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ABSTRACT

The Wasserstein distance received a lot of attention recently in the community
of machine learning, especially for its principled way of comparing distributions.
It has found numerous applications in several hard problems, such as domain
adaptation, dimensionality reduction or generative models. However, its use is still
limited by a heavy computational cost. Our goal is to alleviate this problem by
providing an approximation mechanism that allows to break its inherent complexity.
It relies on the search of an embedding where the Euclidean distance mimics the
Wasserstein distance. We show that such an embedding can be found with a
siamese architecture associated with a decoder network that allows to move from
the embedding space back to the original input space. Once this embedding
has been found, computing optimization problems in the Wasserstein space (e.g.
barycenters, principal directions or even archetypes) can be conducted extremely
fast. Numerical experiments supporting this idea are conducted on image datasets,
and show the wide potential benefits of our method.

1 INTRODUCTION

The Wasserstein distance is a powerful tool based on the theory of optimal transport to compare
data distributions with wide applications in image processing, computer vision and machine learn-
ing (Kolouri et al., 2017). In a context of machine learning, it has recently found numerous appli-
cations, e.g. domain adaptation (Courty et al., 2017), or word embedding (Huang et al., 2016). In
the context of deep learning, the Wasserstein appeared recently to be a powerful loss in generative
models (Arjovsky et al., 2017) and in multi-label classification (Frogner et al., 2015). Its power comes
from two major reasons: i) it allows to operate on empirical data distributions in a non-parametric way
ii) the geometry of the underlying space can be leveraged to compare the distributions in a geometri-
cally sound way. The space of probability measures equipped with the Wasserstein distance can be
used to construct objects of interest such as barycenters (Agueh & Carlier, 2011) or geodesics (Seguy
& Cuturi, 2015) that can be used in data analysis and mining tasks.

More formally, let X be a metric space endowed with a metric dX . Let p ∈ (0,∞) and
Pp(X) the space of all Borel probability measures µ on X with finite moments of order p, i.e.∫
X
dX(x, x0)pdµ(x) <∞ for all x0 in X . The p-Wasserstein distance between µ and ν is defined

as:

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫∫
X×X

d(x, y)pdπ(x, y)

) 1
p

. (1)

Here, Π(µ, ν) is the set of probabilistic couplings π on (µ, ν). As such, for every Borel subsets
A ⊆ X , we have that µ(A) = π(X ×A) and ν(A) = π(A×X). It is well known that Wp defines a
metric over Pp(X) as long as p ≥ 1 (e.g. (Villani, 2009), Definition 6.2).
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When p = 1, W1 is also known as Earth Mover’s distance (EMD) or Monge-Kantorovich distance.
The geometry of (Pp(X), W1(X)) has been thoroughly studied, and there exists several works on
computing EMD for point sets in Rk (e.g. Shirdhonkar & Jacobs (2008)). However, in a number of
applications the use of W2 (a.k.a root mean square bipartite matching distance) is a more natural
distance arising in computer vision (Bonneel et al., 2015), computer graphics (Bonneel et al., 2011;
de Goes et al., 2012; Solomon et al., 2015a; Bonneel et al., 2016) or machine learning (Cuturi
& Doucet, 2014; Courty et al., 2017). See (de Goes et al., 2012) for a discussion on the quality
comparison between W1 and W2.

Yet, the deployment of Wasserstein distances in a wide class of applications is somehow limited,
especially because of an heavy computational burden. In the discrete version of the above optimisation
problem, the number of variables scale quadratically with the number of samples in the distributions,
and solving the associated linear program with network flow algorithms is known to have a cubical
complexity. While recent strategies implying slicing technique (Bonneel et al., 2015; Kolouri et al.,
2016a), entropic regularization (Cuturi, 2013; Benamou et al., 2015; Solomon et al., 2015b) or
involving stochastic optimization (Genevay et al., 2016), have emerged, the cost of computing
pairwise Wasserstein distances between a large number of distributions (like an image collection) is
prohibitive. This is all the more true if one considers the problem of computing barycenters (Cuturi
& Doucet, 2014; Benamou et al., 2015) or population means. A recent attempt by Staib and
colleagues (Staib et al., 2017) use distributed computing for solving this problem in a scalable way.

We propose in this work to learn an Euclidean embedding of distributions where the Euclidean norm
approximates the Wasserstein distances. Finding such an embedding enables the use of standard
Euclidean methods in the embedded space and significant speedup in pairwise Wasserstein distance
computation, or construction of objects of interests such as barycenters. The embedding is expressed
as a deep neural network, and is learnt with a strategy similar to those of Siamese networks (Chopra
et al., 2005). We also show that simultaneously learning the inverse of the embedding function is
possible and allows for a reconstruction of a probability distribution from the embedding. We first
start by describing existing works on Wasserstein space embedding. We then proceed by presenting
our learning framework and give proof of concepts and empirical results on existing datasets.

2 RELATED WORK

Metric embedding The question of metric embedding usually arises in the context of approx-
imation algorithms. Generally speaking, one seeks a new representation (embedding) of data at
hand in a new space where the distances from the original space are preserved. This new repre-
sentation should, as a positive side effect, offers computational ease for time-consuming task (e.g.
searching for a nearest neighbor), or interpretation facilities (e.g. visualization of high-dimensional
datasets). More formally, given two metrics spaces (X, dX) and (Y, dy) and D ∈ [1,∞), a mapping
φ : X → Y is an embedding with distortion at most D if there exists a coefficient α ∈ (0,∞) such
that αdX(x, y) ≤ dY (φ(x), φ(y)) ≤ DαdX(x, y). Here, the α parameter is to be understood as a
global scaling coefficient. The distortion of the mapping is the infimum over all possible D such that
the previous relation holds. Obviously, the lower the D, the better the quality of the embedding is. It
should be noted that the existence of exact (isometric) embedding (D = 1) is not always guaranteed
but sometimes possible. Finally, the embeddability of a metric space into another is possible if there
exists a mapping with constant distortion. A good introduction on metric embedding can be found
in (Matoušek, 2013).

Theoretical results on Wasserstein space embedding Embedding Wasserstein space in normed
metric space is still a theoretical and open questions (Matoušek & Naor, 2011). Most of the
theoretical guarantees were obtained with W1. In the simple case where X = R, there exists an
isometric embedding with L1 between two absolutely continuous (wrt. the Lebesgue measure)
probability measures µ and ν given by their by their cumulative distribution functions Fµ and Fν ,
i.e. W1(µ, ν) =

∫
R |Fµ(x) − Fν(x)|dx. This fact has been exploited in the computation of sliced

Wasserstein distance (Bonneel et al., 2015; Kolouri et al., 2016c). Conversely, there is no known
isometric embedding for pointsets in [n]k = {1, 2, . . . , n}k, i.e. regularly sampled grids in Rk, but
best known distortions are between O(k log n) and Ω(k+

√
log n) (Charikar, 2002; Indyk & Thaper,

2003; Khot & Naor, 2006). Regarding W2, recent results (Andoni et al., 2016) have shown there does
not exist meaningful embedding over R3 with constant approximation. Their results show notably
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that an embedding of pointsets of size n into L1 must incur a distortion of O(
√

log n). Regarding
our choice of W 2

2 , there does not exist embeddability results up to our knowledge, but we show that,
for a population of locally concentrated measures, a good approximation can be obtained with our
technique. We now turn to existing methods that consider local linear approximations of the transport
problem.

Linearization of Wasserstein space Another line of work (Wang et al., 2013; Kolouri et al., 2016b)
also considers the Riemannian structure of the Wasserstein space to provide meaningful linearization
by projecting onto the tangent space. By doing so, they notably allows for faster computation of
pairwise Wasserstein distances (only N transport computations instead of N(N − 1)/2 with N the
number of samples in the dataset) and allow for statistical analysis of the embedded data. They
proceed by specifying a template element and compute, from particle approximations of the data,
linear transport plans with this template element, that allow to derive an embedding used for analysis.
Seguy and Cuturi (Seguy & Cuturi, 2015) also proposed a similar pipeline, based on velocity field,
but without relying on an implicit embedding. It is to be noted that for data in 2D, such as images, the
use of cumulative Radon transform also allows for an embedding which can be used for interpolation
or analysis (Bonneel et al., 2015; Kolouri et al., 2016a), by exploiting the exact solution of the optimal
transport in 1D through cumulative distribution functions.

Our work is the first to propose to learn a generic embedding rather than constructing it from explicit
approximations/transformations of the data and analytical operators such as Riemannian Logarithm
maps. As such, our formulation is generic and adapts to any type of data. Finally, since the mapping
to the embedded space is constructed explicitly, handling unseen data does not require to compute
new optimal transport plans or optimization, yielding extremely fast computation performances, with
similar approximation performances.

3 DEEP WASSERSTEIN EMBEDDING (DWE)

3.1 WASSERSTEIN LEARNING AND RECONSTRUCTION WITH SIAMESE NETWORKS

We discuss here how our method, coined DWE for Deep Wasserstein Embedding, learns in a
supervised way a new representation of the data. To this end we need a pre-computed dataset that
consists of pairs of histograms {x1

i , x
2
i }i∈1,...,n of dimensionality d and their corresponding W 2

2

Wasserstein distance {yi = W 2
2 (x1

i , x
2
i )}i∈1,...,n. One immediate way to solve the problem would

be to concatenate the samples x1 and x2 and learn a deep network that predicts y. This would work
in theory but it would prevent us from interpreting the Wasserstein space and it is not by default
symmetric which is a key property of the Wasserstein distance.

Another way to encode this symmetry and to have a meaningful embedding that can be used
more broadly is to use a Siamese neural network (Bromley et al., 1994). Originally designed for
metric learning purpose and similarity learning (based on labels), this type of architecture is usually
defined by replicating a network which takes as input two samples from the same learning set,
and learns a mapping to new space with a contrastive loss. It has mainly been used in computer
vision, with successful applications to face recognition (Chopra et al., 2005) or one-shot learning
for example (Koch et al., 2015). Though its capacity to learn meaningful embeddings has been
highlighted in (Weston et al., 2012), it has never been used, to the best of our knowledge, for
mimicking a specific distance that exhibits computation challenges. This is precisely our objective
here.

We propose to learn and embedding network φ that takes as input a histogram and project it in a given
Euclidean space of Rp. In practice, this embedding should mirror the geometrical property of the
Wasserstein space. We also propose to regularize the computation of this embedding by adding a
reconstruction loss based on a decoding network ψ. This has two important impacts: First we observed
empirically that it eases the learning of the embedding and improves the generalization performance
of the network (see experimental results in appendix) by forcing the embedded representation to
catch sufficient information of the input data to allow a good reconstruction. This type of autoencoder
regularization loss has been discussed in (Yu et al., 2013) in the different context of embedding
learning. Second, using a decoder network allows the interpretation of the results, which is of prime
importance in several data-mining tasks (discussed in the next subsection).
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Figure 1: Architecture of the Deep Wasserstein Embedding: two samples are drawn from the data
distribution and set as input of the same network (φ) that computes the embedding. The embedding
is learnt such that the squared Euclidean distance in the embedding mimics the Wasserstein distance.
The embedded representation of the data is then decoded with a different network (ψ), trained with a
Kullback-Leibler divergence loss.

An overall picture depicting the whole process is given in Figure 1. The global objective function
reads

min
φ,ψ

∑
i

∥∥‖φ(x1
i )− φ(x2

i )‖2 − yi
∥∥2

+ λ
∑
i

KL(ψ(φ(x1
i )), x

1
i ) + KL(ψ(φ(x2

i )), x
2
i ) (2)

where λ > 0 weights the two data fitting terms and KL(, ) is the Kullbach-Leibler divergence. This
choice is motivated by the fact that the Wasserstein metric operates on probability distributions.

3.2 WASSERSTEIN DATA MINING IN THE EMBEDDED SPACE

Once the functions φ and ψ have been learned, several data mining tasks can be operated in the
Wasserstein space. We discuss here the potential applications of our computational scheme and
its wide range of applications on problems where the Wasserstein distance plays an important role.
Though our method is not an exact Wasserstein estimator, we empirically show in the numerical
experiments that it performs very well and competes favorably with other classical computation
strategies.

Wasserstein barycenters (Agueh & Carlier, 2011; Cuturi & Doucet, 2014; Bonneel et al., 2016).
Barycenters in Wasserstein space were first discussed by Agueh and Carlier (Agueh & Carlier, 2011).
Designed through an analogy with barycenters in a Euclidean space, the Wasserstein barycenters of a
family of measures are defined as minimizers of a weighted sum of squared Wasserstein distances. In
our framework, barycenters can be obtained as

x̄ = arg min
x

∑
i

αiW (x, xi) ≈ ψ(
∑
i

αiφ(xi)), (3)

where xi are the data samples and the weights αi obeys the following constraints:
∑
i αi = 1 and

αi > 0. Note that when we have only two samples, the barycenter corresponds to a Wasserstein
interpolation between the two distributions with α = [1− t, t] and 0 ≤ t ≤ 1 (Santambrogio, 2014).
When the weights are uniform and the whole data collection is considered, the barycenter is the
Wasserstein population mean, also known as Fréchet mean (Bigot et al., 2017).

Principal Geodesic Analysis in Wasserstein space (Seguy & Cuturi, 2015; Bigot et al., 2017).
PGA, or Principal Geodesic Analysis, has first been introduced by Fletcher et al. (Fletcher et al.,
2004). It can be seen as a generalization of PCA on general Riemannian manifolds. Its goal is to find
a set of directions, called geodesic directions or principal geodesics, that best encode the statistical
variability of the data. It is possible to define PGA by making an analogy with PCA. Let xi ∈ Rn
be a set of elements, the classical PCA amounts to i) find x the mean of the data and subtract it to
all the samples ii) build recursively a subspace Vk = span(v1, · · · , vk) by solving the following
maximization problem:

v1 = argmax|v|=1

n∑
i=1

(v.xi)
2, vk = argmax|v|=1

n∑
i=1

(v.xi)
2 +

k−1∑
j=1

(vj .xi)
2

 . (4)
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Fletcher gives a generalization of this problem for complete geodesic spaces by extending three
important concepts: variance as the expected value of the squared Riemannian distance from mean,
Geodesic subspaces as a portion of the manifold generated by principal directions, and a projection
operator onto that geodesic submanifold. The space of probability distribution equipped with the
Wasserstein metric (Pp(X), W 2

2 (X)) defines a geodesic space with a Riemannian structure (Santam-
brogio, 2014), and an application of PGA is then an appealing tool for analyzing distributional data.
However, as noted in (Seguy & Cuturi, 2015; Bigot et al., 2017), a direct application of Fletcher’s
original algorithm is intractable because Pp(X) is infinite dimensional and there is no analytical
expression for the exponential or logarithmic maps allowing to travel to and from the corresponding
Wasserstein tangent space. We propose a novel PGA approximation as the following procedure:
i) find x the approximate Fréchet mean of the data as x = 1

N

∑N
i φ(xi) and subtract it to all the

samples ii) build recursively a subspace Vk = span(v1, · · · , vk) in the embedding space (vi being of
the dimension of the embedded space) by solving the following maximization problem:

v1 = argmax|v|=1

n∑
i=1

(v.φ(xi))
2, vk = argmax|v|=1

n∑
i=1

(v.φ(xi))
2 +

k−1∑
j=1

(vj .φ(xi))
2

 . (5)

which is strictly equivalent to perform PCA in the embedded space. Any reconstruction from the
corresponding subspace to the original space is conducted through ψ. We postpone a detailed
analytical study of this approximation to subsequent works, as it is beyond the goals of this paper.

Other possible methods. As a matter of facts, several other methods that operate on distributions
can benefit from our approximation scheme. Most of those methods are the transposition of their
Euclidian counterparts in the embedding space. Among them, clustering methods, such as Wasserstein
k-means (Cuturi & Doucet, 2014), are readily adaptable to our framework. Recent works have also
highlighted the success of using Wasserstein distance in dictionary learning (Rolet et al., 2016) or
archetypal Analysis (Wu & Tabak, 2017).

4 NUMERICAL EXPERIMENTS

In this section we evaluate the performances of our method on grayscale images normalized as
histograms. Images are offering a nice testbed because of their dimensionality and because large
datasets are frequently available in computer vision.

4.1 ARCHITECTURE FOR DWE BETWEEN GRAYSCALE IMAGES

The framework of our approach as shown in Fig 1 consists of an encoder φ and a decoder ψ
composed as a cascade. The encoder produces the representation of input images h = φ(x). The
architecture used for the embedding φ consists in 2 convolutional layers with ReLU activations: first
a convolutional layer of 20 filters with a kernel of size 3 by 3, then a convolutional layer of 5 filters of
size 5 by 5. The convolutional layers are followed by two linear dense layers respectively of size
100 and the final layer of size p = 50. The architecture for the reconstruction ψ consists in a dense
layer of output 100 with ReLU activation, followed by a dense layer of output 5*784. We reshape the
layer to map the input of a convolutional layer: the output vector is (5,28,28) 3D-tensor. Eventually,
we invert the convolutional layers of φ with two convolutional layers: first a convolutional layer of
20 filters with ReLU activation and a kernel of size 5 by 5, followed by a second layer with 1 filter,
with a kernel of size 3 by 3. Eventually the decoder outputs a reconstruction image of shape 28 by
28. In this work, we only consider grayscale images, that are normalized to represent probability
distributions. Hence each image is depicted as an histogram. In order to normalize the decoder
reconstruction we use a softmax activation for the last layer.

All the dataset considered are handwritten data and hence holds an inherent sparsity. In our case, we
cannot promote the output sparsity through a convex L1 regularization because the softmax outputs
positive values only and forces the sum of the output to be 1. Instead, we apply a `pp pseudo -norm
regularization with p = 1/2 on the reconstructed image, which promotes sparse output and allows
for a sharper reconstruction of the images (Gasso et al., 2009).
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 MSE=0.407, RelMSE=0.003, Corr=0.995
Exact prediction
Mean pred
10th percentile
90th precentile

Method W 2
2 /sec

LP network flow (1 CPU) 192
DWE Indep. (1 CPU) 3 633
DWE Pairwise (1 CPU) 213 384
DWE Indep. (GPU) 233 981
DWE Pairwise (GPU) 10 477 901

Figure 2: Prediction performance on the MNIST dataset. (Figure) The test performance are as follows:
MSE=0.41, Relative MSE=0.003 and Correlation=0.995. (Table) Computational performance of W 2

2
and DWE given as average number of W 2

2 computation per seconds for different configurations.

4.2 MNIST DIGIT DATASET

Dataset and training. Our first numerical experiment is performed on the well known MNIST
digits dataset. This dataset contains 28×28 images from 10 digit classes In order to create the training
dataset we draw randomly one million pairs of indexes from the 60 000 training samples and compute
the exact Wasserstein distance with a squared Euclidean ground metric using the POT toolbox
(Flamary & Courty, 2017). All those pairwise distances can be computed in an embarrassingly
parallel scheme (1h30 on 1 CPU). Among this million, 700 000 are used for learning the neural
network, 200 000 are used for validation and 100 000 pairs are used for testing purposes. The DWE
model is learnt on a GTX TitanX Maxwell 980 GPU node and takes around 1h20 with a stopping
criterion computed from on a validation set.

Numerical precision and computational performance The true and predicted values for the
Wasserstein distances are given in Fig. 2. We can see that we reach a good precision with a test
MSE of 0.4 and a relative MSE of 2e-3. The correlation is of 0.996 and the quantiles show that we
have a very small uncertainty with only a slight bias for large values where only a small number of
samples is available. This results show that a good approximation of the W 2

2 can be performed by
our approach (≈1e-3 relative error).

Now we investigate the ability of our approach to compute W 2
2 efficiently. To this end we compute

the average speed of Wasserstein distance computation on test dataset to estimate the number of W 2
2

computations per second in the Table of Fig. 2. Note that there are 2 ways to compute the W 2
2 with

our approach denoted as Indep and Pairwise. This comes from the fact that our W 2
2 computation is

basically a squared Euclidean norm in the embedding space. The first computation measures the
time to compute the W 2

2 between independent samples by projecting both in the embedding and
computing their distance. The second computation aims at computing all the pairwise W 2

2 between
two sets of samples and this time one only needs to project the samples once and compute all the
pairwise distances, making it more efficient. Note that the second approach would be the one used in
a retrieval problem where one would just embed the query and then compute the distance to all or a
selection of the dataset to find a Wasserstein nearest neighbor for instance. The speedup achieved by
our method is very impressive even on CPU with speedup of x18 and x1000 respectively for Indep
and Pairwise. But the GPU allows an even larger speedup of respectively x1000 and x500 000 with
respect to a state-of-the-art C compiled Network Flow LP solver of the POT Toolbox (Flamary &
Courty, 2017; Bonneel et al., 2011). Of course this speed-up comes at the price of a time-consuming
learning phase, which makes our method better suited for mining large scale datasets and online
applications.

Wasserstein Barycenters Next we evaluate our embedding on the task of computing Wasserstein
Barycenters for each class of the MNIST dataset. We take 1000 samples per class from the test dataset
and compute their uniform weight Wasserstein Barycenter using Eq. 3. The resulting barycenters
and their Euclidean means are reported in Fig. 3. Note that not only those barycenters are sensible
but also conserve most of their sharpness which is a problem that occurs for regularized barycenters
(Solomon et al., 2015b; Benamou et al., 2015). The computation of those barycenters is also very
efficient since it requires only 20ms per barycenter (for 1000 samples) and its complexity scales
linearly with the number of samples.
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Figure 3: Barycenter estimation on each class of the MNIST dataset for squared Euclidean distance
(L2) and Deep Wasserstein Embedding (DWE).

Class 0 Class 1 Class 4
L2 DWE L2 DWE L2 DWE

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Figure 4: Principal Geodesic Analysis for classes 0,1 and 4 from the MNIST dataset for squared
Euclidean distance (L2) and Deep Wasserstein Embedding (DWE). For each class and method we
show the variation from the barycenter along one of the first 3 principal modes of variation.

Principal Geodesic Analysis We report in Figure 4 the Principal Component Analysis (L2) and
Principal Geodesic Analysis (DWE) for 3 classes of the MNIST dataset. We can see that using
Wasserstein to encode the displacement of mass leads to more semantic and nonlinear subspaces
such as rotation/width of the stroke and global sizes of the digits. This is well known and has been
illustrated in (Seguy & Cuturi, 2015). Nevertheless our method allows for estimating the principal
component even in large scale datasets and our reconstruction seems to be more detailed compared
to (Seguy & Cuturi, 2015) maybe because our approach can use a very large number of samples for
subspace estimation.

4.3 GOOGLE DOODLE DATASET

Datasets The Google Doodle dataset is a crowd sourced dataset that is freely available from the
web1 and contains 50 million drawings. The data has been collected by asking users to hand draw
with a mouse a given object or animal in less than 20 seconds. This lead to a large number of
examples for each class but also a lot of noise in the sens that people often get stopped before the end
of their drawing .We used the numpy bitmaps format proposed on the quick draw github account.
Those are made of the simplified drawings rendered into 28x28 grayscale images. These images are
aligned to the center of the drawing’s bounding box. In this paper we downloaded the classes Cat,
Crab and Faces and tried to learn a Wasserstein embedding for each of these classes with the same
architecture as used for MNIST. In order to create the training dataset we draw randomly 1 million
pairs of indexes from the training samples of each categories and compute the exact Wasserstein
distance with squared Euclidean ground metric using the POT toolbox (Flamary & Courty, 2017).
Same as for MNIST, 700 000 are used for learning the neural network, 200 000 are used for validation

1https://quickdraw.withgoogle.com/data
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Learn \ Test CAT CRAB FACE MNIST
CAT 1.491 1.818 1.927 12.525

CRAB 2.679 0.918 3.510 11.750
FACE 4.884 4.843 1.313 52.994

MNIST 9.776 6.689 4.387 0.407
(a) MSE

Learn \ Test CAT CRAB FACE MNIST
CAT 0.004 0.007 0.011 0.082

CRAB 0.009 0.004 0.018 0.075
FACE 0.018 0.024 0.008 0.329

MNIST 0.028 0.030 0.026 0.003
(b) Relative MSE

Table 1: Cross performance between the DWE embedding learned on each datasets. On each row, we
observe the MSE (table a) and relative MSE (table b) on the test set of each dataset given a DWL
(Cat, Crab, Faces and MNIST).

Figure 5: Comparison of the interpolation with L2 Euclidean distance (top), LP Wasserstein interpo-
lation (top middle) regularized Wasserstein Barycenter (down middle) and DWE (down).

and 100 000 pairs are used for testing purposes. Each of the three categories (Cat, Crab and Faces)
holds respectively 123 202, 126 930 and 161 666 training samples.

Numerical precision and cross dataset comparison The numerical performances of the learned
models on each of the doodle dataset is reported in the diagonal of Table 1. Those datasets are much
more difficult than MNIST because they have not been curated and contain a very large variance
due to numerous unfinished doodles. An interesting comparison is the cross comparison between
datasets where we use the embedding learned on one dataset to compute the W 2

2 on another. The
cross performances is given in Table 1 and shows that while there is definitively a loss in accuracy
of the prediction, this loss is limited between the doodle datasets that all have an important variety.
Performance loss across doodle and MNIST dataset is larger because the latter is highly structured
and one needs to have a representative dataset to generalize well which is not the case with MNIST.
This also clearly highlights that our method finds a data-dependent embedding that is specific to the
geometry of the learning set.

Wasserstein interpolation Next we qualitatively evaluate the subspace learned by DWE by com-
paring the Wasserstein interpolation of our approach with the true Wasserstein interpolation estimated
by solving the OT linear program and by using regularized OT with Bregman projections (Benamou
et al., 2015). The interpolation results for all those methods and the Euclidean interpolation are
available in Fig. 5. The LP solver takes a long time (20 sec/interp) and leads to a “noisy” interpolation
as already explained in (Cuturi & Peyré, 2016). The regularized Wasserstein barycenter is obtained
more rapidly (4 sec/interp) but is also very smooth at the risk of loosing some details, despite choosing
a small regularization that prevents numerical problems. Our reconstruction also looses some details
due to the Auto-Encoder error but is very fast and can be done in real time (4 ms/interp).

5 CONCLUSION AND DISCUSSION

In this work we presented a computational approximation of the Wasserstein distance suitable for
large scale data mining tasks. Our method finds an embedding of the samples in a space where the
Euclidean distance emulates the behavior of the Wasserstein distance. Thanks to this embedding,
numerous data analysis tasks can be conducted at a very cheap computational price. We forecast that
this strategy can help in generalizing the use of Wasserstein distance in numerous applications.
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However, while our method is very appealing in practice it still raises a few questions about the
theoretical guarantees and approximation quality. First it is difficult to foresee from a given network
architecture if it is sufficiently (or too much) complex for finding a successful embedding. It can
be conjectured that it is dependent on the complexity of the data at hand and also the locality of
the manifold where the data live in. Second, the theoretical existence results on such Wasserstein
embedding with constant distortion are still lacking. Future works will consider these questions as
well as applications of our approximation strategy on a wider range of ground loss and data mining
tasks. Also, we will study the transferability of one database to another (i.e. leveraging on previously
computed embedding) to diminish the computational burden of computing Wasserstein distances on
numerous pairs for the learning process, by considering for instance domain adaptation strategies
between embeddings.
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A EFFECT ON USING AN AUTOENCODER LOSS IN THE LEARNING PROCESS

We discuss here the role of the decoder, not only as a matter of interpreting the results, but rather as a
regularizer. We train our DWE on MNIST with and without the decoder and compares the learning
curves of the MSE on the validation set. In Figure 6, DWE achieves a lower MSE with the decoder,
which enforces the use of a decoder into our framework.

Figure 6: W 2
2 validation MSE along the number of epochs for the MNIST dataset (DWE).

B COMPLEMENTARY RESULTS ON GOOGLE DOODLE DATASET

We illustrate here the plurality of examples found in this dataset by drawing random excerpts in Fig. 7.
There exist also a lot of outlier images (scribblings, texts, etc.). As discussed in the main text several
drawings are unfinished and/or do not represent correctly the required class.
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Figure 7: Examples drawn from the 3 Google Doodle datasets (left) cat dataset, (center) Crab dataset
(right) Face dataset.

We then compute the Wasserstein interpolation between four samples of each datasets in Fig. 8.
Note that these interpolation might not be optimal w.r.t. the objects but we clearly see a continuous
displacement of mass that is characteristic of optimal transport. This leads to surprising artefacts for
example when the eye of a face fuse with the border while the nose turns into an eye. Also note that
there is no reason for a Wasserstein barycenter to be a realistic sample.

Figure 8: Interpolation between four samples of each datasets using DWE. (left) cat dataset, (center)
Crab dataset (right) Face dataset.

In Fig. 9 we show the quantitative evaluation for DWE on the three datasets, that correspond to Table
1 in the paper. The reported MSE performances correspond to the ones in the diagonal of Table 1.
We can see that the deviation is larger for large values of W 2

2 mainly because of the small number of
training samples for those values.
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Figure 9: Performance of DWE on the Cat (left) Crab (center) and Face (right) doodle datsets.

We report in Fig. 10 a nearest neighbor walk (sequential jumps to the nearest, in the sense of the
considered metric, image that has not already been seen) on a subset of 10000 test samples starting
with the same image but using either the L2 distance in the input or DWE embedded space. Note that
the L2 in input space is here very sensible to outliers (black squares) that are rare in the dataset but
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have a L2 distance rather small to all other examples (most sequences converge to those samples).
Conversely the DWE neighbors follow a smooth trajectory along the examples. This illustrates the
advantage of W 2

2 for image retrieval, which is made computationally possible with DWE.
L2

DW
E

L2
DW

E
L2

DW
E

Figure 10: Nearest neighbor walk along the 3 datasets when using L2 or DWE for specifying the
neighborhood. (up) Cat dataset, (middle) Crab dataset (down) Face dataset.
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