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Abstract

Session-level dynamic ads load optimization seeks1

to strike a balance between user experience and2

ads performance score by delivering the right num-3

ber of ads during online sessions on social net-4

works and e-commerce platforms. Previous ap-5

proaches struggle with several challenges, includ-6

ing treatment-induced bias, carry-over effects, and7

business constraints on the trade-off between ads8

performance score and engagement across different9

cohorts. To overcome those challenges, we propose10

to train a session sensitivity model (SSM) as a lever11

to adjust ads load for each session. Then, we adopt12

a multi-treatment optimization (MTO) framework13

by incorporating business constraints to dynami-14

cally determine the optimal ads load for each ses-15

sion. The SSM is trained on the data collected from16

the debiased data collection experiment which ran-17

domizes the ads load at the session level to remove18

the confounding bias caused by ads load treat-19

ments. From the offline training data, we showed20

that the SSM-MTO identifies the efficient sessions21

for ads load treatment. Furthermore, the SSM-22

MTO has been put into online A/B tests to serve23

the online traffic which achieved better efficiency24

and better trade-off between ads performance score25

and user experience.26

1 Introduction27

Ads performance score (APS) and user experience (UE) are28

two primary goals of interest of a social networking or e-29

commerce platform [Carrion et al., 2021; Yan et al., 2020].30

By personalizing the quantity and pattern of the advertise-31

ments that are incorporated into the users’ organic consump-32

tion journey, ads load optimization has proven to be an effec-33

tive approach to achieve the optimal trade-off between these34

two goals [Yan et al., 2020].35

In general, there are two common strategies to optimize ads36

load. The “static” approach personalizes the ads load configu-37

ration for each user and applies the same ads load throughout38

the user trajectory, while the “dynamic” approach optimizes39

the ads load configuration in real time, e.g., during an online40

user session [Liu et al., 2025; Liao et al., 2022]. The latter, 41

which is more challenging, is our focus in this paper. 42

A session generally refers to a period during which a user 43

is actively engaged with the platform. This can include activ- 44

ities such as browsing newsfeeds, posting updates, comment- 45

ing on other users’ posts, sending messages, etc. The ads 46

load of a session could be tuned by certain product features, 47

e.g., by changing the position of the first ad and the mini- 48

mum gap between two consecutive ads in a typical newsfeed 49

product [Yan et al., 2020]. Increasing ads load is expected to 50

boost short-term APS at the cost of hurting UE, which even- 51

tually could cause damage to long-term APS. The key is to 52

control the ads load in real time within an online session to 53

achieve the optimal balance between APS and UE. 54

For the session-level dynamic ads load optimization, the 55

real-time dynamics pose challenges for causal inference 56

learning. For instance, the confounding bias influences both 57

the treatment and the outcome, resulting in the difficulty to 58

determine the true causal effects [Elwert and Winship, 2014]. 59

Furthermore, the business has lots of constraints for the ads 60

load treatment. We are not allowed to abuse particular co- 61

horts (e.g. high value user’s sessions) to deliver more ads to 62

increase APS while leading to long-term dissatisfaction. In 63

this paper, we propose a multi-treatment optimization (MTO) 64

framework to address the challenges. The main contributions 65

of the paper are the following: 66

• We propose a debiased data collection framework to re- 67

move confounding bias from the ads treatments, which 68

is critical to model the causal effects. 69

• We put the session sensitivity prediction into a multi- 70

treament optimization (MTO) framework to dynami- 71

cally learn the optimal ads load to each session under the 72

business constraints (for example, the trade-off between 73

APS and UE for particular cohorts). 74

• Our proposed ads load optimization framework has been 75

put into an A/B test to serve online live traffic. From 76

the A/B test, we have achieved top-line business goals. 77

It shows that the proposed framework has significantly 78

improved our platform’s capability to serve both con- 79

sumers and advertisers effectively. 80



Figure 1: Structure of the session-level dynamic ads load optimiza-
tion system.

2 Related Work81

There is a series of literature on related ads allocation prob-82

lems in social networking and e-commerce applications in in-83

dustry [Carrion et al., 2021; Liao et al., 2022; Sagtani et al.,84

2024; Wang et al., 2022; Yan et al., 2020], focusing mainly85

on how to place a fixed number of ads and organic content86

locations. Several approaches have been proposed to find op-87

timal positions via constrained optimization problems [Yan88

et al., 2020], multi-objective optimization [Carrion et al.,89

2021], and end-to-end RL [Liao et al., 2022; Rafieian, 2023;90

Wang et al., 2022].91

However, our ads load optimization problem distinguishes92

ads allocation from three perspectives. Firstly, ads load op-93

timization is built on top of the existing mechanism to make94

further personalization and optimization, e.g., the highest po-95

sition of the first ad or the minimum distance between two96

consecutive ads. As a comparison, Yan et al. [Yan et al.,97

2020] adopt a fixed highest position and minimum distance98

as a fixed rule, and some others do not consider ads load99

directly. Secondly, many existing works on ads allocation100

seem to have overlooked the strong carry-over effect, and are101

therefore incapable of capturing how historical treatment af-102

fects future observations, including state representations and103

treatment outcomes. Thirdly, many works rely on the com-104

plex deep learning models to optimize the ads load, which105

are hard to explain why those models work in production.106

Our proposed causal models depend on the LightGBM [Ke107

et al., 2017], a tree-based learning algorithm, which makes it108

easier to understand how the model reaches a prediction.109

3 Method110

The proposed session-level dynamic ads load optimization111

system was shown in Figure 1. It consists of two main112

modules: the prediction module and the decision module.113

The prediction module, implemented as a session sensitivity114

causal model, predicts the sensitivity of each session to the ad115

load treatment; the decision module, implemented in a multi-116

treatment optimization framework, provides the optimal ad117

load for each session to maximize the ads performance score 118

(APS) under the business constraints. 119

3.1 Debiased Data Collection Framework 120

In order to learn the causal effects of the treatment, we need 121

to set up random control trials to collect the data to train the 122

session level sensitivity models. 123

We propose the debiased data collection experiment frame- 124

work randomizes ads load at the session level, which was 125

shown in Figure 2. Different sessions can be exposed to dif- 126

ferent ads load treatments in a fully randomized way. The 127

framework can measure the treatment effects at the session 128

level by attributing the metrics (e.g., APS and UE) to each 129

session and comparing the impact across different ads load 130

treatments. Furthermore, the framework can also remove fea- 131

ture bias from the ads load treatment since the randomization 132

of logic guarantees that the impact of different ads load treat- 133

ment is homogenous to all sessions. 134

Figure 2: Illustration of the debiased data collection.

By running the above debiased data collection, we col- 135

lect the session-level features. We then ran the Kol- 136

mogorov–Smirnov test, Mann-Whitney U test, and T-test un- 137

der the treatment and control groups, and identified a few fea- 138

tures that are significantly different between the two groups. 139

Those features were removed from training the session causal 140

models. 141

3.2 Session Sensitivity Model 142

The architecture of the proposed session sensitivity model 143

(SSM) was shown in Figure 3. In the context of ads supply 144

optimization, we leverage the causal learning model frame- 145

work [Künzel et al., 2019; Liu et al., 2023; Nie and Wager, 146

2021; Wu et al., 2023] to learn the conditional average treat- 147

ment effect (CATE) of each session to predict the session sen- 148

sitivity in terms of the ads load change. 149

Since the user sessions’ behaviors are heterogeneous, we 150

can apply personalized ads load based on the predicted sen- 151

sitivity to each session to win a cumulative gain. To achieve 152

this goal, we need to address the following key question: how 153

much APS will be increased and UE will be lost due to the 154

high ads load treatment. We take advantage of the meta- 155

learner error canceling (EC) X-learner framework to address 156

this question. The notations used for EC X-learner are de- 157

fined in the following: 158

• X: the covariate or feature vector 159



Figure 3: The proposed structure of session sensitivity model.

• W ∈ {0, 1}: treatment indicator (0: control, 1: treat-160

ment)161

• Y (0): potential outcome under control162

• Y (1): potential outcome under treatment163

• τ(x): E[Y (1)− Y (0)|X = x] (CATE)164

The challenge of meta-learner roots from the counterfac-165

tuals for each individual since one individual can only be166

present in either the treatment or control group. For ex-167

ample, when an individual is assigned to the test group,168

one’s outcome under control Y (0) becomes unmeasurable,169

which we refer to as the counterfactual. The methodol-170

ogy of meta-learner is to use dedicated models to predict171

counterfactuals—Y (1) or Y (0) in the CATE function.172

The meta-learner has multiple variants, and we use the EC173

X-learner framework (see Figure 4) to learn the treatment ef-174

fects of APS and UE.

Figure 4: The structure of error canceling (EC) X-learner.

175

The EC X-learner is an extension of T-learner (T means176

two) and it consists of two stages, with the 1st-stage usu-177

ally being T-learner. The 1st-stage base learners provide the 178

counterfactual predictions that complement the absences of 179

outcomes—Y (0) for treatment group and Y (1) for control 180

group—in the CATE function. The EC X-learner pools the 181

2nd-stage training data from the treatment and control groups 182

to train a single regressor to predict the treatment effects for 183

APS and UE. We calculate the sensitivity and train a student 184

regression model to approximate the sensitivity. All the learn- 185

ers used in this framework are based on LightGBM [Ke et al., 186

2017]. 187

3.3 Multi-Treatment Optimization 188

We integrate the session sensitivity predictions into the 189

multi-treatment optimization (MTO) framework to estimate 190

the optimal ads load for each session to maximize the objec- 191

tive (e.g., APS) under the given constraints (e.g., UE). We 192

formulate it as a constrained optimization problem and solve 193

it with the primal-dual approach. Given the objective 194

max
θc

Σc∈CR(θc)

s.t. Σc∈CI(θc) ≤ A,
(1)

Where C is the set of session cohorts, θc is the AAP scalar 195

for cohort c, R(θc) is the objective (e.g., APS) function for 196

cohort c, I(θc) is the constraint (e.g., UE) function for co- 197

hort c, and A is the total constraints. We convert it to a dual 198

problem using Lagrangian duality: 199

L(θc, λ) = Σc∈C(R(θc)− λ(I(θc)−A)). (2)

The dual problem becomes minλ≥0maxθc
L(θc, λ) and it 200

could be solved by various algorithms, such as LP, SQP, and 201

SLSQP, depending on the particular use cases. 202

Figure 5: The non-linear curve (tanh) fitting of the APS (left) and
UE (right) w.r.t the ads load (red cross is the historical data point).

In the application of MTO to the collected data, how APS 203

and UE change with respect to the ads load, we performed 204

a nonlinear curve fitting to ensure the optimization smooth- 205

ness, numerical stability and computational efficiency for the 206

optimization solver (see Figure 5). After tanh() non-linear 207

curve fitting, the optimization problem formulation would be 208

max Σn
i=1ai · tanh(ki · (xi − x0,i)) + bi

s.t. Σn
i=1ci · tanh(mi · (xi − xc,i)) + di ≤ A

0.5 ≤ xi ≤ 2.0 ∀i ∈ {1, 2, · · · , n},
(3)



where a, k, x0, b are parameters of tanh() for the objective209

(e.g., APS), and c, m, xc, d are the ones for cost (e.g., UE),210

A is the constraint threshold (e.g., 0.0001), x is continuous211

with a bound of 0.5, 2.0 that represent the ads load, n is the212

number of cohorts. Then we follow the steps below to solve213

the problems:214

• Maximization over Scalars θc. For a fixed λ, solve the215

max() part of the above problem using numerical opti-216

mization methods (e.g. SLSQP given problem is non-217

convex);218

• Minimization over λ. Update λ using gradient ascent219

λk+1 = λk + η(Σc∈CI(θ
(k)
c )−A);220

• Stopping Criterion: iterate until the constraint violation221

is minimal and objective stabilizes.222

4 Experiments223

4.1 Offline Model Training224

We set up the debiased data collection to serve the online traf-225

fic and collect training data for a period of 3 months. The226

features we used for training are mainly the real-time signals.227

For example, we count how many ads click and how many or-228

ganic contents consumed in different time windows (15m, 1h229

and 6h). Those features are fed to the meta learner to estimate230

the sensitivity of sessions.231

We evaluate the performance of lift using the Area Un-232

der the Uplift Curve (AUUC), which measures the percent-233

age of total uplift achieved by targeting the specific cohorts.234

A higher AUUC score indicates better model performance,235

which suggests the model can efficiently identify the cohorts236

for treatments.237

Figure 6: The train/eval/test AUUC of EC X-learner and the student
model (on the right).

The train, evaluation and test AUUC plot was shown238

in Figure 6. From Figure 6, we can see that the model has239

very similar AUUC performance on the train/evaluation/test240

dataset, and the student model achieves similar performance241

as the EC X-learner. We set up a A/B test to compare the242

model with the random treatment baseline and we can achieve243

much better efficiency over the random baseline in terms of244

∆APS over the ∆UE listed in the Table 1.245

Table 1: The uplift improvement by the SSM over different cohorts.

Cohort Efficiency↑
Global 4.35x

US and Canada 4.17x

UDV9 7.14x

UDV8 1.52x

UDV7 3.68x

4.2 SSM vs. MTO 246

Following the steps described in Section 3.3, we can find a 247

global solution to maximize the overall total APS under the 248

constraints of per-UDV cohort UE within a certain thresh- 249

old. With MTO, we can optimize both global and per-UDV 250

efficiency and mitigate the udv-bias (high UDV cohorts get 251

higher ads load). Figure 7 shows the ads load per-UDV co- 252

hort for MTO (on the top) and the SSM (on the bottom). We 253

clearly observe that MTO helps to reduce UDV-bias, since 254

SSM itself tends to deliver more ads to high UDV cohorts. 255

Figure 7: The ads load per UDV cohort for MTO and SSM.

4.3 Online Results 256

We put the MTO into an online A/B test. To measure the UE 257

impact of an ad load treatment, we set up a control group by 258

applying the ad load treatment to randomly assigned sessions. 259

We report online outcomes using UE and APS to evaluate the 260

treatment efficiency, and time spent (i.e., the total duration 261

a user engages with the entire session) as the engagement- 262

related metric. These metrics were chosen due to their strong 263

long-term correlation with our core business goals (e.g., time 264

spent is highly correlated to long-term engagement metrics 265

such as daily active users and session counts). 266

From Table 2, we clearly see that the MTO has an effi- 267

ciency of APS/UE 1.83, which is around 8× more efficient 268

than the random treatment. The random treatment tends to in- 269

crease more ads impression at the cost of the user engagement 270

(−0.028% time spent in the sessions), while MTO treatment 271

increases the users’ time spent in the sessions, suggesting that 272

our proposed ads optimization framework is effective in opti- 273

mizing APS and UE tradeoff. 274



Table 2: Online results of MTO and the random treatment baseline.

Online Metrics MTO Random
UE 0.300% 1.670%

APS 0.550% 0.39%

Time Spent 0.056% −0.028%

Efficiency 1.830 0.230

5 Conclusion275

In this paper, we proposed an SSM-MTO framework for276

session-level ads load optimization. It first leverages a ses-277

sion sensitivity model (SSM) as a lever to adjust ads load278

for each session; then it uses multi-treatment optimization279

(MTO) with the incorporated business constraints to dynam-280

ically determine the optimal ads load for each session. The281

SSM is trained on the data collected from the debiased data282

collection which randomizes the ads load at the session level283

to remove the feature bias caused by ads load treatments.284

From the offline training data, we showed that the SSM-MTO285

identifies the efficient sessions for ads load treatment. We286

also set up an A/B test for the SSM-MTO; the online results287

showed that the SSM-MTO has 8× more efficiency than the288

baseline and presents a better trade-off between ads perfor-289

mance score and user experience.290
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