,Φ), Φ(x; Θt+1)

)
. (3)

The optimized re-labelling controller λ∗t is updated based on the sign of its gradient,

λ∗t,i = sign
(
− ∂

∂λt,i
E
[
Lp|λ=λ0,ω=ω0

])
, (4)

where β is the step size. Lp is computed on a batch sampled from Dp. The reweighing controller
ω∗ = ω − ∇ω can be obtained in the similar way. We use the sign of the gradient |∇λ| instead of
λ0 − ∇λ because 1) ∇λ would get very small when pseudo labels are close to real labels (please
see Appendix) and 2) simply averaging yi and g(xi,Φ) using scalar λ∗ makes resulting pseudo label
distribution less sharp.

After the meta step, we compute two cross-entropy losses given respective optimal values,

Lω∗ =

N∑
i

ω∗i L
(
λ0yi, Φ(xi; Θt)

)
, Lλ∗ =

1

N

N∑
i

L
(
ỹi, Φ(xi; Θt)

)
, ỹ =

{
yi, if λ∗t,i > 0

g(xi,Φ), otherwise
(5)

where B is the batch size. Similar to L2R, we use momentum SGD for model training. We compute
the meta step model parameters Θt+1 by calculating the exact momentum update using momentum
value of the SGD optimizer at each optimization step1.

1We set initial the values as ω0 = 1/B and λ0 = 0.9 due to better performance, observed empirically.
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2.2 ESCALATING SUPERVISION FROM MISLABELED DATA

Given learned data weights ω at a training step, IEG separates the data as either possibly-mislabeled
or possibly-clean using the binary criterion I(ωi < T ) , where T is a scalar threshold. IEG utilizes
mislabeled data with pseudo labels and probe data with trusted labels to provide training supervision
with extra regularization, in order to achieve promised Escalation and Guidance.

2.2.1 PSEUDO LABELS

Utilizing the pseudo labels from unlabeled training data is widely studied for semi-supervised learn-
ing, by converting predictions to one-hot label (Lee, 2013) or their smoother versions (Tanaka et al.,
2018; Lee, 2013)).

Neural network predictions can be unstable to input perturbations (Zheng et al., 2016; Azulay &
Weiss, 2018). Enforcing consistency in neural network predictions has been shown to be important
for model performance in semi-supervised learning (Xie et al., 2019). Therefore, if perturbations of
an input obtain diverse model predictions, we should not trust the predictions to be pseudo labels.
Recently-proposed state of the art semi-supervised learning method MixMatch (Berthelot et al.,
2019) considers this principle in its design. We adopt this approach to compute g(xi,Φ) in IEG. The

resulting averaged predictions are given by: gi(x,Φ) = Pr
1
τ
i /
∑
i Pr

1
τ
i , where Pr = 1

K

(
Φ(x) +∑K−1

k Φ(x̂k)
)
, where x̂k is k-th randomly augmented version of input x. g leads to a soft pseudo

label. gi is i-th class of the pseudo label. τ is a softmax temperature scaling factor (τ = 0.5 in this
paper).

2.2.2 REGULARIZATION TO ENABLE GUIDANCE USING PROBE DATA

When noise ratio is high, even though the meta step effectively prevents misleading optimization
(i.e. most elements in ω are zero), we potentially waste a lot of useful supervision to maintain
high-performance learning. Therefore, we seek extra ways to improve supervision. Here, we show
that even very small amount of trusted labeled data can improve model performance significantly.
We aim to leverage the information from probe data, besides its original use for meta optimiza-
tion. An appropriate regularization is critical for this purpose, otherwise the neural network would
quickly overfit to the small probe data and yield ineffective meta gradients for learning ω and λ (e.g.
equation 4).

To this end, we adopt the MixUp regularization and construct extra supervision losses using the
data in the form of convex combinations using the data and their labels given a mixup factor β:
Mixβ(a, b) = βa + (1 − β)b, β ∼ Beta(0.5, 0.5). It has been shown effective in recent semi-
supervised learning methods (Hataya & Nakayama, 2019; Verma et al., 2019). In detail, for each
data xa in the concatenated data pool inDp∪D̂u∪Du, we apply pairwise MixUp between the input
batch and its random permutation,

xβ = Mixβ(xa, xb), yβ = Mixβ(ya, yb), where {(xa, ya), (xb, yb) ∈ Dp ∪ D̂u ∪Du}, (6)

where D̂u is the augmented copy of Du. We introduce two softmax cross-entropy losses, Lpβ for
resulting mixed data when xa ∼ Dp is from probe data) and Luβ when xa ∼ D̂u ∪ Du. We show
that this strategy of IEG reduces the probe data size to be as small as one sample per class.

2.2.3 PSEUDO LABELS NEED CONSISTENT PREDICTIONS

Ideal pseudo labels should be close to real labels. The pseudo labels of IEG are generated by
averaging the predictions over augmentations. However, if the predictions are controversial to each
other, their contributions would cancel out and yield flattened average outputs. Consequently, the
supervision using these pseudo labels would not encourage the model to be discriminative. In our
insight, to generate more sharper pseudo outputs, reducing the controversy of augmentations is
necessary. Therefore, we propose to encourage discriminability of the pseudo labels via enforcing
consistency. The KL-divergence objective IEG used is defined as

min
Θ

LKL =
1

|Du|

|Du|∑
i

KL
(
Φ(xi)

∣∣∣∣Φ(x̂i)
)
. (7)

Algorithm 1 summarizes a training step and presents all objectives along with their loss coefficients.
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Algorithm 1: A training step of IEG at time step t
Input: Current model parameters Θt, A batch of training data Xu from Du, a batch of

probe data Xp from Dp, loss weight k and p, threshold T
Output: Updated model parameters Θt+1

1 Generate the augmentation X̂u of Xu.
2 Estimate the persudo labels via g(xu,Φ), xu ∼ Xu∪X̂u (Section 2.2.1).
3 Compute optimal λ∗ and ω∗ via the meta step (Section 2.1).
4 Split the training batch Xu (also corresponding X̂u) to possible clean batch Xc

u and
possible mislabeled batch Xu

u using the binary criterion I(ω∗ < T ).
5 Compute the mixup of joint batch set (Section 2.2.2),

Xp ∪Xu
u ∪Xc

u ∪ X̂u
u ∪ X̂c

u

where X̂u
u ∪Xu

u uses persudo labels estimated by g(·,Φ).
6 Compute the total loss for model update

Lω∗ + Lλ∗ + Lpβ + p Luβ + k LKL,

.
7 Conduct one step stochastic gradient descent to obtain Θt+1.

3 EXPERIMENTS

We validate the proposed IEG method on multiple datasets (CIFAR10, CIFAR100, and large-scale
WebVision datasets) with various kinds of common label corruptions (including uniform and se-
mantic types). We also conduct extensive ablation studies to demonstrate the key aspects of IEG.

3.1 EMPIRICAL TRAINING DETAILS

Here we discuss key training details and hyperparameters, that are shown to be beneficial for our
experiments.

Learning rate decay: We adopt the Cosine learning rate decay with warm restarting2. We observe
3%-5% accuracy improvement on CIFAR datasets, especially at large noise ratios. Figure A1 of Ap-
pendix plots the curves. Although it works particularly well in IEG, we do not observe strong benefit
either training standard neural networks or training L2R, also not in recent literature (Gotmare et al.,
2019) and (Song et al., 2018) which uses cosine learning rate.

Model selection: Although the size of probe data is small, we find our method less likely mem-
orizes the probe data. So it can be potentially be monitored as validation set for model selection.
Loshchilov & Hutter (2017) also indicates the needless of the validation set for model selection with
cosine learning rate decay. Therefore, we directly select models at the lowest learning rate before
200 epochs.
Augmentation: The purpose of augmentation is to generate pixel perturbation around the original
training data. We adopt the AutoAugment (AA) technique for image data (Cubuk et al., 2018) to
achieve this, which including operations (learned policy augmentation→flip→random crop→cutout
(DeVries & Taylor, 2017)). In detail, for each input image, we first generate one standard augmen-
tation (random crop and horizontal flip) and then apply AA to generate K random augmentations
on top of the standard one. We use K = 2 augmentations in our experiments.

3.2 CIFAR NOISY LABEL EXPERIMENTS

For all CIFAR experiments, we set T = 1, p = 5, k = 20. The models are trained on a single
NVIDIA v100. std of reported results are obtained by 3 runs with random seeds. We compare the
proposed IEG method against several recent methods, which achieve leading performance in public

2We set the initial cycle length to be one epoch, and after then cycle length increases by a factor of 1.5 and
meanwhile the restart learning rate decreases by a factor of 0.9 as described in (Loshchilov & Hutter, 2017)
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Method |Dp|
Noise ratio

0 0.2 0.4 0.8
GCE (Zhang & Sabuncu, 2018) - 93.5 89.9±0.2 87.1±0.2 67.9±0.6
MentorNet DD (Jiang et al., 2018) 5k 96.0 92.0 89.0 49.0
RoG (Lee et al., 2019) - 94.2 87.4 81.8 -
L2R (Ren et al., 2018) 1k 96.1 90.0±0.4∗ 86.9±0.2 73.0±0.8∗

(Arazo et al., 2019) - - 93.8 92.3 74.1
IEG 0.1k 96.8 96.2±0.2 95.9±0.2 93.7±0.5
IEG-RN29 0.1k 94.4 92.9±0.2 92.5±0.5 85.6+1.1

Table 1: Validation accuracy on CIFAR10 with uniform noise. |Dp| denotes the number of trusted
(probe) data used. 0.1k indicates 10 images per class. For reference, standard training of WRN-28-
10/ResNet29 (RN29) leads to 96.1%/92.7% accuracy. ∗ indicates results trained by us.

Method |Dp|
Noise ratio

0 0.2 0.4 0.8
GCE (Zhang & Sabuncu, 2018) - 81.4 66.8±0.4 61.8±0.2 47.7±0.7
MentorNet DD (Jiang et al., 2018) 5k 79.0 73.0 68.0 35.0
L2R (Ren et al., 2018) 1k 81.2 67.1±0.1∗ 61.3+2.0 35.1±1.2∗

(Arazo et al., 2019) - - 70.0 64.4 45.5
IEG-RN29 1k 70.3 69.3±0.5 67.0±0.8 60.7±1.0
IEG 0.1k 83.0 77.4±0.4 75.1±1.1 62.1±1.2
IEG 0.5k 83.0 80.4±0.5 79.6±0.3 73.6±1.5
IEG 1k 83.0 81.2±0.7 80.2±0.3 75.5±0.2

Table 2: Validation accuracy on CIFAR100 with uniform noise. Standard training of WRN-28-
10/RN29 leads to 81.6%/71.3% accuracy. 0.1k indicates 1 images per class.

Method Noise ratio
0.2 0.4 0.8

GCE 89.5±0.3 82.3±0.7 -
LC 89.1±0.5 83.6±0.3 -
IEG-RN29 92.7±0.2 90.2±0.5 78.9±3.5
IEG 96.5±0.2 94.9±0.1 79.3±2.4

Table 3: Asymmetric noise on CIFAR10. LC is a loss
correction approach (Patrini et al., 2017). 10 trusted
data per class are used as probe data.

Method C10 (34%) C100 (37%)
RoG 70.0 53.6
L2R 71.0∗ 56.9∗

IEG-RN29 81.8 65.1
IEG 88.3 73.7

Table 4: Semantic noisy experiments where
labels are generated by a neural network on
a few data. Noise ratio is shown in paren-
theses. RoG uses DenseNet-100.

benchmarks. Similar to L2R, we use the Wide ResNet (WRN28-10) (Zagoruyko & Komodakis,
2016) as default, unless specified otherwise, for fair comparison.

Common random label noise: Table 1 compares the results for CIFAR10 with uniform noise ratios
of 0.2, 0.4, and 0.8. 10 probe images per class are used. We also test IEG using ResNet293, which
is much smaller than ones used by compared methods. Using WRN28-10, IEG leads to 96.5%
accuracy with 20% noise ratio and 94.7% accuracy with 80% noise ratio, demonstrating nearly
noise-free performance. IEG still achieves the best performance with ResNet29. We also train IEG
with 0% noise as reference. We observe most results even outperforms the results with standard
training of WRN28-10/ResNet29 (see captions of Table 1). This shows that our proposed method
provides additional form of regularization to improve generalization. Table 2 compares the results in
CIFAR100 with uniform noise ratios of 0.2, 0.4, and 0.8. We also report results given 10 images, 5
images and the extreme case of 1 image per class for probe data, much lower than the other methods
use. IEG significantly outperforms existing methods. The improvement is remarkable at higher
noise ratios.

Three types of semantic label noise: Next, we test IEG on more realistic noisy settings on CIFAR.
10 images per class are used as probe data. Table 3 compares the results on CIFAR10 with asymmet-

3For ResNet29 we use in this paper, we follow this pre-activation (v2) implementation https:
//github.com/keras-team/keras/blob/master/examples/cifar10_resnet.py, which
contains 0.84M parameters.

6



Under review as a conference paper at ICLR 2020

Dataset ResNet-50 (Chen et al., 2019) MentorNet IEG-RN50
mini 61.0/84.3 61.6/85.0 63.8/85.8 72.6/91.5
full 57.2/79.3 - 64.2/84.8 65.8/85.8

Table 5: Large-scale WebVision experiments. The top-1/top-5 accuracy on the ImageNet validation
set are compared. IEG uses ResNet-50. The full version does not use AA.

Dataset MixMatch EG EG∗ IEG
CIFAR10 51.2 92.4±0.7 94.5±0.3 93.7±0.5
CIFAR100 34.5 57.6±0.4 67.3±0.3 75.2±0.2

Table 6: Comparison with semi-supervised methods. MixMatch and EG use WRN-28-2. EG∗ and
IEG use WRN-28-10. 10 labeled data per class are used. The same size is used for probe data in
IEG. The results of IEG are reported under the 80% uniform noise ratio.

ric noise ratios of 0.2, 0.4, and 0.8. Asymmetric noise is known as a more realistic setting because
it corrupts semantically-similar classes (e.g. truck and automobile, bird and airplane) (Patrini et al.,
2017). Moreover, we follow RoG (Lee et al., 2019) to generate semantic noisy labels by using a
trained VGG-13 (Simonyan & Zisserman, 2015) (the hardest setting) on 5% of CIFAR10 and 20%
of CIFAR100 (we directly use the data provided by the author). Table 4 reports the compared results.
Lastly, we test IEG on three kinds of open-set noisy labels (this setting replaces images to out-of-
distribution images of the same labels (Wang et al., 2018)) in Table A1 of Appendix. In all semantic
noise settings, IEG consistently outperforms the compared methods by a significant margin.

3.3 WEBVISION REAL-WORLD NOISY LABEL EXPERIMENTS

WebVision (Li et al., 2017a) is large-scale dataset which reflects real-world noisy labels as their
images are obtained by crawling from the Flickr website and Google Images Search using the labels.
It contains 2.4 million images and shares the 1000 classes with ImageNet (Deng et al.). We also
follow (Jiang et al., 2018) to create a mini version of WebVision, which includes the Google subset
images of the top 50 classes. To create the probe data, we set aside 10 images per class from the
ImageNet training data. We train models using the WebVision training set on a Google Cloud TPU
and evaluate on the ImageNet validation set. We set T = 1, p = 4, k = 8. Table A2 compares
the results. While the compared methods use a larger InceptionResNetv2 (IRv2), we use ResNet-50
due to its memory efficiency, albeit the lower expected performance due to its lower capacity. We
verify the performance of backbone neural networks. We observe slight (<0.5%) gain when we test
baseline ResNet-50 by adding the probe data in training (reported in the table). AA is effective but
time consuming. We use standard image augmentation instead of AA for the full Webvision. On
mini, standard training ResNet-50 leads to 52.6/84.3 without AA. Standard training IRv2 leads to
57.2/79.2 without AA and 64.0/84.2 with AA.

3.4 COMPARISON TO SEMI-SUPERVISED LEARNING

We compare IEG to the state-of-the-art semi-supervised learning method MixMatch Berthelot et al.
(2019) to verify how much useful information IEG can distill from mislabeled data. The unsuper-
vised components which IEG incorporated can be also applied onto semi-supervised methods. We
simply remove the Isolation (meta re-weighting and re-labelling) of IEG and treat all training data
with noisy labels as unlabeled to enable semi-supervised training (denoted the resulting method as
EG). Figure 1 shows the comparisons and Table 6 reports the detailed results. IEG improves the per-
formance largely given the 80% label noise ratio. In addition, EG demonstrates remarkable benefits,
for example, from 34.5% to 57.6% on CIFAR100. It demonstrates that it is necessary to enforce
consistency for pseudo labels for better discriminability.

3.5 ABLATION STUDIES AND DISCUSSIONS

Here we study the individual objective components of IEG and their effectiveness. Table 7 summa-
rizes the ablation study results (referred as IEG-#) and we discuss them further below.

Unsupervised consistency (UC): Based on our empirical observations, UC plays an important role
in preventing neural networks from overfitting to samples with wrong labels, especially at extreme
noise ratios. IEG-4 shows results without UC. Figure A2 in Appendix shows the training curves
with different coefficient k for LKL. At around 80k iteration, the curve of β = 1 starts to overfit to
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#
Component (abbr.) Noise ratio

UC MC AA λ 0.4 0.8
1 64.43 33.52
2 X 66.14 36.04
3 X X 67.82 37.01
4 X X X 78.06 61.81
5 X X X X 79.96 75.42
6 7 73.63 54.76
7 7 79.16 72.69
8 7 81.05 74.04

Table 7: Ablation study on CIFAR100. X/7
indicates the corresponding component is en-
abled/disabled. So IEG-1 is equal to L2R; IEG-5
is the full IEG. Abbreviations are defined in text.
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Figure 2: Analysis of λ. Top: The average λ
of noisy and clean labels on CIFAR10 with 40%
noise. Bottom: Accuracy (w/o λ) at extreme
noise ratios on CIFAR100.

noisy labels and simultaneously the validation accuracy starts to decrease. β = 20 is much more
efficient in overcoming this.
The effects of input perturbation: IEG-7 shows the results after removing AA-learned policy
augmentation (we only use flip→ random crop→ cutout). Cutout is effective, as also observed in
(Xie et al., 2019). Removing it leads to 72.71%/62.41% for 40%/80% noise.
Mixup cross-entropy (MC) regularization: Directly minimizing the cross-entropy loss of the tiny
probe data would make the model quickly memorize them. IEG-6 shows the result without MC
regularization. The performance loss is significant at 80% noise ratio. Therefore, MC effectively
brings useful supervision in probe data to guide training.
The effects of λ: Our proposed meta re-labeling (equation 3) is very effective for extremely-high
noise ratios. It learns to assign lower λ for mislabeled data in order to promote the use of pseudo
labels, and vice visa for clean data. Figure 2 (top) shows the average λ during the training process
(the value of noise labels are obtained by peeping ground truth). Figure 2 (bottom) demonstrates the
significant advantage of λ under extreme noise ratios.

4 RELATED WORK

Reweighing training data has been shown to be effective (Liu & Tao, 2015). However, estimating
effective weights is challenging. Ren et al. (2018) proposes a meta learning approach to directly
optimize the weights in pursuit of best validation performance. Jiang et al. (2018) alternatively uses
teach-student curriculum learning to weigh data. (Han et al., 2018) uses two neural networks to co-
train and feed data to each other selectively. Another direction is modeling confusion matrix for loss
correction, which has been widely studied (Sukhbaatar et al., 2014; Natarajan et al., 2013; Tanno
et al., 2019; Patrini et al., 2017; Arazo et al., 2019). For example, (Hendrycks et al., 2018) shows
that using a set of trusted data to estimate the confusion matrix has significant gains.

The approach on relabeling corrupted samples is another direction (Li et al., 2017b; Tanaka et al.,
2018; Veit et al., 2017; Han et al., 2019). Along this, Reed et al. (2014) uses bootstrapping to gen-
erate new labels. (Li et al., 2019) leverage the meta learning framework to verify multiple label
candidates before doing actual training. Relabeling is similar to the pseudo label approach in semi-
supervised learning (Lee, 2013). Besides pseudo labels, building connections to semi-supervised
learning has been recently expanded (Kim et al., 2019), which applies semi-supervised losses to
improve representation learning from mislabeled data. For example, Hataya & Nakayama (2019);
Arazo et al. (2019) uses Mixup (Zhang et al., 2017b) to augment data and demonstrates clear ben-
efits. Ding et al. (2018); Kim et al. (2019) identifies mislabeled data first and then leverages semi-
supervised techniques.

5 CONCLUSION

In this paper, we present a robust and generic neural network training method to overcome severe
label noise. Our method, named IEG, is based on unification of the mechanisms to isolate the noise
labels via meta optimization, escalate the supervision mislabeled data via pseudo meta re-labeling,
and effectively use small trusted data to guide training. IEG demonstrates significant and consistent
improvements over previous state of the art methods on common benchmarks.
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APPENDIX

A MORE RESULTS

Here we show more analytically results and comparison results as being referred in the main text.
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Figure A1: Compared with custom learning rate decay strategy. We use the commonly accepted
setting (also used by L2R): the initial learning rate is 0.1, the learning rate decays to previous 0.1x
at 40K and 50K steps. We show the training curves on CIFAR10 with 40% uniform label noise.
Dotted and solid lines are training and evaluation accuracy curves, respectively.
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Figure A2: Training curves on CIFAR100 with uniform 80% label noise under different LKL loss
weight k (defined in Algorithm 1). Dotted are solid lines are train and evaluation accuracy curves,
respectively. Since the noise ratio is 80%, the average training accuracy is expected to be lower than
20%, otherwise the model starts to overfit. When we use a small k, the model becomes to overfit at
around 80000 iterations.

B PROOF OF SMALL ∇λ

Here we show that the derivative of λt,− ∂
∂λt,i

E
[
Lp|λ=λ0,ω=ω0

]
inside the sign function of equation

4 will be very small when pseudo labels are close to real labels.
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Open-set noise type CIFAR100 CIFAR100+ImageNet ImageNet
RN29 77.8 80.34 84.43
DenseNet-100 79.0 86.7 81.6
WRN-28-10 82.8 84.7 88.7
L2R 81.8 81.3 85.0
RoG 83.4 87.1 84.4
IEG-RN29 86.4 87.4 90.0
IEG 92.3 93.0 94.0

Table A1: Open-set noise on CIFAR10. We follow the setting and created noisy datasets of RoG to
conduct experiments. Each column indicates where the noisy out-of-distribution images are from.
Three types of noisy types are compared. RoG uses DenseNet-100 and L2R use WRN-28-10. We
run the baseline for better comparison (the first block of the table). From results of WRN-28-10, we
can see model capacity is beneficial for performance. It is interesting to L2R does not outperforms
the its backbone baseline WRN-28-10, which implies that only data reweighting is not effective to
deal with open-set noise.

Ratio 0 0.2 0.4 0.6 0.8 0.85 0.9 0.93 0.95 0.96 0.98 0.99
mean 82.9 81.2 80.2 77.6 75.5 74.7 70.9 68.8 64.8 62.6 58.4 54.4
std 0.25 0.63 0.22 0.35 0.21 0.21 0.45 0.26 0.91 1.85 0.16 0.29

Table A2: Accuracy (mean and std) of IEG on CIFAR100 with different uniform noise ratios.

1

M

M∑
i=1

∂

∂λi,t
Lp(yi,Φ(xi; Θ))|ωi,t=ω0,λi,t=λ0 (8)

=
1

M

M∑
i=1

∂Lp(yi,Φ(xi; Θ))

∂Θ
|TΘ=Θt

∂Θt+1(λi,t)

∂λi,t
|ωi,t=ω0,λi,t=λ0 (9)

∝
M∑
i=1

∂Lp(yi,Φ(x; Θ))

∂Θ
|TΘ=Θt

∂(ωi,t · L(yi,Φ(xi; Θ))− ωi,t · L(g(Φ(xi; Θ),Φ(xi; Θ))

∂Θ
|Θ=Θt,ωi,t=ω0

(10)

∝
M∑
i=1

∂Lp(yi,Φ(xi; Θ))

∂Θ
|TΘ=Θt

∂(L(yi,Φ(xi; Θ))− L(g(Φ(xi; Θ),Φ(xi; Θ))

∂Θ
|Θ=Θt (11)

If yi and Φ(xi; Θ) are close to each other around Θt, the derivative ∂
∂λi,t

E
[
Lp
∣∣
λ=λ0,ω=ω0

] would be
close to 0. Thus, for a converged model with low training error, the amount of update on λ would
be close to zero.
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