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ABSTRACT

The tremendous success of deep generative models on generating continuous data
like image and audio has been achieved; however, few deep graph generative mod-
els have been proposed to generate discrete data such as graphs. The recently pro-
posed approaches are typically unconditioned generative models which have no
control over modes of the graphs being generated. Differently, in this paper, we
are interested in a new problem named Deep Graph Translation: given an input
graph, the goal is to infer a target graph by learning their underlying translation
mapping. Graph translation could be highly desirable in many applications such
as disaster management and rare event forecasting, where the rare and abnormal
graph patterns (e.g., traffic congestions and terrorism events) will be inferred prior
to their occurrence even without historical data on the abnormal patterns for this
specific graph (e.g., a road network or human contact network). To this end, we
propose a novel Graph-Translation-Generative Adversarial Networks (GT-GAN)
which translates one mode of the input graphs to its target mode. GT-GAN con-
sists of a graph translator where we propose new graph convolution and deconvo-
lution layers to learn the global and local translation mapping. A new conditional
graph discriminator has also been proposed to classify target graphs by condition-
ing on input graphs. Extensive experiments on multiple synthetic and real-world
datasets demonstrate the effectiveness and scalability of the proposed GT-GAN.

1 INTRODUCTION

In recent years, deep learning on graphs has experienced a fast increase, especially for representation
and discriminative tasks such as graph classification (Bruna et al., 2014; Defferrard et al.,|2016; Kipf]
& Welling, 2017) and embedding (Grover & Leskovec, [2016; Hamilton et al., | 2017). Beyond these
successes in several applications, most recently researchers started to explore using deep generative
models for graph synthesis on practical applications such as designing of new chemical molecular
structure (Simonovsky & Komodakis| [2018) and social interaction modeling (You et al.;, 2018)). This
is because although the domain of generative graph models has a long history, traditional methods
are highly dependent on the prior knowledge of the graph topological assumptions such as random
graphs, scale-free graphs, and Kronecker graphs. But for many real-world problems the real topol-
ogy are unknown, and hence we need to directly learn the generative models from the observations
of the graphs and learn the multi-layer latent representations automatically.

This motivates the recent advances in deep generative models, some are domain dependent such
as context-free grammars into the generative models (Kusner et al., 2017} |Dai et al., 2018) while
some others are generic (Simonovsky & Komodakis, 2018 |Li et al.,|2018};|Samanta et al., 2018 Jin
et al.| [2018)), most of which can only work on small graphs with 20 or fewer nodes. The existing ap-
proaches are typically unconditioned generative models, which typically only synthesize additional
graphs directly following the distributions of the observation graphs and has no control over modes
of the graphs being generated. However, in many important practical applications, it is usually cru-
cial to guide the graph generation process by conditioning the model on additional information such
as data from the different modalities.

In this paper, we are interested in generating a new graph conditioning on an input graph for the
applications such as enterprise malicious-network detection, disaster management, and virus prop-
agation synthesis. For example, trade secrets stored in the enterprise’s computer network are vital
to the company but is extremely difficult to defend if the attacks are from the internal employees’
accounts (Nehal 2017). The theft-of-trade-secret behaviors involve highly sophisticated activities in
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terms of malicious authentication paths over cyber-networks. And the recognition of them requires
to learn from rich historical attack examples, which barely can be available since these accounts
always being monitored well.

Although theft behaviors on cyber-networks have the similar purpose, the behaviors from different
accounts look quite different because of various sizes and structures of computer networks accessi-
ble by distinct accounts: some are administrators each with 100+ computers while some only can
access less than five. This requires us to learn the generic distribution of theft behaviors from his-
torical attacks and synthesize the possible malicious authentication graphs for the other accounts
conditioning on their current computer networks.

We formulate this type of new problems as Deep Graph Translation, which aims at translating a
graph with one modality to a new one with other modality using deep neural networks architecture.
This problem is analogical to image-to-image translation in image processing (Isola et al., [2017)
and language translation in natural language processing (Yang et al.,[2017). Unfortunately, similar
to the consensus that the existing image or text generation methods are not appropriate to be directly
applied to graph generation (Simonovsky & Komodakis| [2018)), existing image or text translation
methods cannot be directly applied to Deep Graph Translation problems. It is worth noting that, al-
though training an encoder-decoder model on graphs under supervised setting could generate a new
graph given a graph input, this will only produce a single deterministic graph based on a graph in-
put. However, as a graph synthesis task, we are instead interested in learning a distribution of graphs
conditioning on a graph input, which naturally are non-deterministic outputs capturing underlying
properties of the graphs such as scale-free and other implicit properties. To achieve this, there are
critical challenges in 1) learning to distill shared generic graph translation patterns over graphs with
different structures, and 2) assimilating the learned graph translation mapping to generate possible
target graphs conditioning on an input graph with a new structure.

To address the aforementioned challenges, in this paper, we present a novel framework for deep
graph translation with graph-translation generative adversarial nets (GT-GAN). Different from ex-
isting ordinary GANSs (Goodfellow et al., 2014)) that learn a generative model of data distribution,
GT-GANSs learn a conditional graph generative model, which is a graph translator that is conditioned
on input graph and generates the associated target graph. The GT-GAN consists of a graph translator
and a novel conditional graph discriminator. The graph translator includes three parts - graph con-
volutional layers, novel graph deconvolutional layers, and a graph U-net, which collectively address
the second challenge by jointly leveraging local and global information on graphs. Moreover, be-
cause the fidelity of the generated graphs needs to be discriminated depending on the specific input
graph, we propose a new conditional graph discriminator that is built on GCNN but conditioning on
the input graphs. Our contributions are summarized as follows:

o We formulate for the first time a graph translation problem. We further develop the first
deep framework for graph translation by proposing a new conditional graph GAN.

e We propose the first graph deconvolutional layers for the graph translation, in order to
generate target graph while preserving the local information from input graph.

e Our proposed GT-GAN is scalable with at most quadratic computational complexity and
memory consumption in terms of the number of nodes in a graph, making it suitable for at
least modest-scale graph translation problems.

o Our GT-GAN is highly extensible where underlying building blocks, GCNN (Graph Con-
volution Nueral Network) and distance measure in discriminator, can be replaced by other
techniques such as (Kipf & Welling}, 2017; |Arjovsky et al.,[2017) or their extensions.

e Extensive experiments on both synthetic and real-world application data demonstrate that
GT-GAN is capable of generating graphs close to ground-truth target graphs and signifi-
cantly outperforms other VAE-based models in terms of both effectiveness and efficiency.

2 RELATED WORKS

Deep learning techniques dealing with graphs is a new trending topic in recent years.

Neural networks on graph representation learning. In recent years, a surge of research in neu-
ral networks on graphs are generally divided into two categories: Graph Recurrent Networks (Gori
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et al.,|2005}; |Scarselli et al.,[2009; [Li et al., 2016)) and Graph Convolutional Networks (Niepert et al.,
2016; [Mousavi et al., [2017; [Defferrard et al., [2016; |Kawahara et al.,[2017; [Nikolentzos et al., 2017}
Cao et al., 2016} Kipf & Welling| [2017;|Xu et al., |2018). Graph Recurrent Networks originates from
early works for graph neural networks proposed by Gori et al. (Gori et al., |2005) and Scarselli et
al. (Scarselli et al., 2009) based on recursive neural networks. Graph neural networks were then ex-
tended using modern deep leaning techniques such as gated recurrent units (Li et al.,2016). Another
line of research is to generalize convolutional neural networks from grids (e.g., images) to generic
graphs. Bruna et al. (Bruna et al., 2014) first introduces the spectral graph convolutional neural
networks, and then extended by Defferrard et al. (Defferrard et al.l |2016)) using fast localized con-
volutions, which is further approximated for an efficient architecture for a semi-supervised setting
(Kipf & Welling, 2017). However, most of them are mainly developed for a single undirected large
graph. To consider the various topology of different graphs, our graph encoder draws inspiration
from (Kawahara et al.l [2017), we present a graph CNN consisting of a sequence of new layers for
the convolution operations on edge-to-edge, edge-to-node, and node-to-graph for directed graphs.

Graph generation. Until now the deep models proposed for graph generation can be generally
categorized into two classes: 1) domain-specific models and 2) generic models. Domain-specific
models (Gomez-Bombarelli et al., 20165 [Kusner et al., [2017; [Da1 et al.l 2018; Jin et al.l 2018)
typically take sequence inputs (such as SMILES for representing molecules) and generate other
sequences or parse trees from context-free grammars or sub-graphs by utilizing the collection of
valid components. However, these methods are not general for being widely applied.

Generic graph generation can handle general graphs that are not restricted to specific applications,
which is more relevant to this paper. Existing works are almost proposed in the most recent year,
which are based on VAE (Simonovsky & Komodakis, 2018} Samanta et al., 2018), generative ad-
versarial nets (GAN) (Bojchevski et al.,|[2018)) and others (Li et al.,[2018; You et al.l 2018)). Specif-
ically, L1 et al.| (2018)) proposed a graph net that generates nodes and edges sequentially to form a
whole graph, which is sensitive to the generation order and time-consuming for the large graphs.
Simonovsky & Komodakis| (2018) and [Samanta et al.| (2018]) both propose new variational autoen-
coders in parallel for whole graph generation, though they typically only handle very small graphs
(e.g., with < 50 nodes) and cannot scale well in both memory and runtime for large graphs. Dif-
ferent from the above methods, GraphRNN represents graphs as sequences using different node
ordering, and then builds an autoregressive generative model on these sequences with LSTM model.
Compared to existing methods, GraphRNN shows its good scalability in terms of graph size, which
is also comparable with our GT-GAN but with much higher runtime due to its large constants in the
runtime complexity and memory consumption as we will show in the experimental section.

Conditional generative adversarial nets. Generative adversarial networks (GANSs) (Goodfellow
et al., |2014) significantly advanced the state of the art over the classic prescribed approaches like
mixtures of Gaussians for image and 3D object generation (Karras et al.,2017). To further empower
GANs with the capability to generate objects under certain conditions, recently conditional GANs
have been proposed to condition GANs on discrete labels (Mirza & Osindero| 2014), text (Reed
et al.,[2016), and especially images (Wang & Gupta, [2016). Conditional GANs enable multi-modal
data fusion to generate images according to specific annotations, text labels or translate an input
image to an output image. For example, many important applications in image processing domain
using conditional GANs include image-to-image translation (Isola et al., 2017), inpainting (Pathak’
et al.| [2016), and style transfer (Zhu et al.,|2017). However, to the best of our knowledge, there is no
work focusing on graph-to-graph translation problem.

3 GT-GAN

The problem formulation of graph translation is first presented. Then we present the method GT-
GAN and describe its graph translator and conditional graph discriminator in details.

3.1 DEEP GRAPH TRANSLATION BY GT-GAN

This paper focuses on the graph translation from an input graph to a target graph. We define an
input graph X: Gx = (V, E,W) as a directed weighted graph such that V' is the set of N nodes,
E C V x V is the set of directed edges, and W € RY*" is a weighted adjacency matrix holding
the set of weights for the corresponding edges. Denote ¢; ; € E as an edge from the node v; € V' to
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Graph X

Conditional Graph Discriminator

Figure 1: Architecture of GT-GAN cons1st1ng of graph translator and conditional graph discrimina-
tor. New graph encoder and decoder are specially designed for graph translation.

v; € V and thus W; ; € W denotes the corresponding weight of the edge e; ;. Similarly, we define
atarget graph Gy = (V' E',W') as a directed weighted graph. Typically we focus on learning the
translation from one topological patterns to the other with the same set of nodes and hence we have
V = V’. Additionally, the weights of edges are nonnegative such that W; ; > 0 and W’ > 0. We
define a new problem named graph translation, where we focus on learning a translator from an
input graph Gx € Gx and a random noise U to a target graph Gy € Gy . The noise U is introduced
by the dropout function (Seltzer et al.|[2013) in each convolution and deconvolution layer as shown
in green lines of Fig. |I| The translation mapping is denoted as T : U, Gx — Gy, where Gx and
Gy denote the domains of input and target graphs.

To address this issue, we proposed the Graph-Translation GAN (GT-GAN) that consists of graph
translator 7" and conditional graph discriminator D, as shown in Fig. [T} T is trained to produce target
graphs that cannot be distinguished from “real” graphs by D, that is, distinguishes the produced
target graph Gy = T(Gx, U) from the real one Gy based on the current input graph Gx. T and
D undergo an adversarial training process based on input and target graphs shown as below:

‘C(Tv D) = EGX,GY [IOgD(GY|GX)] + EGX,U[IOg(l - D(T(GXa U)|GX))] (1)

where T’ tries to minimize this objective against an adversarial D that tries to maximize it, i.e.
T* = arg miny maxp L£(T, D). Previous approaches in image domain have found it beneficial to
mix the GAN loss with L1 loss (Isola et al.,|2017). Thus, an L1 loss is applied to the weight adjacent
matrix of generated target graphs and real target graphs:

Lin(T) =Eay ey vllGy —T(Gx,U)|l] 2

The training process is a trade-off game between £;; and £(T', D), which jointly enforces T'(G x, U)
and Gy to follow a similar topological pattern but may not necessarily the same. Specifically, £;;
makes T'(Gx, U) share the same rough outline of sparsity pattern with Gy, while under this outline,
L(T, D) allows the T(Gx, U) to vary to some degree. Thus, the final objective is:

T* = arg rr%n max L(T,D)+ L (T) (3)

3.2 GRAPH TRANSLATOR

We propose a new graph translator by extending the state-of-the-art graph convolution and proposing
new graph deconvolution layers.

Different and more difficult than graph generation designed only for learning the distribution of
graph representations, graph translation learns not only the latent graph presentation but also the
generic translation mapping from input graph to the target graph simultaneously. However, graph
representations vary according to different graph samples while the translation mapping between
input-target pairs remains consistent across different pairs of samples. Moreover, different from
graph generation which focuses on the graph level distribution, graph translation focus on learning
the translation mapping both in graph level (e.g., general transformation in graph metrics) and in
local level (e.g., specific nodes have specific transformations according to its local properties).

To address the first challenge, we propose to leverage skip-net structure (Ronneberger et al., [2015))
so that the sample-specific representations can be directly passed over through skip connection to de-
coder’s layers while the sample invariant mapping will be learned in the encoder-decoder structure.
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More importantly, to address the second challenge, we extend the state-of-the-art graph convolution
and propose new graph deconvolution that preserves both global and local information during graph
translation. The architecture of graph translator is illustrated in Fig. [T} where the input graph first un-
dergoes two “directed edge-to-edge convolution’ operations to encode the higher-order topological
information and then is embedded into node representation by a “directed edge-to-node convolu-
tion” operation. Then, a novel graph decoder based on graph deconvolution has been proposed,
including one “directed node-to-edge deconvolution” operation and two “directed edge-to-edge de-
convolution” operations. The details are introduced in the following.

3.2.1 DIRECTED GRAPH CONVOLUTIONS

Some recent works focus on generalizing image convolution into graph convolution, but as pointed
out in (Kawahara et al., [2017), most of them try to embed the graphs based on the signals assigned
on the nodes with the fixed graph topology. The work that can handle encoding the edge structure
typically focus on undirected graphs but are not immediately applicable to directed graphs.

Therefore, to solve this issue, we propose a graph encoder that can admit directed graph convolution
based on (Kawahara et al.,|2017). In a directed weighted graph, each node could have in-edge(s) and
out-edge(s), which can be convoluted respectively for each node. Specifically, denote the A»™ €
RN XN as the weighted adjacency matrix for Ith layer in mth feature map and Ai:;” is for the edge
e;j. Let A1 = W denote the weighted adjacency matrix of the input graph. ®;,, € R and
W) m € RY*! are the incoming and outgoing kernels of [th layer of mth feature map for a node,
respectively. We define a graph convolution over its in-edge(s) as the weighted sum over all the

weights of its incoming edges: f(i“) =@ - AM™ where n denotes the n-th feature map

Lm,n,j VAN
in (I + 1)-th layer. Similarly, we define the graph convolution over the out-edge(s) as fl(orl:)nl =

Ali:’,” - W) m.n. And thus the directed edge-to-edge convolution is defined as follows:

My :

AT =03 i T i) @)
where Aﬁjl” refers to the value in position ¢, j of edge nth feature map in the (I + 1)th layer. M;
refers to the number of feature maps in the /th layer. The two components refers to out-direction
and in-direction features as talked above. o(-) refers to activation function that can be set as linear,
or ReLu (Velickovi€ et al.;2017) when the edge weights are assumed nonnegative.

The directed edge-to-node convolution embeds each edge feature map into a vector which encodes
all the incoming and outgoing edges of a node into a value from various combinations:

M, ‘
+1n _ ! (in) (out)
Ai - U(Zmzl( lm,n,i + fl,m,n,i)) (5)
where Aé“’" € RV>1 denotes the ith node representation (i.e., the 4th layer in graph translator in
Fig. [I)) under nth feature map.

3.2.2 GRAPH DECONVOLUTIONS

The graph convolution encodes the input graph into node rep-
resentation with highly condensed knowledge on the higher-
order neighborhood pattern of nodes. Next, decoder part aims
to decode the node representation back to target graph as
shown in Fig. [2] Graph deconvolution decodes the single node
(or edge) information to its incoming and outgoing neighbor
nodes and edges, which is a reverse process of graph convo-
lution. Currently, to the best of our knowledge, there is no
work on directed graph deconvolution. The techniques that can
generalize the image deconvolution to graph domain is highly
imperative and nontrivial. As shown in Fig. [3] this paper pro- ——=3 graph convolution €===
poses novel graph deconvolution techniques including “node-  Fjgure 2: Graph deconvolution of a
to-edge deconvolution” layers and “edge-to-edge deconvolu- node

tion” layers, which are described as follows:

<€ === graph deconvolution ===

node-to-edge deconvolution. Different from images, “di-

rected node-to-edge deconvolution” requires to decode the “local neighborhood” pattern from a
node through graph topology including both incoming and outgoing connections. This calls for a re-
verse process of “directed edge-to-node convolution”. As shown in Fig. 3[b), each node is decoded
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filters ~ === Receptive fields x Multiply — + Add

b Lmn

OV
(in)
(i) A Um X ay
gl+2m7u Al U"‘ U+ 1mn,i
4 r I ,mn
+ ‘/}H-lmn (uu ) ,,1 l,"lmn
(a) edge-to-node convolution  (b) node-to- edge X Jetonvolution (c) edge-to-edge convolution  (d) edge-to- edge “desivolution

Figure 3: Matrix operations for graph convolution and graph deconvolution. In convolution operations, we
need to utilize row filter to convolute “incoming” edges and column filter for “outgoing” edges. However, in
deconvolution operations, we have to utilize the transposed filters, namely column filter to decode for
“incoming” edges and row filter to decode for “outgoing” edges.

back to its “incoming” and “outgoing” edges by two transposed filters. Speciﬁcally, each node Aé’m
in the mth feature map in Ith layer is multiplied by these two filters ®7 1.m.n and \I/le ,, Tespectively

to get the decoded information in terms of gl(j_ﬂl) i = f -AY™ and l(ﬁtzn i = = Abm 7.

for the nth feature maps in (I + 1)th layer, as shown in Fig. (3 b) Here &7 Rl XN
for decoding “outgoing” edges while ¥} o € RNV*! is a column filter for decoding “incoming”
edges. Hence they are respectively vertical to the corresponding filters for convolution, as shown in
Fig. 3] Based on such deconvolution process, all nodes in /th layer will be decoded into correspond-
ing pairs of a column and a row, which will be aggregated into the feature map for the (I + 1)th
layer. Mathematically, each element of Aﬁ:;l’” in the nth feature map is calculated as:
n M m m
A=Y o[ @l AT (AT V) (©)
(in) (out)

I+1,m,n,j I+1,m,n,i
where [-]; means the ith element of a vector.

Lm.n is a row filter

edge-to-edge deconvolution. The decoded feature map from “node-to-edge deconvolution” still en-
compasses higher-order connectivity knowledge, which will be further released and translated back
to the neighborhood of “incoming” and “outgoing” incident edges by “edge-to-edge deconvolution”.
We propose “edge-to-edge deconvolution” which will decode each edge back to its “incoming”
edges (i.e., the incoming edges of its source node) and “outgoing” edges (i.e., the outgoing edges of
its target node) incident to it by two transposed filters. As shown in Fig. [3[d), each edge representa-

tion Al " in mth feature map in I’th layer will be multiplied by both the filters ®7, I/m.n and vl

respectlvely to get its relevant decoded information in terms of gl(, +)1 i = Zm:l oL - Afn:”
(out)

U'+1,m,n,i
row filter for decoding * outgomg edges while U7, is a column filter for decoding “incoming”

edges, as shown in Fig. [l Hence, based on such deconvolutlon process, all elements (i.e., edges)
in {’th layer will be decoded into corresponding pairs of a column and a row, which will be finally

m,n ,m,n

=M Al n - Wl for nth feature maps in I’ 4 1 layer. Here ®,  isa

m,n

and g

aggregated into the feature map for the (I’ + 1)th layer. Mathematically, each element of Ai jl ™ in
the nth feature map is calculated as:
’ n M "'m M 'm
AT =0 P ATl D ATV al:) ™)

(in) (out)

gl/+1 m,n,i gl/+1 m,n,j
In sum, graph deconvolution can be seen as a transposed operation of graph convolution, as shown
in Fig. [3] which is analogical to the relationship between image convolution and deconvolutiorﬂ

3.3 CONDITIONAL GRAPH DISCRIMINATOR

When identifying the “translated” target graph from the “real” ones, the input graph will also need
to be considered. This new problem requires the discriminator to take two graphs as inputs, namely
a target graph and an input graph, and classify the joint patterns of them into a class label. Instead
of identifying whether the generated graphs look similar to the real graphs, this problem requires
to identify whether the translations look similar, which encodes a second-order change between
input and target graphs. The challenge is not only learning the topological representation of each
graph but also need to learn the correspondence between the two graphs and their nodes globally
and locally. To address this, we propose conditional graph discriminator (CGD) which leverages

"This is why “deconvolution” is well-recognized to be better named as “transposed convolution”
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“paired” directed edge-to-edge layers as shown in Fig. [I] Specifically, the input and target graphs
are both ingested by CGD and stacked into a N x [N x 2 tensor which can be considered as a 2-
channel weighted adjacency matrix of a multi-graph. Then each of the channels is mapped to its
corresponding feature maps and then the separated directed edge-to-edge layers. Then the edge-to-
node layer is again applied to obtain node representations, which is then mapped to graph embedding
by a fully-connected layer. Finally, a softmax layer is implemented to distinguish the real graph and
fake graph. When the model is well trained, the discriminator cannot distinguish the generated target
graphs and real target graphs, the output probabilities of all graphs should be around 0.5.

3.4 ANALYSIS ON TIME AND MEMORY COMPLEXITY

The graph encoder and decoder shares the same time complexity. Without loss of generalization, we
assume all the layers (except input and output) have the same number of feature maps as M. P is the
length of the fully connected layer. Then, the worst-case total complexity of GT-GAN (i.e., when the
weighted adjacency matrix is dense) is O(9IN2M@ + 3N2M¢ + N? M, P), where the first, second,
and third terms are for “directed edge-to-edge convolutions”, “directed edge-to-node convolutions”,
and fully connected layers in conditional graph discriminator, respectively. Similarly, the total mem-
ory consumption of GT-GAN is O((INMZ + 9IN?My) + (3NME + 3N My) + (N?MoP + P)).
Compared to the existing works (Simonovsky & Komodakis| 2018} |Samanta et al., 2018) that can
only scale to small size of graphs (up to |V| = 20), our GT-GAN is able to provide a scalable (i.e.,
O(N?)) algorithm that can generate general graphs.

4 EXPERIMENT

In this section, extensive experiments on graph translation for the proposed methods on two syn-
thetic and one real-world dataset are conducted and analyzed. The proposed GT-GAN demon-
strated outstanding performance in both effectiveness and scalability by multiple metrics. All
experiments are conducted on a 64-bit machine with Nvidia GPU (GTX 1070,1683 MHz, 8
GB GDDRS5). Our code and data are available at https://github.com/anonymousl1025/
Deep-Graph-Translation-.

4.1 EXPERIMENTAL SETTINGS
4.1.1 DATASETS

Synthetic Datasets: Two groups of synthetic datasets are used to validate the performance of the
proposed GT-GAN: Scale-free graphs set and Poisson-random graphs set. Each group has five
datasets with different graph sizes (i.e., number of nodes): 10, 20, 50, 100, and 150. Each dataset
consists of 5,000 pairs of input and target graphs: 2500 pairs of graphs are used for training the graph
translator and the remaining 2500 pairs are used to validate the performance of graph translation on
input graphs. The generation rule for each group of datasets is as follows.

Synthetic Datasets 1: Scale-free Graph Datasets. Each input graph is generated as a directed scale-
free network, which is a network whose degree distribution follows power-law property (Bollobas
et al., 2003). A node will by selected as target node with probability proportional to its in-degree,
which will be linked to a new source node with probability of 0.41. Similarly, a node will by selected
as source node with probability proportional to its out-degree, which will be linked to a new target
node with probability of 0.54. Then, a corresponding target graph is generated by adding m (m
equals the number of nodes of the input graph) edges between two nodes. Thus, both input and
target graphs are scale-free graphs.

Synthetic Datasets 2: Poisson-random Graph Datasets. Each input graph is generated by (Krapivsky
& Redner} 2001) which is a directed growing random network. Then for an input graph with | E|
edges, we randomly add k|E| edges on it to form the target graph, where k follows the Poisson
distribution with the mean of 5.

Real World Datasets: User authentication Graph Datasets. This dataset includes the authen-
tication activities of 97 users on their accessible computers and servers in an enterprise computer
network (Kent, [2015). Over time, each user account logs on one computer from another, which
forms a directed weighted graph called authentication graph: nodes represent computers while the
directed edges and weights represent the authentication activities and the frequencies. The goal is to
forecast and synthesize the future potential malicious authentication graphs of the users without any
historical malicious behaviors, by the graph translator from normal to malicious graph trained based
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on the users with historical malicious-behavior records. Here, each authentication graph records the
user behavior in thirty minutes. In total, we have 315 samples pairs, and each of them consists of
a pair of authentication graphs with and without malicious (e.g., hacking) behavior. We perform
3-fold cross-validation for training and testing.

4.1.2 COMPARISON METHODS

Since there is no existing work on deep graph translation, we compare against current state-of-
the-art baselines that can generate general graphs, including 1) GraphRNN (You et al.| 2018): a
newly graph generation method based on sequential generation with LSTM model; 2) GraphVAE
(Simonovsky & Komodakis, [2018)): a probability-based graph generation method for small graphs;
3) GraphGMG (Li et al., [2018): a framework based upon graph neural networks for small single
graphs; 4) RandomVAE (Samanta et al.,|2018)); and 5) S-Generator: supervised deterministic graph
generation using only our graph translator with L1 loss. All the comparison methods are directly
trained by the malicious graphs without the conditions of input graphs as they can only do graph
generation instead of translation. When applying these methods, which are for undirected graphs,
to directed graphs problem, the adjacent matrix of directed graphs is transformed from size N to
size 2IN. Due to the limited scalability of the above methods, GraphRNN is tested with graph size
within 150. GraphGMG, GraphVAE is tested within size 10 and RandomVAE is tested on graphs
within size 50. All the comparison methods are trained through ADAM optimization algorithm.
The learning rate of GraphGMG, GraphVAE, and RandomVAE is 0.001 and the learning rate of
GraphRNN is 0.003.

4.2 PERFORMANCE

The scalability of different methods on different datasets and model effectiveness evaluation by
direct evaluations and indirect evaluations are given.

4.2.1 MODEL SCALABILITY ANALYSIS

Unlike most deep graph generative models which only focus on very small graphs (e.g., < 40
nodes), the proposed GT-GAN can scale to graphs of larger size. To demonstrate it, Fig. []illustrates
the scalability of GT-GAN and two baseline methods (GraphRNN and RandomVAE) in terms of
memory consumption and computational time, respectively. Other comparison methods are not
tested since they can only deal with small graphs with node number less than 20. As shown in
Fig. @] when the graph size increases up to 50, the memory consumption of the GT-GAN maintains
almost constant and computational time grows slowly, both of which are less than 1500MB and 300
seconds, respectively. In contrast, the memory consumption and computational time of RandomVAE
increases super-linearly as the graph size increases, making it hard to scale even to the graph size of
30. Interestingly, memory consumption and runtime of GraphRNN increases slightly as the graph
size increases, but their costs are much higher than GT-GAN with almost two times in memory
requirement and ten times in runtime.
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Figure 4: Scalability plots on memory and time cost of GT-GAN, RandomVAE and GraphRNN

4.2.2 DIRECT EVALUATION OF MODEL EFFECTIVENESS

To directly verify if GT-GAN indeed discover the underlying ground-truth translation rules between
input and target graphs, the sparsity similarity between generated target graphs and real target graphs
are measured on various metrics.

Results on Scale-Free Graphs: For scale-free graph datasets, the metrics are: Jensen-Shannon
distances (JS) (Lin, [1991), Hellinger Distance (HD) (Beran, [1977), Bhattacharyya Distance (BD)
(Basseville, [1989) and Wasserstein Distances (WD) (Riischendorf], [1985), which are most com-
monly used to measure the distance between two distributions. Table[I]shows the distances between
generated target graphs and real target graphs in terms of node degree on the above metrics. The
“Inf” in Tabel [T|represents the distance more than 1000. The proposed GT-GAN outperforms others
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in all metrics with smaller distances, especially in Bhattacharyya distance (by average 15%) and
Hellinger distance for all graph sizes. S-Generator is the second best methods in terms of distance
evaluation since it is a supervised learning method. Fig. [5] directly shows the node degree distri-
bution curve of some generated and real target graphs by GT-GAN. The curves of the generated
graphs follow power-law rule correctly and become closer to the real target graphs when graph size
increases, which is consistent with Table[I] This again demonstrates that our end-to-end graph trans-
lator indeed can accurately discover the underlying translation by scale-free model. Due to space
limits, many other examples can be found in Appendix A in supplementary materials. Similar ob-
servations in the direct evaluation results (e.g. average degree, repository and density) of Poisson
random graphs and user authentication graphs can be found in Appendix B and C.
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Figure 5: Examples of node degree distributions of generated and target graphs for scale free graphs

Table 1: Node degree distribution distance between the generated and real graphs for scale free graphs

Graph size ~ Methods Jensen-Shannon ~ Hellinger ~ Bhattacharyya =~ Wasserstein
Random-VAE  0.42 0.98 Inf 7.58
GraphRNN 0.47 0.98 Inf 1.64
10 GraphVAE 0.67 1.00 Inf 2.85
GraphGMG 0.43 0.98 Inf 1.69
S-Generator 0.35 0.98 345 0.80
GT-GAN 0.35 0.98 3.44 0.77
RandomVAE 0.51 0.97 Inf 1.74
20 GraphRNN 0.50 0.98 Inf 1.44
S-Generator 0.36 0.96 2.84 0.67
GT-GAN 0.35 0.96 2.74 0.66
Random-VAE  0.69 0.99 Inf 7.99
50 GraphRNN 0.49 0.94 Inf 1.44
S-Generator 0.31 0.90 1.70 0.34
GT-GAN 0.43 0.89 1.66 2.43
GraphRNN 0.48 0.88 Inf 0.90
100 S-Generator 0.14 0.68 0.64 0.30
GT-GAN 0.15 0.43 0.24 0.31
GraphRNN 0.42 0.74 Inf 0.95
150 S-Generator 0.08 0.31 0.11 0.29
GT-GAN 0.07 0.30 0.11 0.27

4.2.3 INDIRECT EVALUATION OF MODEL EFFECTIVENESS

Graph classification usually faces label imbalance issue. Here, beyond label imbalance, we are
interested in “label missing” which is more challenging. For example, we want to classify whether
an authentication graph of a user is malicious (positive) or normal (negative), but this user does not
have any malicious records before. In this extremely difficult task, the target graphs (i.e., malicious
graphs) generated by graph translator will be utilized as positive samples to train the classifier.

More generally, the validation set introduced in Section [.1.1] of each dataset will be further split
evenly into two subsets. The first subset is for training a graph classifier based on model proposed
byNikolentzos et al.|(2017), using only the negative samples (i.e., the input graphs) plus the target
graphs generated by each comparison method. In addition, we have also trained a “gold standard”
classifier based on input graphs and real target graphs. Finally, the second subset contains both
the input graphs and real target graphs for validating the classifiers trained above. Therefore, gold
standard method acts as the best-possible-performer to evaluate all the different generative models
on how real the graphs they generate. The evaluation process is shown in Fig. [10|in Appendix D.

Results on Scale Free Graphs: Table [2] shows the average results of graph classifiers: Precision,
Recall, AUC, and F1-measure on recognizing real target graphs by being trained with generated tar-
get graphs on different methods. For small graphs (e.g., nodes less then 20), the power-law property
of scale-free networks is less obvious compared to the larger size graphs, which may explain why
the tasks on smaller scale-free graphs are more difficult. As shown in Tablg2} the performance cor-
responding to GT-GAN is very close to the “Gold Standard” with average difference of 6%, 12%,
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13% and 6% on precision, recall, AUC and F1 respectively, and outperforms other methods by 32%,
7.6%, 12.6%, and 30.8% on four metrics respectively.

Results on Poisson Random Graphs: Results for indirect evaluation on Poisson Random graphs
are listed in Table EKP:Precision, R=Recall, F1=F1-measure). Though the Poisson random task is
easier than scale-free graphs, the GT-GAN still outperforms others significantly, especially on AUC
results by around 13.4% on average, and its performance is highly close to the “Gold Standard” with
average difference of 2.6%, 3.2%, 1.2% and 3.2% on precision, recall, AUC and F1 respectively.
Table 2: Indirect evaluation for scale-free graphs  Table 3: Poisson random graphs indirect evaluation

Size  Method P R AUC Fl1 Size  Method P R AUC F1
RandomVAE 083 029 031 042 RandomVAE 098 075 099 0385
GraphRNN 0.31 0.11 0.49 0.16 GraphRNN 0.98 0.99 0.99 098
GraphVAE 075 023 0.65 0.35 GraphVAE 098 092 097 094

10 GraphGMG 042 0.12 049 0.18 10 GraphGMG 098 098 098 0.98
S-Generator 046 0.83 043 0.59 S-Generator 0.50 1.00 050 0.66
GT-GAN 1.00 050 052  0.67 GT-GAN 1.00 087 094 0.90
Gold Standard 081 074 082 0.77 Gold Standard 099 1.00 1.00 0.99
RandomVAE 050 1.00 0.54 0.66 RandomVAE 1.00 070 099 0.82
GraphRNN 0.67 0.12 050 0.21 GraphRNN 1.00 1.00 1.00 1.00

20 S-Generator 050 1.00 0.50 0.67 20 S-Generator 1.00 1.00 1.00 1.00
GT-GAN 1.00 050 050 0.67 GT-GAN 1.00 099 1.00 0.99
Gold Standard 076 0.67 072 0.71 Gold Standard 099 1.00 1.00 0.99
RandomVAE 0.89 0.67 0.84 0.76 RandomVAE 093 046 1.00 0.63
GraphRNN 052 053 070 0.52 GraphRNN 1.00 099 099 0.99

50 S-Generator 050 1.00 037 0.67 50 S-Generator 049 098 035 0.65
GT-GAN 093 082 094 087 GT-GAN 1.00 099 1.00 0.99
Gold Standard 094 090 097 091 Gold Standard 099 1.00 1.00 0.99
GraphRNN 0.61 0.65 0.67 0.60 GraphRNN 1.00 099 1.00 0.99

100 S-Generator 050 1.00 050 0.67 100 S-Generator 0.50 1.00 051 0.66
GT-GAN 072 0.69 0.68 0.70 GT-GAN 090 1.00 1.00 094
Gold Standard 099 0.61 081 0.75 optimal 1.00  1.00 1.00 1.00
GraphRNN 073 092 092 081 GraphRNN 095 099 1.00 096

150 S-Generator 1.00 050 050 0.67 150 S-Generator 0.50 1.00 049 0.66
GT-GAN 094 079 096 0.86 GT-GAN 097 1.00 1.00 0.98
Gold Standard 099 093 096 095 Gold Standard 1.00 099 1.00 0.99

Table 4: Indirect evaluation in user authentication graph datasets

Graph size ~ Method Precision  Recall AUC  Fl
RandomVAE 0.32 0.51 0.26 0.39
GraphRNN 0.34 0.36 0.50 0.36

50 S-Generator 0.72 0.61 0.74 0.66
GT-GAN 0.79 0.68 0.78 0.73
Gold Standard ~ 0.97 0.97 0.97 0.97
S-Generator 0.77 0.58 0.62 0.66

300 GT-GAN 0.84 0.66 0.79 0.74
Gold Standard ~ 0.98 0.96 0.97 0.97

Results on User Authentication Graphs: As shown in Table [4] classifiers trained by the graphs
generated by GT-GAN can effectively classify normal and hacked behaviors with AUC above 0.78,
largely above the 0.5 if using random model. GT-GAN significantly outperforms other methods by
around 25%, 16%, 24.5% and 22.1% respectively on four metrics. GT-GAN performs consistently
better than other baselines when the graph size varies from 50 to 300. More indirected evaluation
results can be found in Fig. [0]and Fig. [§]in Appendix C, including the case studies.

5 CONCLUSION AND FUTURE WORKS

This paper focuses on a new problem on deep graph translation. To achieve this, we propose a
novel Graph-Translation-Generative Adversarial Networks (GT-GAN) which will generate a graph
translator from input to target graphs. To learn both the global and local graph translation mapping
for the directed weighted graph, new graph convolutions and deconvolutions have been proposed
to encode and decode the graphs while preserving the high-level and local-level graph patterns.
Extensive experiments have been done on the synthetic and real-world dataset with the comparison
with the state-of-the-art method in graph generation. Experiments show that our GT-GAN indeed
can discover the ground-truth translation rules, and significantly outperform the comparison method
in both effectiveness and scalability. This paper opens a new window for deep graph translation.
There are many possible future directions yet to explore, such as develop domain-specific graph
translator using domain knowledge or analyze and visualize the deep translation patterns.

10
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A  MORE EXPERIMENTAL RESULTS FOR SCALE FREE GRAPH SET

Fig. [] shows 18 examples for scale free dataset from size 50 to 150.
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Figure 6: Examples of node degree distrbution for generated graphs and real graphs

B MORE EXPERIMENTAL RESULTS FOR POISSON RANDOM GRAPH SET

For Poisson random graphs, the distributions of % in the real target graphs and those generated
graphs are compared. The mean of edge increasing ratio k for generated graphs by our GT-GAN is
3.6, compared to the real value of 5, which implies that the GT-GAN generally is able to discover
the underlying increasing ratio between input and target graphs. More evaluation results (e.g. degree

14
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and repository) can be found in Appendix B. We draw the probability density curve of the proportion
k. Fig. [/|shows the distribution of the % in graphs generated by GT-GAN and the real graphs. The
distribution plot is drew based on 3000 samples. Both of the two distribution have main degree
values in the range from 2 to 7, while there is difference in the max frequency due to the limit of
the samples amount. However, it prove that the proposed GT-GAN do learn the distribution type of

translation parameter k in this task.
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Figure 7: Distribution of k for generated graphs and real graphs in Poisson random graph set

Table [5] shows the distance measurement between generated graphs and real graphs in several met-
rics. For the metric ”degree”, we use Wasserstein distances to measure the distance of two degree
distribution. For other metrics, we calculate the MSE between generated graphs and real graphs.

Table 5: MSE of Graph properties measurements for poisson random graphs

0.0 2.5

5.0 7.5 10.0 12.5 15.0
Number of added edges

Graph size Method Density  Average Degree  Reciprocity
RandomVAE 0.1772  2.8172 0.3917
GraphRNN 0.2665 2.2078 0.1344
10 GrapgGMG 0.3519  2.4286 0.1338
GraphVAE 0.2881  3.1986 0.3103
S-Generator  0.2993  1.5751 0.0737
GT-GAN 0.3084 1.7707 0.1327
RandomVAE 0.2078  7.0860 0.4182
20 GraphRNN 0.2305 4.9256 0.1190
S-Generator  0.2111 3.2207 0.0430
GT-GAN 0.2013  3.2047 0.0388
RandomVAE Inf 23.680 0.5362
50 GraphRNN 0.0110  3.6000 0.0125
S-Generator  0.0120  2.9082 0.0125
GT-GAN 0.0155  3.2960 0.0047
GraphRNN 0.0123  3.5475 0.0034
100 S-Generator  0.0029  2.9167 0.0034
GT-GAN 0.0142  4.3730 0.0043
GraphRNN 0.0012 3.6619 0.0016
150 S-Generator  0.0013  2.9467 0.0016
GT-GAN 0.0061  5.0410 0.0019
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Table 6: MSE of Graph properties measurements for user authentication dataset

Graph size Method Density Reciprocity Average Degree
RandomVAE 0.0005 0.0000 6.4064
50 GraphRNN 0.0032  0.0000 2.7751
S-Generator 0.0244  0.0342 24.130
GT-GAN 0.0003  0.0000 0.0002
300 S-Generator 0.0113 0.0010 8.6839
GT-GAN 0.0004  0.0000 0.0006
(a) Regular activity (b) Malicious activity (c) Generated malicious activity
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Figure 8: Regular graphs, malicious graphs and generated graphs of User 049
C MORE EXPERIMENTAL RESULTS FOR USER AUTHENTICATION GRAPH SET

About Original Dataset This data set spans one calendar year of contiguous activity spanning
2012 and 2013. It originated from 33.9 billion raw event logs (1.4 terabytes compressed) collected
across the LANL enterprise network of approximately 24,000 computers. Here we consider two
sub dataset. First is the user log-on activity set. This data represents authentication events collected
from individual Windows-based desktop computers, servers, and Active Directory servers. Another
dataset presents specific events taken from the authentication data that present known red team
compromise events, as we call malicious event. The red team data can used as ground truth of bad
behavior which is different from normal user. Each graph can represent the log-on activity of one
user in a time window. The event graphs are defined like this: The node refers to the computers
that are available to a user and the edge represents the log-on activity from one computer to another
computer of the user.

Direct evaluation of User authentication Graph Set For the user authentication graphs, the real
target graphs and those generated are compared under well-recognized graph metrics including de-
gree of nodes, reciprocity, and density. We calculate the distance of degree distribution and Mean
Sqaured Error (MSE) for reciprocity and density. Results can be found in Appendix C. We use seven
metrics to evaluate the similarity of generated graphs and real graphs. The MSE value are calculated
to measure the similarity between two graphs in term of different metrics. [] shows the mean square
error of the generated graphs and real graphs for all users.

Case Studies on the generated target graphs Fig. [§|shows the example of User 049 with regular
activity graph, real malicious activity graph and malicious activity graph generated by our GT-GAN
from left to right. Only those of edges with difference among them are drawn for legibility. It can be
seen that, the hacker performed attacks on Computer 192, which has been successfully simulated by
our GT-GAN. In addition, GT-GAN also correctly identified that the Computer 192 is the end node
(i.e., with only incoming edges) in this attack. This is because GT-GAN can learn both the global
hacking patterns (i.e., graph density, modularity) but also can learn local properties for specific nodes
(i.e., computers). GT-GAN even successfully predicted that the hacker connect from Computers 0
and 1, with Computers 7 and 14 as false alarms.

For User006 in Fig. O] the red team attackers make more connections on Node 36 compared to
user’s regular activity, as marked in red rectangle. GT-GAN leans how to choose the Node 36 and it
generated more connections too in the Node 36 .

16



Under review as a conference paper at ICLR 2019

Two connections added Three connections added
PR ——
I 36 ! " 36. )
30 1 ! 30 Z
-0 / -0 20
55 55 y
0 yd 0 0
7
62 62
b IR 19
6 — oa 6= 24 6— oa
(a) Regular activity (b) Malicious activity (c) Generated malicious activity

Figure 9: Regular graphs, malicious graphs and generated graphs for User 006

D FLOWCHART OF INDIRECT EVALUATION PROCESS

Fig. [10]shows the process of the indirect evaluation process.
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Figure 10: Flow chart of validation

E ARCHITECTURE PARAMETER FOR GT-GAN MODEL

Graph Generator: Given the graph size (number of nodes) N of a graph. The output feature map
size of each layer through graph generator can be expressed as:
NXNx1—=-NXxNx5—->NxNx10—=- Nx1x10 = NxNx10 = NxNx5—=NxNx1

Discriminator: Given the graph size (number of nodes) NV of a graph. The output feature map size
of each layer through graph discriminator can be expressed as:

NXNxXx1I—->NXNxb—-NXNx1I0—-Nx1x10—-1x1x10

For the edge to edge layers, the size of two kernels in two directions are N x 1 and 1 x N. For the
node to edge layer, the kernel size is 1 x N
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