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Abstract

Large deep neural networks require huge memory to run and their running speed1

is sometimes too slow for real applications. Therefore network size reduction2

with keeping accuracy is crucial for practical applications. We present a novel3

neural network operator, chopout, with which neural networks are trained, even4

in a single training process, so as to truncated sub-networks perform as well as5

possible. Chopout is easy to implement and integrate into most type of existing6

neural networks. Furthermore it enables to reduce size of networks and latent rep-7

resentations even after training just by truncating layers. We show its effectiveness8

through several experiments.9

1 Introduction10

Deep neural networks are crucial building blocks for current machine learning because of their11

outstanding performance in accuracy and ease of use. However, such deep neural networks sometimes12

run too slow and consume too much memories. Therefore, neural networks with less parameters are13

preferable for applications.14

For this end, various parameter size reduction techniques are developed. They includes (1) pruning15

techniques which aim to prune weights, channels or layers of neural networks (Han et al. [2015a],16

Aghasi et al. [2017], Dong et al. [2017], Molchanov et al. [2016], Li et al. [2017], Luo et al. [2017],17

Ye et al. [2018], Liu et al. [2017], He et al. [2017]), (2) quantization techniques which aim to quantize18

weights of neural networks into {+1,−1} or lower precision floating points (e.g. fp16) (Han et al.19

[2015b], Courbariaux et al. [2015], Rastegari et al. [2016], Zhou et al. [2016], Zhu et al. [2016], Wu20

et al. [2016], Hubara et al. [2017]), (3) decomposition techniques which aim to decompose weights21

with combinations of smaller components (e.g. SVD) (Denton et al. [2014], Jaderberg et al. [2014],22

Lebedev et al. [2014], Yang et al. [2015], Novikov et al. [2015]), (4) distillation techniques which aim23

to train smaller neural networks (student networks) to mimic trained larger neural networks (teacher24

networks) (Hinton et al. [2015], Mishra and Marr [2017], Polino et al. [2018]) and (5) techniques25

which aim to design more compact but accurate neural networks (Iandola et al. [2016], Howard et al.26

[2017], Sandler et al. [2018], Zhang et al. [2017]).27

These techniques sometimes can achieve remarkable parameter size reduction without too much28

accuracy decrease. However some of them have limitations of network architectures, are hard to29

implement using modern deep learning frameworks such as TensorFlow (Abadi et al. [2016]), Pytorch30

(Paszke et al. [2017]) or MxNet (Chen et al. [2015]) or require model specific adaptations.31

In this research, we proposed a novel simple stochastic operator chopout which is similar to dropout32

(Srivastava et al. [2014]) but randomly truncate latter dimensions/channels of layers in neural33

networks, with which deep neural networks are trained so that their truncated sub-networks also34

perform well.35
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(a) input (b) dropout (c) chopout

Figure 1: Instead of zeroing out cells in dropout, chopout truncates random-length latter cells.

Table 1: Autoencoders used in experiments. L(n) denotes the linear layer with n-dimensional output,
R denotes the rectified linear unit function and S denotes the sigmoid function. Chopout and dropout
is applied right after applying the encoder.

dataset encoder decoder
MNIST L(100)-R-L(100)-R-L(100) L(100)-R-L(100)-R-L(784)-S

2 Method36

Firstly we define chopout for 1-dimensional case. At training time, chopout is defined as a truncation37

of random-length latter dimensions of vectors as follows (Figure 1):38

m ∼ Pm = P ({0, 1, · · · , d}), x← projm(x) := (x1, x2, ..., xm, 0, ..., 0)

where Pm = P ({0, 1, · · · , d}) is an arbitrary discrete distribution over {0, 1, · · · , d} (e.g. uniform39

distribution), x ∈ Rd is a vector and projm(·) is a projection onto first m-th dimensions. Chopout’s40

behavior is similar to dropout but, instead of zeroing out random elements in dropout, chopout41

zeros out (or truncates) random latter consecutive elements. In back-propagation, the same latter42

dimensions of gradients are also zeroed out as well43

grad← projm(grad) := (grad1, grad2, ..., gradm, 0, ..., 0)

where grad is a gradient and m is the number drawn in the forward pass.44

At test time, chopout is defined to behave as a identity function, that is, just pass through the input45

vector without any modification. This definition of chopout in prediction mode is contrastive to that46

of dropout, which, in prediction time, dropout scale inputs to make it consistent with training time.47

Training a fully-connected neural network with applying chopout can be interpreted as simultaneous48

training of randomly sampled sub-networks which are obtained by cuttinng out former parts of the49

original fully-connected neural network with sharing parameters.50

In higher dimensional cases, chopout can be easily extended as a random truncation of channels51

instead of dimensions. For example, when applied to a tensor x ∈ Rc×h×w, the forward-propagation52

of chopout is defined as53

m ∼ Pm = P ({0, 1, · · · , c}), xkij ←
{
xkij (k ≤ m)

0 (otherwise)

where P ({0, 1, · · · , c}) is an arbitrary distribution. Back-propagation is defined in the same way.54

3 Experiments55

Throughout experiments, we use uniform distributions over {1, · · · , d} for Pm({0, 1, · · · , d}).56

3.1 Autoencoder57

We train autoencoders on MNIST (LeCun et al. [1998], Table 1, Figure 2). We see that by applying58

chopout on the hidden layer of the autoencoder, the reconstruction is kept well even after the hidden59

layer is truncated.60

3.2 Skip-gram61

We apply chopout for embeddings trained through skip-gram models (Mikolov et al. [2013a,b]). We62

use text8 corpus1. We set the window size to 5 and ignore infrequent words which appear less than63

20 times in the corpus. The result (Table 2) shows the consistency of embeddings.64

1http://mattmahoney.net/dc/text8.zip
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(a) normal (b) with dropout(p=0.5) (c) with chopout

Figure 2: (a) reconstruction of test images by a autoencoder wihout chopout and dropout, (b) with
dropout and (c) with chopout. In each figure, the left most column represents input images and,
from next column to the most right one, each column correspond to the reconstruction results with
truncating latter 0, 10, 20, 30, ..., 90 dimensions of hidden layers.

Table 2: top-5 most similar words for learnt 512-dim embeddings. The results of 64-dim embeddings
obtained by truncation are also shown.

ran (512) ran (64) news (512) news (64) good (512) good (64)
stopped rides unofficial openoffice clever balanced
stood stayed headline unofficial strong queueing

graduated shot homepage overviews suitable transparent
struck sank portal bbc unusually recursive
shot fired online portal very shorthand

3.3 Image classification65

Figure 3: chopout/dropout is applied in each interme-
diate layer.

LeNet-300-100 (LeCun et al. [1998]) are66

trained on MNIST with/without chopout and67

dropout in each intermediate layer (Figure68

3). This is a very initial experiment but the69

result shows training with chopout enhance70

the robustness of networks against pruning.71

4 Discussion72

We introduced a novel stochastic operator73

chopout and showed it gathers important in-74

formation in former parts of lafyers. Be-75

cause the concept of chopout is very simple76

and flexible, there could be broad direction77

of further research.78

(1) The distribution Pm({0, 1, · · · , d}) should be explored. If we put chopouts in every layer of a79

neural network, then, in training, there could be a layer where drawn m ∼ Pm({0, 1, · · · , d}) is very80

small and it could be a bottleneck of the prediction accuracy.81

(2) Chopout can be used for network pruning. The information-gathering property of chopout enables82

to prune latter dimensions/channels of layers with keeping accuracy but the extent of pruning is still83

should be explored. For this end, reinforcement learning techniques (e.g. bandit algorithms) can84

be used to detect the appropriate pruning ratio. Combination with weight pruning methods are also85

interesting as well.86
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