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ABSTRACT

Representation learning is one of the foundations of Deep Learning and allowed
important improvements on several Machine Learning tasks, such as Neural Ma-
chine Translation, Question Answering and Speech Recognition. Recent works
have proposed new methods for learning representations for nodes and edges in
graphs. Several of these methods are based on the SkipGram algorithm, and they
usually process a large number of multi-hop neighbors in order to produce the
context from which node representations are learned. In this paper, we propose an
effective and also efficient method for generating node embeddings in graphs that
employs a restricted number of permutations over the immediate neighborhood
of a node as context to generate its representation, thus ego-centric representa-
tions. We present a thorough evaluation showing that our method outperforms
state-of-the-art methods in six different datasets related to the problems of link
prediction and node classification, being one to three orders of magnitude faster
than baselines when generating node embeddings for very large graphs.

1 INTRODUCTION

Many important problems involving graphs require the use of learning algorithms to make predic-
tions about nodes and edges. These predictions and inferences on nodes and edges from a graph
are typically done using classifiers with carefully engineered features (Grover & Leskovec, 2016).
These features, besides taking time and manual labor to be developed and acquired, usually do not
generalize well to other problems or contexts.

The field of Natural Language Processing (NLP) has had many advances due to the use of algorithms
that learn word representations, instead of manually extracted features. Originally proposed by
Bengio et al. (2003) and commonly used with Word2Vec algorithms like CBOW and SkipGram
(Mikolov et al., 2013a), word embeddings are used in many state-of-the-art solutions for neural
machine translation (Luong & Manning, 2016; Firat et al., 2016), question answering (Andreas
et al., 2016) and natural language generation (Wen et al., 2015). Recent works have proposed new
methods for learning representations for nodes and edges in graphs, based on random walks (Perozzi
et al., 2014; Grover & Leskovec, 2016) or auto-encoding adjacency vectors (Wang et al., 2016).

In this paper, we propose a new general purpose method for generating node embeddings in very
large graphs, which we call Neighborhood Based Node Embeddings (or simply NBNE). NBNE is
based on the SkipGram algorithm and uses nodes neighborhoods as contexts. NBNE outperforms
state-of-the-art DeepWalk (Perozzi et al., 2014) and Node2Vec (Grover & Leskovec, 2016) for the
tasks of link prediction and node classification on six collections, being one to three orders of mag-
nitude faster. In this work, we considered DeepWalk and Node2Vec as baselines.

The main reason for this improvement on effectiveness and efficiency is that we concentrate learning
on the “predictable” parts of the graph. A study by Facebook research (Edunov et al., 2016) found
that each person in the world (at least among the people active on Facebook) is connected to every
other person by an average 3.57 other people. In a graph of this magnitude and connectedness,
learning node embeddings by maximizing the log-probability of predicting nearby nodes in a random
walk (with a window size of 5) can be highly inefficient and make it ‘harder’ for the embeddings to
be constructed, even if these random walks are biased like in Node2Vec. We suspect this can also
make them more unstable, which would explain why they need more iterations before embedding
convergence.
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The main contributions of this work are:

• We present a new general purpose method that is more effective and more efficient than
state-of-the-art methods for generating node embeddings in graphs.

• Experimental results in solving the link prediction and node classification problems for six
graph sets show that our method outperforms, in terms of effectiveness and efficiency,
the methods DeepWalk and Node2Vec.

• In spite of the fact that our method has the same time complexity of the two baselines
DeepWalk and Node2Vec, we were able to improve the training time by one to three
orders of magnitude, which is important when dealing with very large graphs. For in-
stance, to learn node embeddings for a graph containing 317,080 nodes and 1,049,866
edges, collected from the DBLP1 repository (Yang & Leskovec, 2012), NBNE took ap-
proximately 14m30s minutes, DeepWalk approximately 164m34s and Node2Vec approxi-
mately 3,285m59s (more than 54 hours).

• We provide a thorough evaluation of our method in real and synthetic graphs, motivating
our choice for a semi supervised algorithm. Our method has a single tunable parameter
(number of permutations, which will be explained later) that can be tuned at once on the
training set to avoid overfitting the representations.

2 RELATED WORK

The definition of node similarity and finding general purpose node and/or edge representations are
non-trivial challenges (Lü & Zhou, 2011). Many definitions of similarity in graphs use the notion
of first and second order proximity. First-order proximity is the concept that connected nodes in
a graph should have similar properties, while the second-order proximity indicates that nodes with
similar neighborhoods should have common characteristics.

Some earlier works on finding these embeddings use various matrix representations of the graph,
together with dimensionality reduction techniques, to obtain the nodes’ representations (Roweis &
Saul, 2000; Tenenbaum et al., 2000). A problem with these approaches is that they usually depend
on obtaining the matrix’ eigenvectors, which is infeasible for large graphs (O(n2.376)) with the
Coppersmith-Winograd algorithm (Coppersmith & Winograd, 1987)). Recent techniques attempt to
solve this problem by dynamically learning representations for nodes in a graph using non-linear
techniques based either on first and second order proximities (Tang et al., 2015; Wang et al., 2016)
or random walks (Perozzi et al., 2014; Grover & Leskovec, 2016).

Other recent works focus on finding representations for specific types of graphs. TriDNR (Pan et al.,
2016) uses a graph structure together with node content and labels to learn node representations in
two citation networks. Their work can be directly applied to any graph where nodes have labels
and/or text contents. TEKE (Wang & Li, 2016) and KR-EAR (Lin et al., 2016) find representations
for entities in knowledge graphs and metapath2vec (Dong et al., 2017) finds node representations in
heterogeneous networks. The method LINE (Tang et al., 2015) finds a d dimensional representation
for each node based on first and second-order graph proximities, not being feasible for large graphs,
because its cost function depends on the whole adjacency matrix (O(|V |2)).
Another method, Structural Deep Network Embedding (SDNE) (Wang et al., 2016), is also based
on first and second order proximities. It uses autoencoders to learn a compact representation for
nodes based on their adjacency matrix (second-order proximity), while forcing representations of
connected nodes to be similar (first-order proximity) by using an hybrid cost function. SDNE is also
not feasible for large graphs, since the autoenconders are trained on the complete adjacency vectors.
Each vector has size O(|V |) and is created at least once, creating a lower bound on time complexity
O(|V |2).
The method DeepWalk (Perozzi et al., 2014) generates k random walks starting on each vertex in
the graph to create sentences where each “word” is a node. These sentences are then trained using
the SkipGram algorithm to generate node embeddings. This method has a time complexity bounded
by O(|V | log |V |).

1http://dblp.uni-trier.de
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Node2Vec (Grover & Leskovec, 2016) also uses random walks with SkipGram and can be seen as a
generalization of DeepWalk. The difference between the two methods is that Node2Vec’s walks are
random, but biased by two pre-assigned parameters p and q. During the creation of the walks, these
parameters are used to increase the chance of the walk returning to a parent node or going farther
from it. This method uses a semi-supervised approach which requires several models to be generated
and a small sample of labeled nodes to be used so that the best parameters p and q can be chosen.
Node2Vec is not efficient for densely connected graphs, since its time and memory dependencies on
the graph’s branching factor b are O(b2).

In this work, we considered DeepWalk (Perozzi et al., 2014) and Node2Vec (Grover & Leskovec,
2016) as baselines, since they are scalable, having a time complexity (O(|V | log |V |)). The main
differences between NBNE and the two baselines are: (i) we use a different sentence sampling strat-
egy which is based in a node’s neighborhood instead of random walks, (ii) NBNE is more effective
than both Node2Vec and DeepWalk, as supported by our experiments in six different datasets, and
(iii) NBNE is efficient for both dense and sparse graphs and scalable for very large applications,
having a faster training time than both Node2Vec and DeepWalk.

3 NEIGHBORHOOD BASED NODE EMBEDDINGS

The context of a word is not a straightforward concept, but it is usually approximated by the words
surrounding it. In graphs, a node’s context is an even more complex concept. As explained above,
DeepWalk and Node2Vec use random walks as sentences and consequently as contexts in which
nodes appear.

In this work, the contexts are based solely on the neighborhoods of nodes, defined here as the nodes
directly connected to it, focusing mainly on the second-order proximities. Consequently, nodes’
representations will be mainly defined by their neighborhoods and nodes with similar neighborhoods
(contexts) will be associated with similar representations.

3.1 SENTENCE GENERATION

In our Neighborhood Based Node Embedding’s (NBNE) method, as the name implies, sentences are
created based on the neighborhoods of nodes. There are two main challenges in forming sentences
from neighborhoods, as follows:

• A sentence containing all the neighbors from a specific highly connected root node might
be of little use. Most neighbors would be distant from each other in the sentence, not
influencing each other’s representations, and not directly influencing the root node.

• There is no explicit order in the nodes in a neighborhood. So there is no clear way to choose
the order in which they would appear in a sentence.

In this work, the solution is to form small sentences, with only k neighbors in each, using random
permutations of these neighborhoods. Algorithm 1 presents the code for generating sentences. As
a trade-off between training time and increasing the training dataset the user can select the number
of permutations n. Selecting a higher value for n creates a more uniform distribution on possible
neighborhood sentences, but also increases training time.

Algorithm 1 Sentence Sampling

1: procedure GETSENTENCES(graph, n)
2: sentences ← [∅]
3: for j in 0 : n do
4: for node in graph.nodes() do
5: neighbors ← random permutation(node.neighbors())
6: for i in 0 : len(neighbors)/k do
7: sentence ← [node] + neighbors[i · k : i · (k + 1)]
8: sentences .append(sentence)
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3.2 LEARNING REPRESENTATIONS

As described in Section 3.1, Algorithm 1 forms a set of sentences S, where each word is actually a
node from the graph. We train the vector representations of nodes by maximizing the log probability
of predicting a node given another node in a sentence and given a set of representations r. We use
a window of size k which is equal to the size of the generated sentences, so that each node in a
sentence predicts all the others. The log probability maximized by NBNE is given by:

max
r

1

|S|
∑
s∈S

(log (p (s|r))) (1)

where p (s|r) is the probability of each sentence, which is given by:

log (p (s|r)) = 1

|s|
∑
i∈s

 ∑
j∈s,j 6=i

(log (p (vj |vi, r)))

 (2)

where vi is a vertex in the graph and vj are the other vertices in the same sentence. The proba-
bilities in this model are learned using the feature vectors rvi , which are then used as the vertex
representations. The probability p (vj |vi, r) is given by:

p (vo|vi, r) =
exp

(
r′Tvo × rvi

)∑
v∈V (exp (r′Tv × rvi))

(3)

where r′Tvj is the transposed output feature vector of vertex j, used to make predictions. The rep-
resentations r′v and rv are learned simultaneously by optimizing Equation (1). This is done using
stochastic gradient ascent with negative sampling (Mikolov et al., 2013b).

By optimizing this log probability, the algorithm maximizes the predictability of a neighbor given
a node, creating node embeddings where nodes with similar neighborhoods have similar represen-
tations. Since there is more than one neighbor in each sentence, this model also makes connected
nodes have similar representations, because they will both predict each others neighbors, resulting
in representations also having some first order similarities. A trade-off between first and second or-
der proximity can be achieved by changing the parameter k, which simultaneously controls both the
size of sentences generated and the size of the window used in the SkipGram algorithm. A further
discussion on this effect can be seen in Appendix B.3.

3.3 AVOIDING OVERFITTING REPRESENTATIONS

When using large values of n (i.e., number of permutations) on graphs with few edges per node,
some overfitting can be seen on the representations, as shown in details in Section 5.1 and in Ap-
pendix B.2. This overfitting can be avoided by sequentially training on increasing values of n and
testing the embeddings on a validation set every few iterations, stopping when performance stops
improving, as shown in Algorithm 2.

Algorithm 2 NBNE without Overfitting

1: procedure TRAINNBNE(graph, max n)
2: sentences← get sentences(graph,max n)
3: model← [initialize model()]
4: for j in 0 : log2(max n) do
5: model← train(model, sentences[2j : 2j+1])
6: error ← test(new model, validation set)
7: if error > old error then
8: break

4 EXPERIMENTS

NBNE was evaluated on two different tasks: link prediction, and node classification.2 We used a
total of six graph datasets to evaluate NBNE and Table 1 presents details about these datasets. A

2Link to NBNE code will be made available in final publication.
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Table 1: Statistics on the first six graph datasets

Nodes Edges Edges/Node # Classes
Facebook1 (McAuley & Leskovec, 2012) 4,039 88,234 21.84 -
Astro1 (Leskovec et al., 2007) 18,772 198,110 10.55 -
PPI1,2 (Breitkreutz et al., 2008) 3,890 38,739 9.95 49
Wikipedia1,2 (Mahoney, 2011) 4,777 92,517 19.36 39
Blog1,2 (Zafarani & Liu, 2009) 10,312 333,983 32.38 39
DBLP1 (Yang & Leskovec, 2012) 317,080 1,049,866 3.31 -

1 used in Link Prediction
2 used in Node Classification

brief description of each dataset can be found in Appendix A and an analysis of their assortativity
properties in Appendix B.1. We present results for the link prediction problem in Section 4.1 and for
the node classification problem in Section 4.2. For all experiments we used sentences of size k = 5
and embeddings of size d = 128, while the number of permutations was run for n ∈ {1, 5, 10}.
The best value of n was chosen according to the precision on the validation set and we used early
stopping, as described in Section 3.3.

On both these tasks, DeepWalk and Node2Vec were used as baselines, having been trained and tested
under the same conditions as NBNE and using the parameters as proposed in (Grover & Leskovec,
2016). More specifically, we trained them with the same training, validation and test sets as NBNE
and used a window size of 10 (k), walk length (l) of 80 and 10 runs per node (r). For Node2Vec,
which is a semi-supervised algorithm, we tuned p and q on the validation set, doing a grid search on
values p, q ∈ {0.25; 0.5; 1; 2; 4}. We also evaluated NBNE on two synthetic graphs with different
sizes and sparseness, which can be seen on Appendix C, and an author name disambiguation task,
on Appendix F. A comparison between NBNE and SDNE can be seen on Appendix D.

4.1 LINK PREDICTION

Setup. Link prediction attempts to estimate the likelihood of the existence of a link between two
nodes, based on observed links and the nodes’ attributes (Lü & Zhou, 2011). Typical approaches
to this task use similarity metrics, such as Common Neighbors or Adamic-Adar (Adamic & Adar,
2003). Instead of these hand made similarity metrics, we propose to train a logistic classifier based
on the concatenation of the embeddings from both nodes that possibly form an edge and predict the
existence or not of the edge.

To train NBNE on this task, we first obtained a sub-graph with 90% randomly select edges from
each dataset, and obtained the node embeddings by training NBNE on this sub-graph. We, then,
separated a small part of these sub-graph edges as a validation set, using the rest to train a logistic
regression with the learned embeddings as features.

After the training was completed, the unused 10% of the edges were used as a test set to predict
new links. 10-fold cross-validation was used on the entire training process to access the statistical
significance of the results, analyzing statistical difference between the baselines and NBNE. To
evaluate the results on this task, we used as metrics: AUC (area under the ROC curve) (Baeza-Yates
& Ribeiro-Neto, 2011), and training time.3 The logistic regressions were all trained and tested using
all available edges (respectively in the training or test set), and an equal sized sample of negative
samples, which, during training, included part of the 10% removed edges.

Results. Table 2 presents results for this task. Considering AUC scores on the Link Prediction task,
NBNE was statistically better4 than both DeepWalk and Node2Vec on the Astro and PPI datasets,
with more than 7% improvement, also showing a 4.67% performance gain in Wikipedia and a small,
but statistically significant, gain on Blog. Only losing by a small percentage on Facebook, with a
difference that was not statistically significant.

3Training times were all obtained using 16 core processors, running NBNE, Node2Vec or DeepWalk on 12
threads, with all algorithms having been implemented using gensim (Řehůřek & Sojka, 2010). More detailed
results including precision on the training and test sets can be seen in Appendix E.

4In all experiments we performed Welch’s t-tests with p = 0.01. The symbol ∗ marks results which are
statistically different from NBNE.
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Table 2: Link prediction results

Facebook Astro PPI

AUC Training AUC Training AUC Training
Time Time Time

NBNE 0.9688 0m11s 0.8328 0m07s 0.8462 0m02s
DeepWalk 0.9730 2m26s 0.7548∗ 6m55s 0.7741∗ 2m30s
Node2vec 0.9762 69m33s 0.7738∗ 182m16s 0.7841∗ 66m37s

Gain -0.76% 12.96x 7.62% 59.06x 7.91% 77.43x
369.85x 1555.80x 2061.67x

Wikipedia Blog DBLP

AUC Training AUC Training AUC Training
Time Time Time

NBNE 0.6853 0m02s 0.9375 1m11s 0.9335† 14m30s
DeepWalk 0.6534∗ 7m38s 0.9098∗ 28m13s 0.9242‡ 164m34s
Node2Vec 0.6547∗ 236m60s 0.9202∗ 838m41s 0.9322‡ 3,285m59s

Gain 4.67% 194.86x 1.88% 23.86x 0.13% 11.34x
6049.77x 709.24x 226.52x

† average of 10 fold results
‡ no statistical tests were run, due to the time necessary to run a single fold

In DBLP, NBNE again presents the best AUC score, although this difference was small and its
statistical significance could not be verified due to the large training times of the baselines. This
dataset contains the largest graph analyzed in this work (317,080 nodes and 1,049,866 edges) and
in it, to train a single fold, Node2Vec took 3,285m59s (more than 54 hours) and DeepWalk took
164m34s (approximately 2 hours and 44 minutes), while NBNE took only 14m30s, which represents
a 226/11 times improvement over Node2Vec and DeepWalk, respectively.

Considering training time for this task, NBNE presents the biggest improvements on sparser net-
works of medium size, like Astro, PPI and Wikipedia datasets. On these graphs, the best results
are for n = 1, resulting in more than 50x faster training than DeepWalk and more than 1,500 times
faster than Node2Vec, achieving a 6,049 times faster training than Node2Vec on Wikipedia. For the
Blog and Facebook datasets the best results are for n = 5, resulting in larger training times, but
still more than one order of magnitude faster than DeepWalk and more than 350 times faster than
Node2Vec. For the DBLP dataset, the best results were achieved with n = 10, still much faster than
the baselines.

4.2 NODE CLASSIFICATION

Setup. Given a partially labeled graph, node classification is the task of inferring the classification
of the unknown nodes, using the structure of the graph and/or the properties of the nodes. In this
task, the node embeddings were trained using NBNE on the complete graph. After obtaining the
node embeddings, 80% of the labeled nodes in the graph were used to train a logistic classifier that
predicted the class of each node, while 5% of the nodes were used for validation and the remaining
15% nodes were used as a test set. This test was repeated for 10 different random seed initializations
to access the statistical relevance of the results.

Results. Results on the Blog, PPI and Wikipedia datasets are shown in Table 3 and are presented
in terms of Macro F1 scores and training times. NBNE produces statistically similar results to its
baselines, in terms of Macro F1, on both PPI and Wikipedia, while showing a statistically significant
22.45% gain in the Blog dataset, indicating that NBNE’s embeddings did not only get a better
accuracy on Blog, but also that correct answers were better distributed across the 39 possible classes.

Considering training times, NBNE is more than 10 times faster than DeepWalk on these three
datasets and is [300 ∼ 600] times faster than Node2Vec. NBNE didn’t show statistically worse
result in any dataset analyzed here5, while having an order of magnitude faster training time than
DeepWalk and more than two orders of magnitude faster training time than Node2Vec.

5Except for test precision on Wikipedia, losing to DeepWalk. For more details, see Appendix E
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Table 3: Node classification results

Blog PPI Wikipedia

Macro F1 Training Macro F1 Training Macro F1 Training
Time Time Time

NBNE 0.2004 1m57s 0.0978 0m16s 0.0727 0m41s
DeepWalk 0.1451∗ 31m31s 0.0991 3m04s 0.0679 13m04s
Node2vec 0.1637∗ 959m12s 0.0971 83m02s 0.0689 408m00s

Gain 22.45% 16.18x -1.35% 11.82x 5.56% 19.04x
492.57x 319.78x 594.62x

5 FURTHER ANALYSIS

5.1 NUMBER OF PERMUTATIONS (n)

The quality of NBNE’s embeddings depends on both the size of the embeddings (d) and the number
of permutations (n). For highly connected graphs, larger numbers of permutations should be chosen
(n ∈ [10, 1000]) to better represent distributions, while for sparser graphs, smaller values can be
used (n ∈ [1, 10]).
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Figure 1: (Color online) NBNE AUC scores vs
embedding sizes on Facebook dataset with 50%
edges removes

Figure 1 shows AUC scores versus embedding
sizes for several values of n on the Facebook
link prediction task. Quadratic functions ap-
proximating log(auc score) were plotted to al-
low for a better understanding of the results. It
can be seen that for larger numbers of permu-
tations (n > 100) results improve with embed-
ding size, while for small ones (n = 1) they
decrease. The plot also shows that n = 10
gives fairly robust values for all tested embed-
ding sizes.

A further analysis can be seen in Table 4, which
shows that graphs with more edges per node
tend to get better results with larger values of
n, while graphs with a smaller branching factor
have better results with only one permutation
(n = 1). Other factors also enter into account
when choosing n, like graph size. For exam-
ple, link prediction on the DBLP graph had its
best results for n = 10, although its branching
size was only 3.31. Further experiments on this
parameter can be seen in Appendices B.2 and C.1.

Table 4: Link Prediction results for varying n with NBNE

PPI (9.95†) Facebook (21.84†) Blog (32.38†)

n
Precision AUC Precision AUC Precision AUCTrain Test Train Test Train Test

10 0.7071 0.7108 0.7795 0.8453‡ 0.9061 0.9642 0.8771‡ 0.8627 0.9348‡

5 0.7280 0.7305 0.8071 0.8408‡ 0.9070 0.9688 0.8775‡ 0.8681 0.9375‡
1 0.7822 0.7751 0.8462 0.8036 0.8410 0.9150 0.8115 0.8374 0.9146

† Edges per node ‡ No statistical difference

5.2 TIME COMPLEXITY

SkipGram’s time complexity is linear on the number of sentences, embedding size (d) and logarith-
mic on the size of the vocabulary (Mikolov et al., 2013a). Since the number of sentences is linear
on the number of permutations (n), branching factor of the graph (b) and on the number of nodes,
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Figure 2: (Color online) (Top) Facebook dataset with 30% edges removed: Training times vs (Left)
embedding size (Right) number of permutations. (Bottom) Randomly generated graphs: Training
times vs (Left) number of vertices with b = 10 (Right) branching factor with |V | = 500.

which is the size of the vocabulary (|V |), the algorithm will take a time bounded by:

O (d · n · b · |V | · log(|V |))

Figure 2 (Top-Left and Top-Right) show training time is indeed linear on both embedding size and
number of permutations. It also shows that Node2Vec is considerably slower than DeepWalk, and
only has a similar training time to running NBNE with at least n = 1000. NBNE with n < 10 was
by far the fastest algorithm.

NBNE, Node2Vec and DeepWalk run in a time bounded by O(|V | log |V |), as can be seen in Fig-
ure 2 (Bottom-Left). Figure 2 (Bottom-Right) shows that NBNE’s time complexity is linear in the
branching factor b, while Node2Vec’s is quadratic. DeepWalk’s running time is constant in this pa-
rameter, but for a graph with a larger branching factor, a higher number of walks per node should be
used to train this algorithm, which would make it indirectly dependent on this factor.

6 CONCLUSIONS

The proposed node embedding method NBNE shows results similar or better than the state-of-the-
art algorithms Node2Vec and DeepWalk on several different datasets. It shows promising results in
two application scenarios: link prediction and node classification, while being efficient and easy to
compute for large graphs, differently from other node embedding algorithms, such as LINE (Tang
et al., 2015) or SDNE (Wang et al., 2016).

NBNE focuses learning on node’s immediate neighbors, creating more ego-centric representations,
which we suspect makes them more stable and faster to learn. Empirical results show that, although
it has a similar time complexity, NBNE can be trained in a fraction of the time taken by DeepWalk
(10 to 190 times faster) or Node2Vec (200 to 6,000 times faster), giving fairly robust results. Since
embeddings are learned using only a node’s immediate neighbors, we suspect it should also be easier
to implement more stable asynchronous distributed algorithms to train them, and we leave this as
future work.
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Anderson A Ferreira, Marcos André Gonçalves, and Alberto HF Laender. Automatic methods for
disambiguating author names in bibliographic data repositories. In JCDL, pp. 297–298. ACM,
2015.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. Multi-way, multilingual neural machine transla-
tion with a shared attention mechanism. NAACL-HLT, pp. 866–875, 2016.

Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for networks. In KDD, pp.
855–864, 2016.

David Jensen and Jennifer Neville. Linkage and autocorrelation cause feature selection bias in
relational learning. In ICML, volume 2, pp. 259–266, 2002.

Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graph evolution: Densification and
shrinking diameters. Transactions on Knowledge Discovery from Data, 1(1):2, 2007.

Arthur Liberzon, Aravind Subramanian, Reid Pinchback, Helga Thorvaldsdóttir, Pablo Tamayo, and
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Radim Řehůřek and Petr Sojka. Software Framework for Topic Modelling with Large Corpora. In
LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50, 2010.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. Science, 290(5500):2323–2326, 2000.
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A DATASETS

We used a total of six graph datasets to evaluate NBNE, with DeepWalk and Node2Vec being used
as baselines. Next we briefly describe these datasets:

1. Facebook (McAuley & Leskovec, 2012): A snapshot of a subgraph of Facebook, where
nodes represent users and edges represent friendships.

2. Astro (Leskovec et al., 2007): A network that covers scientific collaborations between
authors whose papers were submitted to the Astrophysics category in Arxiv.

3. Protein-Protein Interactions (PPI) (Breitkreutz et al., 2008): We use the same subgraph
of the PPI network for Homo Sapiens as in (Grover & Leskovec, 2016). This subgraph
contains nodes with labels from the hallmark gene sets (Liberzon et al., 2011) and repre-
sent biological states. Nodes represent proteins, and edges indicate biological interactions
between pairs of proteins.

4. Wikipedia (Mahoney, 2011): A co-occurrence network of words appearing in the first mil-
lion bytes of the Wikipedia dump. Labels represent Part-of-Speech (POS) tags.

5. Blog (Zafarani & Liu, 2009): A friendship network, where nodes are bloggers and edges
are friendships between them. Each node in this dataset has one class which is referent to
the blogger’s group.

6. DBLP (Yang & Leskovec, 2012): A co-authorship network where two authors are con-
nected if they published at least one paper together.

Figure 3 shows the distribution of classes in the three datasets used for node classification. While
Wikipedia has a long tailed distribution, with one class being present in almost 50% of its nodes,
PPI’s probabilities are well distributed along the 49 different possible classes.
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Figure 3: (Color online) Distribution of percentage of nodes per class in label classification datasets
with classes sorted by their frequency.

B ASSORTATIVITY

Assortativity, also referred to as homophily in social network analysis, is a preference of nodes to
attach themselves to others which are similar in some sense. In this section, we further investigate
assortativity properties related to both the representations generated by our algorithm, as of the
graphs themselves. In Section B.1, we do a quantitative analysis on the homophily inherent to the
datasets considered in this work. In Section B.2, we make a qualitative analysis of how assortativity
varies depending on the number of permutations n. In Section B.3, we make a qualitative analysis
on the trade-off of first and second order proximities based on the choice of k.
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B.1 DATASETS’ HOMOPHILY

There are several ways to quantitatively capture the homophily present in a graph. Jensen & Neville
describe relational auto-correlation, which is Pearson’s contingency coefficient on the characteristics
of nodes which share edges (Jensen & Neville, 2002; Neville & Jensen, 2007). Park & Barabási
(2007) define dyadicity and heterophilicity, which respectively measure how a graph’s nodes share
common/different characteristics in edges, compared to a random model.

Table 5 presents both degree and label assortativity properties of the six graphs analysed here, cal-
culated using the definition of Newman (2003). We can see in this table that the datasets analyzed in
this work cover a broad specter of assortativity properties. PPI, Wikipedia and Blog graphs present
negative degree assortativity, which means nodes in these graphs are more likely to connect with
nodes of different connectivity degrees. At the same time, Facebook, Astro and DBLP present pos-
itive degree assortativity, which indicates that their nodes tend to connect to others with similar
degrees.

Table 5: Datasets homophily information

Assortativity
Degree1 Label1

Facebook 0.0635 -
Astro 0.2051 -

PPI -0.0930 0.0533
Wikipedia -0.2372 -0.0252

Blog -0.2541 0.0515
DBLP 0.2665 -

1 Calculated as in (Newman, 2003)

We also analyze graphs with both positive and negative label assortativity in our label classification
task. While PPI and Blog datasets present positive label assortativity, with connected nodes more
frequently sharing classes, Wikipedia has a negative assortativity, with its connected nodes being
more likely to have different classes.

B.2 MORE ON THE NUMBER OF PERMUTATIONS (n)

Here, we further analyze how the number of permutations (n) influences both homophily and overfit-
ting in our learned representations. We qualitatively measure homophily by comparing either cosine
or euclidean distances between nodes on edges to the distances in non-edges.

The cosine distances for the PPI dataset, shown by the box plots in Figure 4 (top-left), clearly show
for larger values of n how the embeddings overfit to the specific graph structure, with the learned
similarity on edges not generalizing to the links which were previously removed. In this graph, for
larger numbers of permutation the removed edges have a distribution more similar to the non edges
than to the edges used during training, which is a tendency that can be observed in the other graphs,
although in a smaller scale.

The box plots in Figure 4 (top-right) show the cosine distance for Facebook nodes. We can see that
for n = 5 there is a larger separation between removed edges and non edges, which justifies the
algorithm’s choice of this value. For larger values of n we can again see an overlap between the
distributions, caused by the embeddings overfitting. On the other hand, the cosine distances for the
DBLP in Figure 4 (bottom-left) show the largest separation for n = 10.

Finally, the box plots in Figure 4 (bottom-right) show cosine distances for the Blog dataset. We
can see that for n = 1 and n = 5 there is actually a larger cosine distance between nodes in
removed edges than in non edges, with this situation only inverting for n ≥ 10. This happens due
to this graph’s negative degree homophily. This is also observed for similar graphs in the PPI and
Wikipedia datasets, though with a smaller intensity in the PPI graph, which has a smaller absolute
value of degree assortativity and where only embeddings for n = 1 present this property.

The box plots from Figure 4 further support our intuition that graphs with larger branching factors
should have larger values of n. At the same time, this choice also depends on the graph size and
structure, as shown by the algorithms choice of n = 10 for the DBLP dataset, which contains the
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largest degree assortativity. The best choice of n depends on the analyzed task, but we believe that,
at least for link prediction, this choice is both directly proportional to a graph’s branching size and
degree assortativity. Nonetheless, the difficulty in analyzing these graphs supports our choice for a
semi-supervised approach, automatically choosing n on a per graph instance.
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Figure 4: (Color online) Cosine distances on the: PPI dataset (top-left); Facebook dataset (top-right);
DBLP dataset (bottom-left); Blog dataset (bottom-right). All graphs had 10% of edges removes.

Considering again the experiment on the PPI dataset with the number of permutations n = 1 in
Figure 4 (top-left), in Figure 5 we present in detail the euclidean distances between nodes that share
or not an edge for this number of permutations. We can see that the distribution of removed edges is
a lot closer to the edges used for training than to the non edges.
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Figure 5: (Color online) Euclidean distances on PPI dataset for n = 1.
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B.3 TRADE-OFF BETWEEN FIRST AND SECOND ORDER PROXIMITY

The window size and the number of neighbors in a sentence are both adjusted by a single variable,
k, and this variable also controls a trade-off between first and second order proximities in the node
embeddings. This can be explained intuitively by analyzing both the sentence sampling method in
Algorithm 1 and Equations 1, 2 and 3, in Section 3.2.

When a smaller k is chosen, each node’s embedding rvi will be mainly used to predict its own
neighbors. This causes nodes with shared neighbors to have closer representations (second order
proximity). When larger values of k are chosen, nodes will appear more often in its neighbors
sentences, and will predict not only its own neighbors, but his neighbors’ neighbors. This will result
in connected nodes to have more similar embeddings, increasing first order similarity.

We further analyze this by examining the distribution of cosine distances between nodes at different
graph distances. For this analysis, we use three different synthetic graphs: Barabási-Albert (Barabási
& Albert, 1999); Erdõs-Rényi (Erdos & Rényi, 1960); Watts-Strogatz (Watts & Strogatz, 1998). We
choose these graphs because of their structural differences, believing they cover an ample specter
of different graphs’ properties. These graphs were created with |V | = 2000 and b = 20, and
Watts-Strogatz graphs had a probability β = 0.2 of generating non-lattice edges. To train our
representations we used n = 10 and d = 128.

Figure 6 shows box plots of these cosine distances of nodes’ representations versus their graph
distance on these different artificial random graphs. In this figure, we can see that, for both Barabàsi-
Albert and Erdõs-Rényi graphs, when using a sentence size (k) equal to 1, the cosine similarity
is larger for nodes which are two steps away than for nodes which share an edge (second order
proximity), while for larger values of k, nodes which share an edge have larger similarity (first order
proximity).
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Figure 6: (Color online) NBNE features cosine similarities between nodes versus Graph Distance for
different values of k for the graphs Barabási-Albert (left), Erdõs-Rényi (middle) and Watts-Strogatz
(right).

The box plots in Figure 6 also show that the difference in similarity increases with the value of k.
The larger the value of k, the larger the difference between similarities of nodes which share an edge
and nodes with larger distances, as can be seen in detail in Figure 7 for the Barabási-Albert graph.

C GRAPH SIZE AND SPARSENESS ANALYSIS

In this section, we analyze how a graph’s sparseness (represented here by its branching factor) and
size (represented here by its number of vertices) affect the choice of the number of permutations (n)
and of the window/sentence size (k). With this purpose we ran several link prediction experiments on
two different synthetic graphs: Watts-Stogratz and Barabási-Albert.6 These graphs were generated
for different sizes (|V |) and sparseness (b), and we ran experiments with the same setup as in Section
4.1, with Watts-Stogratz graphs having again β = 0.2.7 Section C.1 presents this analysis for the

6 Erdõs-Rényi graphs weren’t analyzed in this section because, since they have a completely random struc-
ture, its removed edges would be unpredictable.

7Results presented in this section are all averages of ten cross-validation executions in a single instance of
each graph size.
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Figure 7: (Color online) NBNE cosine vs graph distances in the Barabási-Albert graph.

number of permutations (n) and Section C.2 contains the analysis for different window/sentence
sizes (k).

C.1 NUMBER OF PERMUTATIONS (n)

We analyze, in this section, how a graph’s size and sparseness affect the choice of the number of
permutations (n), for both Watts-Stogratz and Barabási-Albert graphs. Analyzing the graphs in
Figure 8, we see a correlation between the best choice of n and a graph’s number of vertices (|V |)
and branching factor (b). In Figure 8a, which contains the experiments in the most sparse graphs,
results for n = 1 are better for all graph sizes. A random algorithm would return an AUC score of
0.5, so results bellow this value clearly expose a problem in the learning algorithm. This is the case
for both n = 10 and n = 5 in these graphs, which overfit its representations.
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Figure 8: (Color online) AUC Score vs Number of Vertices on a link prediction task on synthetic
Watts-Strogatz graphs for different values of n.

In Figure 8b we can see that, when considering a graph with a branching size of b = 4, for smaller
graphs a smaller value of n is preferable, while for larger graphs a larger number of permutations
gives better results (n = 10). In Figure8c we can see that, for a branching size of b = 8, results for
larger values of n are always better than for n = 1. Notice also that, while results for b = 2 and
b = 4 were around 0.55 ∼ 0.7, results for b = 8 are closer to 0.9, showing that this algorithm is
better at learning with more information.

Our experiments in link prediction using synthetic Barabási-Albert graphs present slightly more
complex results. Figure 9 shows that for smaller branching factors (b ≤ 8), n = 1 indeed generate
better results for small graphs, but for larger graphs, a larger number of permutations is necessary.
For intermediary branch sizes the best value of n is harder to determine, and only for b = 64 we
start to see a tendency of larger number of permutations consistently giving better results.
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Figure 9: (Color online) AUC Score vs Number of Vertices on a link prediction task for synthetic
Barabási-Albert graphs for different values of n.

We can also see from Figure 9 that edges in Barabási-Albert graphs are considerably more difficult
to predict, specially for smaller branching sizes. Most of our results are around 60% and our best
AUC scores in these graphs are around 70%.

Again, n’s dependency on these graph properties (|V | and b) depends highly on the graph’s structure,
further supporting our choice of a semi-supervised approach, choosing n on a per graph instance by
validating results on a small validation set. This can be considered as a form of early stopping when
training these node embeddings.

C.2 WINDOW AND SENTENCE SIZES (k)

In this section, we again use Watts-Stogratz and Barabási-Albert graphs, this time to analyze how a
graph’s size and sparseness affect results for different window and sentence sizes (k) in our model.
For these experiments we keep n = 5 fixed.

Figure 10a shows that, for a small branching factor (b = 2), all choices of k clearly overfit for Watts-
Strogatz graphs, but k = 5 overfits less than larger choices of k. For b = 8, k = 5 produces slightly
better results in these graphs, while larger values of k produce better results for a larger branching
size (b = 32).
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Figure 10: (Color online) AUC Score vs Number of Vertices on a link prediction task for synthetic
Watts-Strogatz graphs for different values of k.

16



Under review as a conference paper at ICLR 2018

Barabási-Albert graphs’ edges are considerably harder for our algorithm to predict, as shown in the
previous section, so we only report results for larger values of b (the algorithm, with our choice of
hyper-parameters, overfits for smaller values). We can see from Figure 11 that larger values of k
usually produce better results for this graph, but are more propense to overfit, specially when being
applied to larger sparse graphs (|V | ≥ 800 and b = 16).
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Figure 11: (Color online) AUC Score vs Number of Vertices on a link prediction task for synthetic
Barabási-Albert graphs for different values of k.

Further analysis on the representations’ properties for different values of k could provide better
motivation on its choice, but we leave this to future studies, keeping our choice of k = 5 constant in
this work. Studying if geometric operations between representations have comprehensible meanings
would also be interesting, such as was done for Word2Vec algorithms, but this is also left as future
work.

D COMPARISON WITH SDNE

Structural Deep Network Embedding (Wang et al., 2016) is another algorithm used for learning
node embeddings in graphs. As described in Section 2, SDNE is based on first and second order
proximities, using autoencoders to learn compact representations based on a node’s adjacency matrix
(second-order proximity), while forcing representations of connected nodes to be similar (first-order
proximity) by using an hybrid cost function.

This algorithm has a time complexity of O(|V |2), but its main computation, which is calculating the
gradients of its cost function and updating model parameters, can be highly parallelized by using
modern GPUs and Deep Learning frameworks. In this section, we compare NBNE and SDNE in
terms of both efficiency and efficacy, analysing both AUC/Macro F1 scores and training time. With
this objective, we trained SDNE embeddings using both a dedicated K40 GPU with CUDA 8.0 and
a dedicated 16 core linux server.8

In their original work, SDNE was run in a semi-supervised setting, finding the best value of α, β
and ν by tuning them on a small validation set. In this work we fix α = 0.2 and β = 10, since in
their work they state that these values commonly give the best results, while only choosing ν in a
semi-supervised manner. We use SDNE’s architecture with [10,300; 1,000; 128] nodes on each layer
and test it on both Link Prediction and Node Classification tasks, using the same steps described in
Sections 4.1 and 4.2. We train these embeddings using ν ∈ {0.1, 0.01, 0.001} and choose the best
value on the same validation sets used to tune n for NBNE and p and q for Node2vec.

Table 6 shows results using both NBNE and SDNE embeddings on Link Prediction tasks. In this
table we can see that both algorithms produce similar results in terms of AUC scores, with each
having a statistically significant better result on two datasets, and NBNE having a non statistically
significant, but slightly better result on the fifth. It is clear that even when training SDNE using a
K40 GPU, NBNE still has more than an order of magnitude faster training time on all datasets, being
more than two orders of magnitude faster on most. When comparing to SDNE trained on a CPU,
NBNE has more than three orders of magnitude faster training time. On Astro, the dataset with the

8SDNE code was implemented using Tensorflow (Abadi et al., 2015)

17



Under review as a conference paper at ICLR 2018

largest number of nodes analyzed here, NBNE had a 2,009 times faster training time compared to
SDNE on a GPU and 44,896 times faster compared to SDNE on CPU.9

Table 6: Link prediction results with SDNE

Facebook Astro PPI

AUC Training AUC Training AUC Training
Time Time Time

NBNE 0.9688 0m11s‡ 0.8328 0m07s‡ 0.8462 0m02s‡

SDNE 0.9510∗ 20m34s† 0.8157∗ 234m24s† 0.8751∗ 16m10s†

242m10s‡ 5,237m59s‡ 232m01s‡

Gain 1.87% 112.21x 2.10% 2,009.17x -3.30% 485.10x
1,320.91x 44,896.96x 6,960.34x

Wikipedia Blog DBLP

AUC Training AUC Training AUC Training
Time Time Time

NBNE 0.6853 0m02s‡ 0.9375 1m11s‡ 0.9335 14m30s‡

SDNE 0.6781 22m23s† 0.9462∗ 81m33s† - -
337m47s‡ 1,492m47s‡ -

Gain 1.06% 671.59x -0.92% 68.92x - -
10,133.46x 1,261.51x -

‡ Training time on CPU
† Training time on GPU

Table 7 shows the results of running NBNE and SDNE on the Node Classification task. On this task
NBNE gave statistically better results on two datasets, with an impressive gain of 29.27% on PPI
and 46.94% on Blog, only losing on Wikipedia with an also large gain of −20.20%. We can again
see that NBNE has a more than an order of magnitude faster training time than SDNE on a GPU in
this dataset, being more than two orders of magnitude faster when SDNE is trained on a CPU.

Table 7: Node classifications results with SDNE

Blog PPI Wikipedia

Macro F1 Training Macro F1 Training Macro F1 Training
Time Time Time

NBNE 0.2005 1m57s‡ 0.0978 0m16s‡ 0.0727 0m41s‡

SDNE 0.1364∗ 96m48s† 0.0757∗ 16m52s† 0.0911∗ 19m60s†

1,476m33s‡ 231m04s‡ 338m40s‡

Gain 46.94% 49.64x 29.27% 63.24x -20.20% 29.26x
757.20x 866.48x 495.60x

‡ Training time on CPU
† Training time on GPU

Analyzing both these tables we can also see that the largest gains in training time occur when using
NBNE on a large but sparse network, such as Astro. This agrees with our theoretical expectations,
since SDNE’s time complexity grows quadratically with the number of nodes O(|V 2|) and NBNE’s
grows with O(|V | · log(|V |) · b), which is close to linear on the number of nodes for large graphs.

E FULL RESULTS

In this section, we extend the results presented in Section 4, considering now the precision on the
training and test sets. We present results for the link prediction problem in Table 8 and for the node
classification problem in Table 9.

NBNE produces statistically similar results to its baselines, in terms of Macro F1, on the node
classification task using both PPI and Wikipedia datasets, while showing a statistically significant

9We tried running SDNE with the DBLP dataset, but after five days it hadn’t reached half of the training, so
we stopped it.
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Table 8: Link prediction complete results

Facebook Precision AUC Training
Train Test Time

NBNE 0.8408 0.9070 0.9688 0m11s
DeepWalk 0.8770∗ 0.9218 0.9730 2m26s
Node2vec 0.8844∗ 0.9251 0.9762 69m33s
Gain -4.93% -1.95% -0.76% (12.96x, 369.85x)

Astro Precision AUC Training
Train Test Times

NBNE 0.7640 0.7552 0.8328 0m07s
DeepWalk 0.6957∗ 0.6836∗ 0.7548∗ 6m55s
Node2vec 0.7223∗ 0.7163∗ 0.7738∗ 182m16s
Gain 5.78% 5.43% 7.62% (59.06x, 1555.80x)

PPI Precision AUC Training
Train Test Times

NBNE 0.7822 0.7751 0.8462 0m02s
DeepWalk 0.7124∗ 0.7078∗ 0.7741∗ 2m30s
Node2Vec 0.7332∗ 0.7253∗ 0.7841∗ 66m37s
Gain 6.69% 6.86% 7.91% (77.43x, 2061.67x)

Wikipedia Precision AUC Training
Train Test Times

NBNE 0.6823 0.6223 0.6853 0m02s
DeepWalk 0.8024∗ 0.5245∗ 0.6534∗ 7m38s
Node2Vec 0.8129∗ 0.5317∗ 0.6547∗ 236m60s
Gain -16.07% 17.04% 4.67% (194.86x, 6049.77x)

Blog Precision AUC Training
Train Test Times

NBNE 0.8775 0.8681 0.9375 1m11s
DeepWalk 0.8560∗ 0.8337∗ 0.9098∗ 28m13s
Node2Vec 0.8664∗ 0.8460∗ 0.9202∗ 838m41s
Gain 1.28% 2.61% 1.88% (23.86x, 709.24x)

DBLP Precision AUC Training
Train Test Times

NBNE 0.9724† 0.8781† 0.9335† 14m30s
DeepWalk 0.9344‡ 0.8369‡ 0.9242‡ 164m34s
Node2Vec 0.9449‡ 0.8498‡ 0.9322‡ 3,285m59s
Gain 2.91% 3.33% 0.13% (11.34x, 226.52x)

† average of 10 fold results
‡ no statistical tests were run, due to the time necessary to
run one fold

22.45% gain in the Blog dataset. Node classification results in the PPI dataset had the smallest
precision among all datasets, with only approximately 14%, but there are 49 classes in it and a
classifier which always guessed the most common class would only get 2.95% precision.

NBNE only shows a statistically worse result in test precision for node classification on the
Wikipedia dataset, losing to DeepWalk, but having an order of magnitude faster training time than
DeepWalk and more than two orders of magnitude faster training time than Node2Vec. On all other
experiments in either node classification or link prediction it presented either statistically better or
similar results to its baselines, while showing much faster training times.
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Table 9: Node classification complete results

Blog Precision Macro F1 Training
Train Test Times

NBNE 0.4235 0.3290 0.2004 1m57s
DeepWalk 0.3726∗ 0.3108∗ 0.1451∗ 31m31s
Node2vec 0.4022∗ 0.3257 0.1637∗ 959m12s
Gain 5.28% 1.00% 22.45% (16.18x, 492.57x)

PPI Precision Macro F1 Training
Train Test Times

NBNE 0.3930 0.1436 0.0978 0m16s
DeepWalk 0.4143∗ 0.1457 0.0991 3m04s
Node2Vec 0.4599∗ 0.1371 0.0971 83m02s
Gain -14.54% -1.45% -1.35% (11.82x, 319.78x)

Wikipedia Precision Macro F1 Training
Train Test Times

NBNE 0.5853 0.4938 0.0727 0m41s
DeepWalk 0.5595∗ 0.5078∗ 0.0679 13m04s
Node2Vec 0.5796∗ 0.5002 0.0689 408m00s
Gain 0.99% -2.76% 5.56% (19.04x, 594.62x)

F AUTHOR NAME DISAMBIGUATION

One of the hardest problems faced by current scholarly digital libraries is author name ambiguity
(Ferreira et al., 2012). This problem occurs when an author publishes works under distinct names
or distinct authors publish works under similar names (Ferreira et al., 2015). Automatic solutions,
which are effective, efficient and practical in most situations, are still in need (Santana et al., 2014).
In this section, we test our algorithm against the case where distinct authors publish works under
similar names.

F.1 EXPERIMENTAL SETUP

For this problem, the DBLP repository was crawled and the profiles of fourteen of the most prolific
ambiguous authors were obtained, together with their direct co-authors’ complete profiles. With
this, we created a new dataset, called here DBLP-ambiguous, consisting of fourteen separate co-
authorship networks (14 separate graphs), each with all the connections of one of these homonymous
authors and their co-authors’ connections. Details on these graphs can be seen in Table 10.10

Table 10: DBLP-ambiguous (DBLP-amb) Dataset Details

Name # Authors Nodes Edges
JingLi 4 105,746 589,367
JingWang 16 108,913 581,457
JunLiu 2 106,533 590,032
JunWang 21 121,511 691,705
JunZhang 16 116,497 631,738
LeiZhang 38 118,798 664,898
LiZhang 14 122,403 693,916
WeiLi 57 157,427 887,727
WeiWang 85 183,962 1,103,702
WeiZhang 52 131,200 722,272
XiaodongWang 3 50,854 284,733
XinWang 14 107,920 578,084
YangLiu 33 130,319 740,501
YuZhang 9 131,683 734,214

10Link to used DBLP crawler and the dataset will be made available in final publication.
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Using these co-authorship networks, embeddings were obtained by training on the graphs with 20%
of the papers from each ambiguous author removed. After the embeddings had already been learned
for each author, the probability of each possible author-coauthors “sentence” was calculated as:

spossible author = [vpossible author , vcoauthor 1, ..., vcoauthor j ]

This probability is given by:

p(author) =
1

T

T∑
t=1

 ∑
−k≤j≤k,j 6=0

(log (p (vt+j |vt)))

 (4)

where v1 = author , which comes from the NBNE model itself.

As a baseline, we used the typical solution that classifies the closest of the possible ambiguous
authors as co-author for each of the test papers. If no path on the graph existed to any of the possible
ambiguous authors, or if there was a tie between the distances to two or more of them, a random one
was chosen between the possible ones. DeepWalk and Node2Vec were not used as baselines for this
task due to the size of the 14 graphs analyzed here, most with more than 100,000 nodes and 500,000
edges, which would result in a prohibitive training time.

F.2 EXPERIMENTAL RESULTS

Table 11 presents the results for the author name disambiguation task for each chosen author. This
experiment was run using NBNE as an unsupervised algorithm with a fixed number of permutations
n = 10, having no validation set. We also used sentences of size k = 5 and node embeddings of
size d = 128.

Table 11: Author name disambiguation results

Name # Authors Algorithm Precision

Jing Li 4 NBNE 0.9415
Baseline 0.9415

JingWang 16 NBNE 0.8791
Baseline 0.8512

JunLiu 2 NBNE 0.9709
Baseline 0.9651

JunWang 21 NBNE 0.8357
Baseline 0.7821

JunZhang 16 NBNE 0.8206
Baseline 0.8130

LeiZhang 38 NBNE 0.8843
Baseline 0.8309

LiZhang 14 NBNE 0.8661
Baseline 0.8201

WeiLi 57 NBNE 0.8221
Baseline 0.7822

WeiWang 85 NBNE 0.8143
Baseline 0.8070

WeiZhang 52 NBNE 0.8408
Baseline 0.8184

XiaodongWang 3 NBNE 0.9697
Baseline 0.9576

XinWang 14 NBNE 0.8639
Baseline 0.8639

YangLiu 33 NBNE 0.7955
Baseline 0.7540

YuZhang 9 NBNE 0.9268
Baseline 0.9024

Average NBNE 0.8737
Baseline 0.8492

After the embeddings had already been learned for each author, which can be done off-line, the
NBNE algorithm was faster in assigning the authors than its baseline. This occurred because it
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only required computing the probability of each possible author-coauthors “sentence” (p(s)), while
the baseline had to dynamically get the distance between the papers’ co-authors and the possible
authors.

It can be seen in Table 11 that for all but two authors the precision was higher when using the
NBNE embeddings instead of the graph baseline, while for the other two precision score remained
the same.
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