
Chopout: A Simple Way to Train Variable Sized
Neural Networks at Once

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large deep neural networks require huge memory to run and their running speed1

is sometimes too slow for real applications. Therefore network size reduction2

with keeping accuracy is crucial for practical applications. We present a novel3

neural network operator, chopout, with which neural networks are trained, even4

in a single training process, so as to truncated sub-networks perform as well as5

possible. Chopout is easy to implement and integrate into most type of existing6

neural networks. Furthermore it enables to reduce size of networks and latent rep-7

resentations even after training just by truncating layers. We show its effectiveness8

through several experiments.9

1 Introduction10

Deep neural networks are crucial building blocks for current machine learning because of their11

outstanding performance in accuracy and ease of use. However, such deep neural networks sometimes12

run too slow and consume too much memories. Therefore, neural networks with less parameters are13

preferable for applications.14

For this end, various parameter size reduction techniques are developed. They includes (1) pruning15

techniques which aim to prune weights, channels or layers of neural networks (Han et al. [2015a],16

Aghasi et al. [2017], Dong et al. [2017], Molchanov et al. [2016], Li et al. [2017], Luo et al. [2017],17

Ye et al. [2018], Liu et al. [2017], He et al. [2017]), (2) quantization techniques which aim to quantize18

weights of neural networks into {+1,−1} or lower precision floating points (e.g. fp16) (Han et al.19

[2015b], Courbariaux et al. [2015], Rastegari et al. [2016], Zhou et al. [2016], Zhu et al. [2016], Wu20

et al. [2016], Hubara et al. [2017]), (3) decomposition techniques which aim to decompose weights21

with combinations of smaller components (e.g. SVD) (Denton et al. [2014], Jaderberg et al. [2014],22

Lebedev et al. [2014], Yang et al. [2015], Novikov et al. [2015]), (4) distillation techniques which aim23

to train smaller neural networks (student networks) to mimic trained larger neural networks (teacher24

networks) (Hinton et al. [2015], Mishra and Marr [2017], Polino et al. [2018]) and (5) techniques25

which aim to design more compact but accurate neural networks (Iandola et al. [2016], Howard et al.26

[2017], Sandler et al. [2018], Zhang et al. [2017]).27

These techniques sometimes can achieve remarkable parameter size reduction without too much28

accuracy decrease. However some of them have limitations of network architectures, are hard to29

implement using modern deep learning frameworks such as TensorFlow (Abadi et al. [2016]), Pytorch30

(Paszke et al. [2017]) or MxNet (Chen et al. [2015]) or require model specific adaptations.31

In this research, we proposed a novel simple stochastic operator chopout which is similar to dropout32

(Srivastava et al. [2014]) but randomly truncate latter dimensions/channels of layers in neural33

networks, with which deep neural networks are trained so that their truncated sub-networks also34

perform well.35

Submitted to 32nd Conference on Neural Information Processing Systems (NIPS 2018). Do not distribute.



(a) input (b) dropout (c) chopout

Figure 1: Instead of zeroing out cells in dropout, chopout truncates random-length latter cells.

Table 1: Autoencoders used in experiments. L(n) denotes the linear layer with n-dimensional output,
R denotes the rectified linear unit function and S denotes the sigmoid function. Chopout and dropout
is applied right after applying the encoder.

dataset encoder decoder
MNIST L(100)-R-L(100)-R-L(100) L(100)-R-L(100)-R-L(784)-S

2 Method36

Firstly we define chopout for 1-dimensional case. At training time, chopout is defined as a truncation37

of random-length latter dimensions of vectors as follows (Figure 1):38

m ∼ Pm = P ({0, 1, · · · , d}), x← projm(x) := (x1, x2, ..., xm, 0, ..., 0)

where Pm = P ({0, 1, · · · , d}) is an arbitrary discrete distribution over {0, 1, · · · , d} (e.g. uniform39

distribution), x ∈ Rd is a vector and projm(·) is a projection onto first m-th dimensions. Chopout’s40

behavior is similar to dropout but, instead of zeroing out random elements in dropout, chopout41

zeros out (or truncates) random latter consecutive elements. In back-propagation, the same latter42

dimensions of gradients are also zeroed out as well43

grad← projm(grad) := (grad1, grad2, ..., gradm, 0, ..., 0)

where grad is a gradient and m is the number drawn in the forward pass.44

At test time, chopout is defined to behave as a identity function, that is, just pass through the input45

vector without any modification. This definition of chopout in prediction mode is contrastive to that46

of dropout, which, in prediction time, dropout scale inputs to make it consistent with training time.47

Training a fully-connected neural network with applying chopout can be interpreted as simultaneous48

training of randomly sampled sub-networks which are obtained by cuttinng out former parts of the49

original fully-connected neural network with sharing parameters.50

In higher dimensional cases, chopout can be easily extended as a random truncation of channels51

instead of dimensions. For example, when applied to a tensor x ∈ Rc×h×w, the forward-propagation52

of chopout is defined as53

m ∼ Pm = P ({0, 1, · · · , c}), xkij ←
{
xkij (k ≤ m)

0 (otherwise)

where P ({0, 1, · · · , c}) is an arbitrary distribution. Back-propagation is defined in the same way.54

3 Experiments55

Throughout experiments, we use uniform distributions over {1, · · · , d} for Pm({0, 1, · · · , d}).56

3.1 Autoencoder57

We train autoencoders on MNIST (LeCun et al. [1998], Table 1, Figure 2). We see that by applying58

chopout on the hidden layer of the autoencoder, the reconstruction is kept well even after the hidden59

layer is truncated.60

3.2 Skip-gram61

We apply chopout for embeddings trained through skip-gram models (Mikolov et al. [2013a,b]). We62

use text8 corpus1. We set the window size to 5 and ignore infrequent words which appear less than63

20 times in the corpus. The result (Table 2) shows the consistency of embeddings.64

1http://mattmahoney.net/dc/text8.zip

2



(a) normal (b) with dropout(p=0.5) (c) with chopout

Figure 2: (a) reconstruction of test images by a autoencoder wihout chopout and dropout, (b) with
dropout and (c) with chopout. In each figure, the left most column represents input images and,
from next column to the most right one, each column correspond to the reconstruction results with
truncating latter 0, 10, 20, 30, ..., 90 dimensions of hidden layers.

Table 2: top-5 most similar words for learnt 512-dim embeddings. The results of 64-dim embeddings
obtained by truncation are also shown.

ran (512) ran (64) news (512) news (64) good (512) good (64)
stopped rides unofficial openoffice clever balanced
stood stayed headline unofficial strong queueing

graduated shot homepage overviews suitable transparent
struck sank portal bbc unusually recursive
shot fired online portal very shorthand

3.3 Image classification65

Figure 3: chopout/dropout is applied in each interme-
diate layer.

LeNet-300-100 (LeCun et al. [1998]) are66

trained on MNIST with/without chopout and67

dropout in each intermediate layer (Figure68

3). This is a very initial experiment but the69

result shows training with chopout enhance70

the robustness of networks against pruning.71

4 Discussion72

We introduced a novel stochastic operator73

chopout and showed it gathers important in-74

formation in former parts of lafyers. Be-75

cause the concept of chopout is very simple76

and flexible, there could be broad direction77

of further research.78

(1) The distribution Pm({0, 1, · · · , d}) should be explored. If we put chopouts in every layer of a79

neural network, then, in training, there could be a layer where drawn m ∼ Pm({0, 1, · · · , d}) is very80

small and it could be a bottleneck of the prediction accuracy.81

(2) Chopout can be used for network pruning. The information-gathering property of chopout enables82

to prune latter dimensions/channels of layers with keeping accuracy but the extent of pruning is still83

should be explored. For this end, reinforcement learning techniques (e.g. bandit algorithms) can84

be used to detect the appropriate pruning ratio. Combination with weight pruning methods are also85

interesting as well.86

3



References87

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,88

Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale89

machine learning. arXiv preprint arXiv:1605.08695, 2016.90

Alireza Aghasi, Afshin Abdi, Nam Nguyen, and Justin Romberg. Net-trim: Convex pruning of91

deep neural networks with performance guarantee. In Advances in Neural Information Processing92

Systems, pages 3177–3186, 2017.93

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,94

Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning library for95

heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.96

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural97

networks with binary weights during propagations. In Advances in neural information processing98

systems, pages 3123–3131, 2015.99

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear100

structure within convolutional networks for efficient evaluation. In Advances in neural information101

processing systems, pages 1269–1277, 2014.102

Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise103

optimal brain surgeon. In Advances in Neural Information Processing Systems, pages 4857–4867,104

2017.105

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks106

with pruning, trained quantization and huffman coding. In International Conference on Learning107

Representations (ICLR),, 2015a.108

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for109

efficient neural network. In Advances in neural information processing systems, pages 1135–1143,110

2015b.111

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.112

In International Conference on Computer Vision (ICCV), 2017.113

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv114

preprint arXiv:1503.02531, 2015.115

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,116

Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for117

mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.118

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized119

neural networks: Training neural networks with low precision weights and activations. The Journal120

of Machine Learning Research, 18(1):6869–6898, 2017.121

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt122

Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size.123

arXiv preprint arXiv:1602.07360, 2016.124

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks125

with low rank expansions. In Proceedings of the British Machine Vision Conference. BMVA Press,126

2014.127

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.128

Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint129

arXiv:1412.6553, 2014.130

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to131

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.132

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Graf. Pruning filters for efficient133

ConvNets. In International Conference on Learning Representation (ICLR), 2017.134

4



Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning135

efficient convolutional networks through network slimming. In Computer Vision (ICCV), 2017136

IEEE International Conference on, 2017.137

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural138

network compression. In The IEEE International Conference on Computer Vision (ICCV), 2017.139

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-140

tions in vector space. arXiv preprint arXiv:1301.3781, 2013a.141

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations142

of words and phrases and their compositionality. In Advances in neural information processing143

systems, pages 3111–3119, 2013b.144

Asit Mishra and Debbie Marr. Apprentice: Using knowledge distillation techniques to improve145

low-precision network accuracy. In International Conference on Learning Representation (ICLR),146

2017.147

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional148

neural networks for resource efficient inference. In International Conference on Learning Repre-149

sentation (ICLR), 2016.150

Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing neural151

networks. In Advances in Neural Information Processing Systems, pages 442–450, 2015.152

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,153

Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in154

pytorch. 2017.155

Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and quantiza-156

tion. In International Conference on Learning Representation (ICLR), 2018.157

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet158

classification using binary convolutional neural networks. In European Conference on Computer159

Vision, pages 525–542. Springer, 2016.160

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-161

bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on162

Computer Vision and Pattern Recognition, pages 4510–4520, 2018.163

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.164

Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine165

Learning Research, 15(1):1929–1958, 2014.166

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quantized convolutional167

neural networks for mobile devices. In Proceedings of the IEEE Conference on Computer Vision168

and Pattern Recognition, pages 4820–4828, 2016.169

Zichao Yang, Marcin Moczulski, Misha Denil, Nando de Freitas, Alex Smola, Le Song, and Ziyu170

Wang. Deep fried convnets. In Proceedings of the IEEE International Conference on Computer171

Vision, pages 1476–1483, 2015.172

Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. Rethinking the smaller-norm-less-informative173

assumption in channel pruning of convolution layers. In International Conference on Learning174

Representation (ICLR), 2018.175

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient176

convolutional neural network for mobile devices. arXiv preprint arXiv:1707.01083, 2017.177

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-178

ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint179

arXiv:1606.06160, 2016.180

Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. In181

International Conference on Learning Representation (ICLR), 2016.182

5


	Introduction
	Method
	Experiments
	Autoencoder
	Skip-gram
	Image classification

	Discussion

