
Under review as a conference paper at ICLR 2018

LEARNING NON-LINEAR TRANSFORM WITH DISCRIM-
INATIVE AND MINIMUM INFORMATION LOSS PRIORS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper proposes a novel approach for learning discriminative and sparse rep-
resentations. It consists of utilizing two different models. A predefined number
of non-linear transform models are used in the learning stage, and one sparsify-
ing transform model is used at test time. The non-linear transform models have
discriminative and minimum information loss priors. A novel measure related to
the discriminative prior is proposed and defined on the support intersection for the
transform representations. The minimum information loss prior is expressed as a
constraint on the conditioning and the expected coherence of the transform matrix.
An equivalence between the non-linear models and the sparsifying model is shown
only when the measure that is used to define the discriminative prior goes to zero.
An approximation of the measure used in the discriminative prior is addressed,
connecting it to a similarity concentration. To quantify the discriminative proper-
ties of the transform representation, we introduce another measure and present its
bounds. Reflecting the discriminative quality of the transform representation we
name it as discrimination power.
To support and validate the theoretical analysis a practical learning algorithm is
presented. We evaluate the advantages and the potential of the proposed algo-
rithm by a computer simulation. A favorable performance is shown considering
the execution time, the quality of the representation, measured by the discrimina-
tion power and the recognition accuracy in comparison with the state-of-the-art
methods of the same category.

1 INTRODUCTION

Learning a transform that provides sparse and discriminative representation is an active domain of
research in various areas, some of which are data processing, pattern recognition, image processing,
language modeling, text analysis and gene separation. A class of algorithms proposed by Kreutz-
Delgado et al. (2003); Mairal et al. (2009); Bengio et al. (2012); Gangeh et al. (2015); Mairal et al.
(2008); Jiang et al. (2011); Guo et al. (2012); Cai et al. (2014) and Liu et al. (2016) for learning
discriminative sparse representations have been shown to perform well across various learning tasks.
A subclass of them known as discriminative dictionary learning (DDL) Guo et al. (2012); Jiang
et al. (2013); Cai et al. (2014); Shekhar et al. (2014); Xu et al. (2015); Liu et al. (2016); Bengio et al.
(2012); Gangeh et al. (2015); Jiang et al. (2016) and Vu & Monga (2016) addreses the estimate of
the dictionary in a supervised manner such that the representation w.r.t. words (vectors) from the
resulting dictionary (vector set) is discriminative.

Most of the DDL methods synthesize the data sample k from class c, i.e, xc,k ∈ <N as an approxima-
tion by a linear combination yc,k ∈ <M (referred to as a sparse data representation ‖yc,k‖0 << M )
of a few words (vectors dm), from a dictionary (vector set) D ∈ <N×M , i.e., xc,k = Dyc,k + vc,k,
vc,k ∈ <N , with vc,k denoting the approximation error. It is important to highlight that with the
synthesis model approach the data reconstruction is addressed.

The differences between the DDL methods Guo et al. (2012); Jiang et al. (2013); Cai et al. (2014);
Shekhar et al. (2014); Gangeh et al. (2015); Xu et al. (2015); Liu et al. (2016); Bengio et al. (2012);
Jiang et al. (2016) and Vu & Monga (2016) are determined by the prior defined on the sparse rep-
resentation and the prior defined for the relations between the sparse representations for the data
samples from the same/different classes. The discrimination is enforced by replacing the prior with
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a structural constraint on the dictionary or imposing a discriminative term on the sparse representa-
tions. Additionally, some works by Mairal et al. (2008); Guo et al. (2012) and Taalimi et al. (2015)
consider even a joint estimation/learning of a dictionary, sparse representation, and classifier by us-
ing iterative alternating minimization strategy. The manuscripts by Bengio et al. (2012); Cai et al.
(2014) and Gangeh et al. (2015) give comprehensive overview covering different approaches.

1.1 OPEN ISSUES

The general open issue for DDL methods is the computational complexity w.r.t. the optimal dic-
tionary/transform learning and the discriminative encoding, since the sparse representation in the
synthesis model is a solution to an inverse problem.

An additional open issue with most of the proposed approaches Guo et al. (2012); Jiang et al. (2013);
Cai et al. (2014); Gangeh et al. (2015); Liu et al. (2016), Bengio et al. (2012); Jiang et al. (2016); Vu
& Monga (2016) is that there is no formal notion to measure the discriminative properties. Therefore,
there are no means that provide a quantitative evaluation of the quality of the representation, other
than the performance of a classifier used on top of the representation.

Concerning the specifics in the discriminative constraints, Yang et al. (2011b) proposed a synthesis
model with a discriminative fidelity term and Fisher discriminant constraints, where the within-class
scatter and the between-class scatter of the representation is minimized and maximized, respectively.
The authors Vu & Monga (2016) proposed an extension considering a low-rank constraint on the dic-
tionary. An approach by Guo et al. (2013) used a synthesis model with a constraint on the pair-wise
relation between the sparse representation expressed by `2 distance metric. The methods reported
by Yang et al. (2011b) Vu & Monga (2016) and Guo et al. (2013) take into account assumption on
the metric by defining the scatter and the pair-wise relations. Therefore, they constrain the space of
the representation, which essentially is determined by the dictionary. However, these works do not
consider whether the used metric is optimal w.r.t. the sparse representation.

The method proposed by Liu et al. (2016) finds a dictionary under which the representation of a data
sample from the same class c have a common sparse structure by minimizing the size of the support
overlap for the representation from different classes. Assuming yc1,k1 ∈ <M and yc2,k2 ∈ <M are
two sparse representations for two data samples xc1,k1 ∈ <N and xc2,k2 ∈ <N , from two classes c1
and c2, they proposed a similarity measure defined by empirical expectation on ‖yc1,k1 � yc2,k2‖0,
where � represents the Hadamar product. Note that two transform data samples yc1,k2 and yc2,k2

that have small support overlap ‖yc1,k1 � yc2,k2‖0 = s, s << M , might not necessarily be similar
or dissimilar, i.e., yc1,k1 = yc2,k2 and yc1,k1 = −yc2,k2 with ‖yc1,k1‖0 = ‖yc2,k2‖0 = s and s
small.

1.2 APPROACH AND MOTIVATIONS

Model Instead of addressing a synthesis model where the data reconstruction is targeted and the
estimation of the discriminative representation is an inverse problem1 we present a novel, alternative
approach. That is we propose non-linear transform models in the learning stage and a sparsifying
transform model Rubinstein et al. (2010), Rubinstein et al. (2013), Rubinstein & Elad (2014) and
Ravishankar & Bresler (2014) for testing. The sparsifying transform model assumes that the data
sample xc,k is approximately sparsifiable under a linear transform A ∈ <M×N , i.e., Axc,k =
yc,k + zc,k, zc,k ∈ <M , where yc,k is sparse ‖yc,k‖0 << M . It also represents a generalization
of the analysis model Rubinstein et al. (2010; 2013); Ravishankar & Bresler (2014); Rubinstein &
Elad (2014).

The proposed non-linear transform model is an extension to the sparsifying transform model that
considers additional assumptions. Both of the models used in this paper address a direct problem,
where the estimation of the discriminative representation represents a low complexity constrained
projection problem. Additionally, since these models have no restrictions on the transform represen-
tation to be in the column space of the dictionary (transform matrix A), they allow more freedom in
modeling and imposing constraints on the transform representation 2.

1Note that a solution to an inverse problem has a high computational complexity if the dimensionality of
the dictionary (transform matrix) or the data dimensionality is high.

2In fact it allows modeling other non-linearity also, i.e., ReLu can be modeled as a transform representation.
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Non-linear transform mapping
 

˨ Idea and schematic diagram

      linear mapping (step 1)                    element-wise non-linearity (step 2)

˨ Any function expressible as a two step transform: 

  

a) b) c) d) e) f)

Figure 1: a) Data samples Xc, c ∈ {1, 2, 3, 4} from four different classes, b) given a k-th data sample
xc,k from class c, the non-linear transform is represented as two step operation: linear mapping
Axc,k (step 1) followed by an element wise thresholding function yc,k = T Pc(Axc,k) (step 2), c)
the transform data samples Yc, c ∈ {1, 2, 3, 4}, d) two transform representations yc1,k1 and yc2,k2,
e) the resulting Hadamar products y+

c1,k1�y+
c2,k2 and y−c1,k1�y−c2,k2 on the support intersection for

the similarity contribution and f) the resulting Hadamar products y+
c1,k1�y−c2,k2 and y−c1,k1�y+

c2,k2

on the support intersection for the dissimilarity contribution between yc1,k1 and yc2,k2.

Prior and its measure In the learning stage, central in the non-linear transform models is the novel
parametric measure for a discriminative prior. It is defined on the support intersection for the trans-
form representations. The first motivation behind the used measure is that the support intersec-
tion of the transform data allows more freedom in imposing regularization on the discriminative
properties without taking into account any additional assumptions. Second, by approximating the
parametric mesure with an non-parametric one the focus of the regularization is directly put on
the contributing components for similarity/dissimilarity. Consider the measure (y+

c1,k1)Ty+
c2,k2 +

(y−c1,k1)Ty−c2,k2 between two transform representations yc1,k1 and yc2,k2 where yc1,k1 = y+
c1,k1 −

y−c1,k1 where y+
c1,k1 = max(yc1,k1,0) and y−c1,k1 = max(−yc1,k1,0). Note that (y+

c1,k1)Ty+
c2,k2 +

(y−c1,k1)Ty−c2,k2 = ‖y+
c1,k1 � y+

c2,k2‖1 + ‖y−c1,k1 � y−c2,k2‖1 captures the only contribution for the
similarity (whereas ‖y+

c1,k1 � y−c2,k2‖1 + ‖y−c1,k1 � y+
c2,k2‖1 captures the only contribution for the

dissimilarity) between the vectors yc1,k1 and yc2,k2. Moreover, yTc1,k1yc2,k2 = ‖yc1,k1 � yc2,k2‖1,
only if the dissimilarity contribution −(y−c1,k1)Ty+

c2,k2 − (y+
c1,k1)Ty−c2,k2 for the vectors yc1,k1

and yc2,k2 is 0. That is yTc1,k1yc2,k2 = (y+
c1,k1)Ty+

c2,k2 + (y−c1,k1)Ty−c2,k2 − (y−c1,k1)Ty+
c2,k2 −

(y+
c1,k1)Ty−c2,k2 ≤ (y+

c1,k1)Ty+
c2,k2 + (y−c1,k1)Ty−c2,k2, now if −(y−c1,k1)Ty+

c2,k2 − (y+
c1,k1)Ty−c2,k2

is zero then ‖yc1,k1 � yc2,k2‖1 = (y+
c1,k1)Ty+

c2,k2 + (y−c1,k1)Ty−c2,k2 = yTc1,k1yc2,k2. Third, the
expectation E[‖y−c1,k1 � y−c2,k2‖1 + ‖y+

c1,k1 � y+
c2,k2‖1] captures the concentration of similarity.

Therefore, it provides the possibility to define a formal notion that quantifies the discriminative
properties. Fourth, (y+

c1,k1)Ty+
c2,k2 + (y−c1,k1)Ty−c2,k2 is not ambiguous w.r.t. a notion for similar-

ity/dissimilarity between two sparse representations yc1,k1 and yc2,k2. This is because the support
intersections for the positive and the negative components (y+

c1,k1)Ty+
c2,k2 = ‖(y+

c1,k1)� y+
c2,k2‖1

and (y−c1,k1)Ty−c2,k2 = ‖(y+
c1,k1)Ty+

c2,k2‖1, respectively, are considered separately. In addition,
taken into account is the strength on the support intersection, defined as ‖yc1,k1 � yc2,k2‖22. Its em-
pirical expectation

∑
c,k ‖yc1,k1�yc2,k2‖22 ∼ E[‖yc1,k1�yc2,k2‖22] captures the expected strength

on the support intersection for that set. A schematic diagram of the transform and the main idea
behind the proposed concept are shown in Figure 1, a), b) and c). On Figure 1 d), e) and f) are given
illustrative examples for the support intersections between the positive and negative component of
two vectors yc1,k1 and yc2,k2 in the transform domain.

A learning algorithm is presented using the proposed model with discriminative and minimum in-
formation loss priors. To quantify the discriminative properties, we introduce a measure named as
discrimination power, which reflects the discriminate properties of the representation for a dataset.
In addition, we present its lower and upper bounds, which depend on the parameters of the transform.
On the practical side, the advantages and the potential of the proposed algorithm are demonstrated
by a numerical experiments using the Extended YALE B Georghiades et al. (2001), AR Martı́nez &
Benavente (1998), Norb LeCun et al. (2004), Coil-20 Nene et al. (1996), Clatech101 LeCun et al.
(2008), UKB Nistér & Stewénius (2006) and MNIST Lecun & Cortes datasets.
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1.3 NOTATIONS

A scalar variable is denoted using x, a vector is denoted by a bold, low caps symbols x, a matrix
by bold, upper cap symbol A. A single element from a vector (or matrix) is denoted as x(n) (or
A(m,n)). A set is denoted by a calligraphic symbol, i.e, S. The `p−norm is denoted as ‖.‖p and
the nuclear norm as ‖.‖∗. The � symbol represents the Hadamard product. Throughout the paper
it is assumed that a set of data samples X = [X1,X2, ...,XC ] ∈ <N×L, L = CK from C classes
is given and that every class c ∈ C = {1, 2, 3, ..., C} has K samples, Xc = [xc,1,xc,2, ...,xc,K ] ∈
<N×K , xc,k ∈ <N , ∀c ∈ C,∀k ∈ K = {1, 2, ...,K}. We denote the transform data as Y =
[Y1,Y2, ...,YC ] ∈ <M×L, where Yc = [yc,1,yc,2, ...,yc,K ] ∈ <M×K and yc,k ∈ <M . We
denote X\{k∈c} =

[
X1,X2, ..Xc,\k, ...XC

]
∈ <N×(L−1) as the matrix that has all the columns

of X, except the column xc,k ∈ <N , where Xc,\k = [xc,1,xc,2, ...,xc,k−1, xc,k+1, ...,xc,K ] ∈
<N×(K−1) is a matrix that has all the columns of block Xc, except the column xc,k, ∀c ∈ C and
∀k ∈ K. We let N = {1, 2, ..., N} andM = {1, 2, ...,M}.

2 LEARNING NON-LINEAR TRANSFORM WITH DISCRIMINATIVE AND
MINIMUM INFORMATION LOSS PRIORS

The proposed approach has two operational modes: learning and test. It considers two different
models. A predefined number of non-linear transforms are used in the learning mode and one
sparsifying transform is used for test time.

2.1 THE PARAMETRIC NON-LINEAR TRANSFORM MODELING

Considering the learning mode, we assume that for every class c ∈ C there exist one non-linear
transform defined by a set of parameters Pc = {A ∈ <M×N , τc ∈ <M},∀c ∈ C3. All nonlinear
transforms described by {P1, ...,PC} share the linear map A and have distinct parameters τc. One
Pc with τc is related to only one class c. It is assumed that the parameters τc are spread far apart
in the transform domain. In addition, when all the non-linear transforms are applied to the corre-
sponding class samples then the transform data samples are separable w.r.t. the different classes, in
the transform domain.

As far as the non-linear transform we focus on transforms expressible by a two-steps operation,
consisting of a linear mapping (step 1) followed by an element-wise non-linearity (step 2):

xc,k
A−−−→

step 1
Axc,k

Hτc (.)−−−−→
step 2

yc,k, (1)

where ∀wc,k = Axc,k ∈ <M ,Hτc(wc,k) = sign(wc,k) � max(|wc,k| − τc,0) : <M → <M ,
represents a non-linear thresholding function with parameters τc ∈ <M . We also have to mention
that the thresholding is done with different thresholding parameters τc(m) for the corresponding
different transform dimensions m ∈M.

At testing time we use one, common sparsifying transform defined by a set of parameters
P = {A ∈ <M×N , τ1 ∈ <M} for all data samples, with a constant tresholding parameter τ . The
transform matrix A is one and same for the C training and the testing models.

In the following section we describe the non-linear transform models, the proposed discriminative
prior and its mesure, together with the main reason behind this particular use of non-linear transform
models for learning and a sparsifying transform model for testing.

2.2 THE NON-LINEAR TRANSFORM MODEL WITH A DISCRIMINATIVE PRIOR

The learning model This paper defines a compact description of the non-linear transform (1) by a
non-linear transform model as follows:

Axc,k = yc,k + zc,k, yc,k = T Pc(xc,k), (2)

3That is the number of non-linear transforms equals the number of classes.
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where T Pc(.) : <N → <M is a parametric non-linear function that gives yc,k, by using the set
of parameters Pc. The term zc,k = Axc,k − yc,k is the non-linear transform error vector that
represents the deviation of Axc,k from the targeted transform representation yc,k = T Pc(xc,k) in
the transform domain. Since the transform representation yc,k = T Pc(xc,k) takes into acount a
non-linearity, Axc,k is only seen as its linear approximation. Knowing something in advance about
the difference between yc,k −Axc,k can be used in our model. However, since in advance we do
not have any prior we assume that it is Gausssian like distributed. Therefore, the prior on zc,k is

modeled as p(xc,k|yc,k,A) ∝ exp(−‖Axc,k−yc,k‖22
β0

), where β0 is a scaling parameter. Assuming
additionally that the non-linear function T Pc(xc,k) gives sparse yc,k, then we have the improper
prior on yc,k, defined as p(yc,k) ∝ exp(−‖yc,k‖1

β1
) where β1 is a scaling parameter. This paper

models the joint probability p(τ1, τ2, ...., τC ,yc,k) as

p(τ1, τ2, ...., τC ,yc,k) ∝ exp(− 1

β2
min

1≤c1≤C
D(yc,k; τc1))p(yc,k), (3)

and assumes that (Aiid) : p(τ1, τ2, ...., τC) =
∏
c p(τc), where β2 is a scaling parameter. By

the assumption in subsection 2.1, τc1 are spread far apart in the transform domain. Therefore, a
minimum over D(yc,k; τc1) ensures that yc,k in the transform domain will be located to the closest
τc1 w.r.t. to the mesure D(yc,k; τc1). Moreover, given the class label c using (3) and (Aiid) the
model for the discriminative prior reduces to p(τc|yc,k) ∝ exp(−D(yc,k;τc)

β2
) where D(yc,k; τc) is

a parametric measure with parameter τc. Assuming that D(yc,k; τc) is determined by a relation on
the support intersection between yc,k and τc we propose the following definition of measure:

D(yc,k; τc) = ‖y+
c,k � τ+

c ‖1 + ‖y−c,k � τ−c ‖1 + ‖yc,k � τc‖22, (4)

where ‖y+
c,k � τ+

c ‖1 + ‖y−c,k � τ−c ‖1 measures the similarity contribution on the support intersec-
tion using the positive and the negative components, y+

c,k, τ
+
c and y−c,k, τ

−
c , respectively, of yc,k

and τc and ‖yc,k � τc‖22 measures the strength of the support intersection between yc,k and τc.
The true p(τc) and τc are not known and instead of estimating them explicitly, an approximation to
D(yc,k; τc) is considered based only on the concentrations of the similarity on the support intersec-
tion and the expected strength of the support intersection for the transform data.

Non-parametric approximation We propose an approximation by sum of two expectations. The
first one is the expected similarity on the support intersection for the positive and negative component
between all yc,k and the coresponding sets of the transform representations Y\c that come from
all classes c1 different from c, i.e., c 6= c1. The second is the expected strength on the support
intersection between yc,k and the set of transform representations Y\c that come from all classes c1
different from c, c 6= c1. We define the approximation as:∑

c,k

D(yc,k; τc) ∼ DP`1(X) + SP`2(X) where

DP`1(X) =

C∑
c=1

K∑
k=1

∑
c1∈{{1,2,...,C}\c}

K∑
k1=1

(‖y+
c,k � y+

c1,k1‖1 + ‖y−c,k � y−c1,k1‖1),

SP`2(X) =

C∑
c=1

K∑
k=1

∑
c1∈{{1,2,...,C}\c}

K∑
k1=1

‖yc,k � yc1,k1‖22,

(5)

we highlight that the transform represntations yc,k used in the approximation DP`1(X)

and SP`2(X) are the result of applying the sparsifying transform with parameter set P to
the data samples xc,k. The m-th element y+

c,k(m) of y+
c,k is defined as y+

c,k(m) =

max(yc,k(m), 0) and similarly, y−c,k(m) = max(−yc,k(m), 0), ∀m ∈ M. We also de-
fine the expected similarity using the positive and negative components of all yc,k across
the transform representations Y\c that come from the same classes c as DP`1,c(X) =∑
c

∑K
k=1

∑
k1∈{{1,2,...,K}\k}

(
‖y+

c,k � y+
c,k1‖1 + ‖y−c,k � y−c,k1‖1

)
. If the measure DP`1(X) is

not used then the approximation (5) is most similar to the one proposed in Liu et al. (2016).
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By (5) a link is established between the non-linear transform models and the sparsify-
ing transform model, or more generaly, assuming A is known, between a parametric and
a non-parametric modeling view. The terms 2

((C−1)K)(CK)

∑
c1∈{{1,2,...,C}\c}

∑K
k1=1 y−c1,k1,

2
((C1)K)(CK)

∑
c1∈{{1,2,...,C}\c}

∑K
k1=1 y+

c1,k1 and 2
((C1)K)(CK)

∑
c1,c16=c

∑
k1 yc1,k1�yc1,k1 are

seen as finite sample estimates 4 5 of the positive, negative components and the Hadamard square,
τ−c , τ+

c and τc � τc, respectivly, for the unknown variable τc, ∀c ∈ C.

Note that the Fisher discriminate constraint Yang et al. (2011b), the pairwise constraint Guo et al.
(2013) and the support intersection constraint Liu et al. (2016) are all approximations of a discrim-
inative prior. However, they all have specific assumptions on the distribution of the data represen-
tation in the transform domain. The advantage of using (5) is that the approximation is without
any prior to the probability distributions p(τc) and without any explicit assumption about the met-
ric/measure, or space/manifold in the transform domain.

Given a training set X, the learning perspective w.r.t. a discriminative property is to estimate
a non-linear transform models Pc = {A ∈ <M×N , τc ∈ <M} that minimize the empirical ex-
pectation 1

CK

∑
c,k min1≤c≤C D(yc,k; τc) ∼ E[min1≤c≤C D(yc,k; τc)]. Moreover, if the corre-

sponding class labels for the training set X are given6 then
∑
c,k min1≤c≤C D(yc,k; τc) equals to∑

c,kD(yc,k; τc) and exactly matches the empirical expectation DP`1(X) + SP`2(X).

The testing model Assume that the transform matrix A and the parameters τ1, τ2, ..., τC are known,
then given any data sample xc,k the transform representaton yc,k is estimated as:

min
yc,k

‖Axc,k − yc,k‖22 + λ0( min
1≤c1≤C

D(yc,k; τc1)) + λ1‖yc,k‖1, (6)

which is euqialent to min1≤c1≤C
(
minyc,k

‖Axc,k − yc,k‖22 + λ0D(yc,k; τc1) + λ1‖yc,k‖1
)
. Fur-

theremore, if we assume that the measures D(yc,k; τc1) are zero, i.e., D(yc,k; τc1) = 0, then the
discriminative prior is non-informative, in a sence that it has no influence in the models. Only then
do the non-linear transforms reduce to the sparsifying transform model, since (6) reduce to:

min
yc,k

‖Axc,k − yc,k‖22 + λ1‖yc,k‖1. (7)

Considering the testing stage, we note that the result (5) sheds light on another view. Namely, the
sparsifying transform model P = {A ∈ <M×N , λ1 ∈ <M} is also seen as an approximation to the
models represented by a set of parameters Pc = {A ∈ <M×N , τc ∈ <M} with expected loss in the
discriminative properties of the transform representations expressed by the similarity concentration
measure DP`1(X) + SP`2(X). At the same time this measure can also be considered as an empirical
risk Vapnik (1995) w.r.t. the discriminative properties, related to the generalization capabilities
Vapnik (1995) and Mark (2010) of the sparsifying transform model. Note that the same model is
also the simplest that approximates the non-linear transform models used in the learning stage.

2.3 THE LEARNING ALGORITHM

In summary, the used priors are:

p(xc,k|yc,k,A) ∝ exp(−‖Axc,k − yc,k‖22
β0

)

p(τc,yc,k) = p(τc|yc,k)p(yc,k) ∝ exp(−D(yc,k; τc)

β2
) exp(−‖yc,k‖1

β1
).

(8)

4Since
∑
c1∈{{1,2,...,C}\c}

∑
k1(‖y

+
c,k � y+

c1,k1‖1 + ‖y−c,k � y−c1,k1‖1) =

‖
(∑

c1∈{{1,2,...,C}\c}
∑
k1 y

+
c1,k1

)
� y+

c,k‖1 + ‖
(∑

c1∈{{1,2,...,C}\c}
∑
k1 y

−
c1,k1

)
� y−c,k‖1, τ−c ∼

2
((C−1)K)(CK)

∑
c1∈{{1,2,...,C}\c}

∑
k1 y

−
c1,k1 and τ+

c ∼ 2
((C−1)K)(CK)

∑
c1∈{{1,2,...,C}\c}

∑
k1 y

+
c1,k1.

5Since
∑
c1∈{{1,2,...,C}\c}

∑
k1 ‖yc,k � yc1,k1‖22 =

(∑
c1∈{{1,2,...,C}\c}

∑
k1 yc1,k1 � yc1,k1

)T
(yc,k � yc,k), τc � τc ∼ 2

((C−1)K)(CK)

∑
c1∈{{1,2,...,C}\c}

∑
k1 yc1,k1 � yc1,k1.

6Note that if the labels are not given then the unsupervised case can also be addressed by using a likelihood
measure between a sample and the rest of the available samples, with the possibility to be defined in the original
or in the transform domain.
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Additionally, we have a prior on A that penalizes the information loss in order to avoid trivially
unwanted matrices A, i.e., matrices that have repeated or zero rows. The prior is defined as:

p(A) ∝ exp(−Ω(A)) = exp

(
−(

1

β3
‖A‖2F +

1

β4
‖AAT − I‖2F −

1

β5
log |det ATA|)

)
, (9)

where the ‖A‖F penalty helps regularize the scale ambiguity, the log |det (ATA)| and ‖A‖2F are
functions of the singular values of A and together help regularize the conditioning of A. Assuming
that the expected coherence µ2 (A) between the rows am of A (i.e., AT = [a1,a2, ...,aM ]) is
defined as µ2 (A) = 2

M(M−1)

∑
m1 6=m2

|am1
aTm2
|2, ∀m1,m2 ∈ {1, 2, ..,M}. Then ‖AAT − I‖2F

measures the expected coherence µ2 (A) and the `2 norm for the rows of A.

Note that the joint probability can be expressed as:

p(xc,k,yc,k, τc,A) = p(xc,k,yc,k, τc|A)p(A), (10)

where p(xc,k,yc,k, τc|A) = p(xc,k|yc,k,A)p(τc, |yc,k)p(yc,k), since p(xc,k|yc,k, τc,A) =
p(xc,k|yc,k,A). Given the available training data set X, maximizing p(xc,k,yc,k, τc,A) over Y
and A is same as minimizing the following problem:

min
Y,A
‖AX−Y‖22+

∑
c,k

λ0D(yc,k; τc) + λ1‖yc,k‖1 + Ω(A), (11)

where {λ0, λ1} are inversely proportional to the scaling parameters {β2, β1}. Note that the solution
to (11) is not equivalent to the maximum a priory (MAP) solution, which is difficult to compute, as it
involves integrating over the vectors yc,k. Considering the optimization perspective, the problem is
not convex in the variables (Y,A). The proposed solution here is obtained by iteratively, marginally
maximizing the probability p(xc,k,yc,k, τc,A) over Y and A which is equivalent to maximizing
the conditional densities p(yc,k|xc,k, τc,A) and p(A|xc,k,yc,k, τc), respectively. Meaning that at
one iterating step one of the variables Y or A is fixed and w.r.t. the other the problem (11) is mini-
mized. The following describes the iterating steps that consist of linear map estimation (maximizing
p(A|xc,k,yc,k, τc)) and discriminative encoding (maximizing p(yc,k|xc,k, τc,A)).

Linear map estimation: Given the available data samples X and the corresponding transform rep-
resentations Y the linear map A estimation problem reduces to:

min
A
‖AX−Y‖22 +

λ2

2
‖A‖2F +

λ3

2
‖AAT − I‖2F − λ4 log |det ATA|, (12)

where {λ2, λ3, λ4} are inversely proportional to the scaling parameters {β3, β4, β5} and we use the
ε-close closed form solution estimated as follows:

Proposition 1 (ε-close closed form solution): Given Y ∈ <M×CK , ∀X ∈ <N×CK and M ≥ N ,
∀λ2 ≥ 0, λ3 ≥ 0 and λ4 ≥ 0 let the eigen value decomposition UXΣXVT

X of XXT + λ2I and
the singular value decomposition UUXXY ΣUXXY VT

UXXY
of UT

XXYT exist, then if and only if
σX(n) > 0,∀n ∈ N = {1, 2, 3, ..., N}, (12) has ε-close approximative solution as:

A = VUXXY UT
UXXY ΣAΣ−1

X UT
X , (13)

where ΣA is diagonal matrix, ΣA(n, n) = σA(n) ≥ 0 , and σA(n) are solutions to quartic polyno-
mials with global minimums (the proof is given in Appendix A.2).

Discriminative encoding: Given the available data samples X and the current estimate of the
transform A the discriminative representation estimation problem is formulated as (PDR) :
minY ‖AX − Y‖2F + λ0

∑
c,kD(yc,k; τc) + λ1‖yc,k‖. (PDR). Even not knowing p(τc) or the

model variables τc we show that by the approximation (5), (PDR) has an efficient solution. Assum-
ing that Y\c is given, using the approximation (5), then for any sample k ∈ K from any class c ∈ C,
problem (PDR) reduces to a constrained projection problem:

min
yc,k

‖Axc,k − yc,k‖22 + λ0

(
gTc |yc,k|+ sTc (yc,k � yc,k)

)
+ λ11

T |yc,k|, (14)

and has a closed form solution as:

yc,k =sign (Axc,k)�max (|Axc,k| − λ0gc − λ11,0)� (1 + 2λ0sc) , (15)

7
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where we abuse notation to denote |yc,k| as the vector having as elements the absolute values of
the corresponding elements in yc,k, � is a Haddamard division, gc = sign(max(Axc,k,0)) �
d+
c + sign(max(−Axc,k,0)) � d−c , d+

c =
∑

c1
c16=c

∑
k1 y+

c1,k1, d−c =
∑

c1
c1 6=c

∑
k1 y−c1,k1 and

sc =
∑

c1
c16=c

∑
k1 yc1,k1 � yc1,k1 (the proof is given in Appendix B).

We note that at convergence (which we do not prove here) we can only claim that a joint local max-
imum in (Y,A) of p(xc,k,yc,k, τc,A) has been reached, even if, as in this case, each optimization
step achieves the (marginal) ε-close and the global optimal solution, respectively.

2.4 A MEASURE FOR THE DISCRIMINATIVE PROPERTIES AND ITS BOUNDS

This paper proposes a notion for the discriminative properties of a data set under a non-linear trans-
form named as discrimination power, based on a measure for the relations between the concentra-
tions DP`1,c(X) and DP`1(X).

Proposition 2: The discrimination power for any dataset Y ∈ <M×CK under a non-linear trans-
form with parameter set P is defined as:

It = log(DB
M

`1,c(Y))− log(DB
M

`1 (Y) + ε) = log(DP`1,c(X))− log(DP`1(X) + ε), (16)

where BM = {At ∈ <M×M ,0 ∈ <M}, At = I and ε > 0 is a small positive constant.

Remark 1: The advantage of this measure is that it logarithmically signifies the difference between
DP`1,c(X) and DP`1(X)7 .

The definition about the discrimination power of the original data set X, but, now under a model
with a parameter set BN = {Ao ∈ <N×N ,0 ∈ <N} where Ao = I is equivalent to the one defined
for It. We denote it as Io. The bound on the discrimination power is given by the following result.

Theorem 1: The discrimination power for any data set X ∈ <N×CK under any non-linear trans-
form with parameter set P is bounded as:

log(λmin(ATA)) + log

Tr{∂D
BN
`1,c(X)

∂Ao
|Ao=I}

DB
M

`1
(AX) + ε

 ≤ It ≤ log
(
DB

M

`1,c(AX)
)
− log ε. (17)

The proof is given in Appendix D8.

At first the resulting bounds might look counterintuitive since the loss of information seems to
increase the discrimination power. This fact is true, however, up to a certain limit. Therefore, it is
important to distinguish two main conclusions. First, for any model with a set of parameters P for
which there is no loss of information, that is, no thresholding, the only condition for the increase in
the discrimination power is DB

N

`1
(X) ≥ DB

M

`1
(AX) and DB

N

`1,c
(X) ≤ DB

M

`1,c
(AX). Second, in the

rest of the cases for which DB
N

`1
(X) ≥ DB

M

`1
(Y) and DB

N

`1,c
(X) ≤ DB

M

`1,c
(Y) holds true it will be

possible to increase the discrimination power. Moreover, there is a trade-off between the increase
in discrimination power as a result of the loss of information as consequence of the non-linear
thresholding operation.

7Assume we have a discriminative prior defined as p(τc|yc,k) ∝ exp(−
‖τ+

c �y+
c,k
‖1+‖τ−c �y−

c,k
‖1

β2
) and

p(υc|yc,k) ∝ exp(−
‖υ+

c �y+
c,k
‖1+‖υ−c �y−

c,k
‖1

β2
), where τc and υc are unknown parameters. Then the differ-

ence DP`1,c(X) −DP`1(X) between DP`1,c(X) and DP`1(X) actually represents a finite sample approximation

to a discriminative density since it approximates the density log
(
p(τc|yc,k)

p(υc|yc,k)

)
, i.e., DP`1,c(X) − DP`1(X) ∼

− log
(
p(τc,yc,k)

p(υc,yc,k)

)
and − log

(
p(τc,yc,k)

p(υc,yc,k)

)
= D(τc,yc,k) − D(υc,yc,k) = ‖τc+ � y+

c,k‖1 + ‖τc− �
y−c,k‖1 − (‖υc+ � y+

c,k‖1 + ‖υc
− � y−c,k‖1).

8In Appendix C we also provide a sensitivity analysis that complements our result since it is related to the no-
tion about the discriminative quality of the representation. The result in Appendix C also gives an information-
theoretic interpretation and information-geometric perspective about the model and the similarity concentration
measure without the need of strict conditions for regularity, i.e., smoothness of the manifolds.
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Figure 2: The evolution of the similarity concentrations C1 = DB
M

`1,c
(Y) and C2 = DB

M

`1
(Y), their

ratio C1/C2 and the discrimination power log(C1/C2) = It during the learning of the non-linear
transform with transform dimension M = 19000.

Cn(A) µ(A) te[min]
D1 2.21 0.03 5.10
D2 1.80 0.02 5.45
D3 2.12 0.02 6.55
D4 0.08 0.02 8.92
D5 6.01 0.01 12.8
D6 33.1 0.02 30.1
D7 1.60 0.02 5.00

IO
0.03
0.02
0.00
0.08
0.01
0.06
0.13

IRT
0.18
0.10
0.01
0.61
0.16
0.53
0.63

IST∗

0.68
1.30
0.71
0.89
1.02
1.36
1.06

INT
1.98
1.79
1.61
1.89
2.12
3.36
1.96

Table 1: The conditioning number Cn(A) = λmax

λmin
and the expected mutual coherence µ(A) for

the learned transform A. The execution time te[min] in minutes of the proposed algorithm for 28
iterations at the transform domain dimensionality M = 19000.

3 NUMERICAL EXPERIMENTS

The numerical experiments are summarized in two different parts. In the first series of the experi-
ments the properties of the learned map A for the proposed algorithm are investigated. We evaluate
the computational efficiency, as run time te[min], the conditioning number Cn(A) = λmax

λmin
, the ex-

pected mutual coherence µ(A) and the discrimination power across several databases for a learned
non-linear transforms having different dimensionality. A comparison between the discrimination
power uder different transforms is presented. The discriminatation power is estimated in the orig-
inal domain, after transform by a random matrix (having Gaussian random samples as entries and
transform dimension of M = 19000) and after a learned non-linear transform having transform
dimension M = 19000 without and with discriminative prior, denoted as I0, IRT , IST∗ and INT ,
respectively. The second part evaluates a comparison of the discrimination power between the pro-
posed algorithm and different DDL methods Ramirez et al. (2010), Yang et al. (2011a), Vu et al.
(2015) and Vu & Monga (2016). This comparison considers a setup where the used data sets are
divided into a training and test set. Moreover, the learning is performed on the training set and the
evaluation is performed on the test set. In the same series of experiments the recognition accuracy
for the two data sets is also computed and compared.

Data sets and algorithms set up The used data sets are Extended YALE B (D1)Georghiades et al.
(2001), AR (D2) Martı́nez & Benavente (1998), Norb (D3) LeCun et al. (2004), Coil-20 (D4)
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Figure 3: The conditioning number Cn(A) = λmax

λmin
and the expected mutual coherence µ(A) for

the learned linear transform A at different dimensionality M ∈ Q.
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Figure 4: The similarity concentrations C1 = DB
M

`1,c
(Y) and C2 = DB

M

`1
(Y), their ratio C1/C2

and the discrimination power log(C1/C2) = It on a subset of the transform data using learned
non-linear transform at different dimensionality M ∈ Q.

Nene et al. (1996), Clatech101 (D5) LeCun et al. (2008), UKB (D6) Nistér & Stewénius (2006)
and MNIST (D7) Lecun & Cortes. All the images from the respective datasets were downscaled
to resolutions 21 × 21, 32 × 28, 24 × 24, 20 × 25, 21 × 21, 20 × 25, 28 × 28, respectively, and
are normalized to unit variance. Considering the used implementation of the algorithm we note that
the singular value decomposition for a large matrix has high computational complexity. However,
A − Â, where Â is estimated as a solution in the transform update step, can be considered as an
proximal operator Parikh & Boyd (2014) for the gradient of the objective (12). Additionally, instead
of using all of the available data samples X, a subset of them might be used. Therefore, one simple
on-line variant for the update of A w.r.t. a subset of the available training set has the form At+1 =

At − ρ(At − Ât) with ρ a predefined step size. In the numerical experiments we use the on-line
variant of the algorithm (the convergence analysis for this variant of the algorithm is left for future
work) were we used a baches of sizes equal to 10%−12% of the total amount of the available training
data. The parameters λ0 and λ1 are set such that the resulting non-linear transform representation
has a very small number of non-zeros w.r.t. the transform dimension. In the experiments this number
is set to be 15. The rest of the parameters are set as {λ2, λ3, λ4} = {1000000, 1000000, 1000000}.
The algorithm is initialized with a random matrix having i.i.d. Gaussian (zero mean, variance one)
entries and is terminated after the 28th iteration. The results are obtained as the average of 3 runs. An
implementation presented in Vu & Monga (2016) was used to learn the dictionaries and estimate the

10
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D1 D7
IDLSI 0.71 0.67
IFDDL 0.87 0.63
ICOPAR 0.57 0.54
ILRSDL 0.42 0.40
INT 0.98 0.81

a)

D1 Acc. [%]
DLSI 96.5
FDDL 97.5
COPAR 98.3
LRSDL 98.7
NT 99.7

b)

D7 Acc. [%]
DLSI 98.74
FDDL 96.31
COPAR 96.41
LRSDL −
NT 99.02

c)

Table 2: a) The discrimination power for the methods DLSIRamirez et al. (2010), FDDL Yang
et al. (2011a),COPARVu et al. (2015) andLRSDLVu & Monga (2016) and the proposed method
NT , b) and c) The recognition results on the Extended Yale B and MNIST database.
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Figure 5: The recognition results and the discrimination power on the Extended Yale B and MNIST
databases, respectively, using a non-linear transform with different dimensionality M and linear
SVM classifier on top of the transform representation.
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zc,k
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Figure 6: The expected loss E[‖zc,k

M ‖
2
2] = E[

‖Axc,k−yc,k‖22
M ] and the discrimination power on the

Extended Yale B and MNIST databases, respectively, on the transform representation Y, obtained
by using a non-linear transform T P at different dimensionality M .

sparse codes for the respective supervised dictionary learning methods DDL Ramirez et al. (2010),
Yang et al. (2011a), Vu et al. (2015) and Vu & Monga (2016).

Linear map properties, the similarity concentrations and the discrimination power The condi-
tioning number and the expected coherence for the learned transforms are shown on Table 1. The
learned transforms for all the databases have good conditioning numbers and low expected coher-
ence. The running time te, measured in minutes, and the number of used dimensions, denoted as M
are also shown in Table 1. The learned transforms for all the data sets have relatively low execution
time, regardless of the very high transform dimension M = 19000. The discrimination power is
significantly increased in the transform domain INT compared to the one in the original domain IO
and is higher than IST∗ and IRT .The evolution of the similarity concentrations C1 = DB

M

`1,c
(Y)

and C2 = DB
M

`1
(Y), their ratio C1/C2 and the discrimination power log(C1/C2) = It for subsets

of the used databases after applying a non-linear transform with transform dimension M = 19000

is shown in Figure 2. It is important to note that the similarity concentrations C1 = DB
M

`1,c
(Y) and
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C2 = DB
M

`1
(Y) are decreasing, meaning that there is a loss of information. However how this

loss effects the resulting similarity concentration is crucial for the discrimination properties. As
shown in Figure 2, the slope of decrease for C2 is stronger. Therefore, the discrimination power
increases per iteration. For the Coil-20 (D4) database there is a fluctuation. This is explained by
the fact that during learning we used a small number of data samples from the same database and
that in the data there is high variability. The conditioning number and the expected coherence
for the learned transforms for all the databases at different transform dimensions M ∈ Q =
{100, 1150, 2200, 3250, 4300, 5350, 6400, 7450, 8500, 9550, 10600, 11650, 12700, 13750, 14800,
15850, 16900, 17950, 19000} are shown in Figure 3. We see that the value of both the condi-
tioning number and the coherence is reducing and it converges to common values. This confirms
the effectiveness of the conditioning and the coherence constraints. The similarity concentra-
tions C1 = DB

M

`1,c
(Y) and C2 = DB

M

`1
(Y), their ratio C1/C2 and the discrimination power

log(C1/C2) = It for a subsets of the used databases after applying a non-linear transform having
transform dimensions M ∈ Q is shown in Figure 4. We can see similar behavior as previous,
that is, C1 and C1 are decreasing, but, the slope of decrease for C2 is stronger. Therefore, the
discrimination power increases as the transform dimension increases.

NT vs DDL discrimination power and recognition performance The proposed method is com-
pared with DLSIRamirez et al. (2010), FDDL Yang et al. (2011a), COPAR Vu et al. (2015)
and LRSDL Vu & Monga (2016). Half of the data samples from the data set Extended YALE B,
sampled at random are used for learning and the remaining other half are used for evaluation. Con-
sidering the MNIST database the training set is used for learning and the test set is used for both eval-
uating the discrimination power and the recognition accuracy. We compute both the discrimination
power and the recognition accuracy on a subsets from the test sets. The dictionary size (transform
dimension M ) is set to be equal to {150, 75, 1515, 3825, 570, 150, 300}for the used databases, re-
spectivly, in all of the comparing algorithms. The discrimination power of the comparing methods is
denoted as IDLSI , IFDDL, ICOPAR and ILRSDL. The recognition results for the methodsDLSI ,
FDDL, COPAR and LRSDL on the data sets Extended YALE B and MNIST were not computed
here, rather we use the best reported result form the respective papers Ramirez et al. (2010), Yang
et al. (2011a), Vu et al. (2015) and Vu & Monga (2016). Considering the proposed algorithm the
non-linear transform was learned for the transform dimensions M = {100, 500, 1500, 4000} and
M = {1000, 4000, 6000, 12000}, respectively, for the used data sets. After the transform was
learned, the transform data samples were computed for the respective training and test sets. Then,
the transform training data samples were used as features to learn a linear SVM classifier in one-
against-all regime. The results are shown in Table 2 a), b) and c). The discrimination power of the
proposed non-linear transform is higher that the discrimination power of the comparing methods.
The recognition accuracy is higher for high dimensionality of the proposed method and outper-
forms the DDL methods at dimensionality 4000 and 12000. In Figure 5 and Figure 6 are shown the
recognition accuracy and the expected loss measured as E[‖zc,k

M ‖
2
2] = E[

‖Axc,k−yc,k‖22
M ] as a linear

function of the discrimination power evaluated at transform dimensionM = {100, 500, 1500, 4000}
and M = {1000, 4000, 6000, 12000}. It is interesting to highlight that as the discrimination power
at different transform dimension increases it also increases the accuracy of recognition. Moreover,
the results on these two data sets show that this increase is approximately linear. On the other hand
the expected loss decreases as the discrimination power at different transform dimensions increases.

4 CONCLUSION

This paper presented a novel approach for learning discriminative and sparse representations. A
novel discriminative prior was proposed and the properties of the models with the prior were in-
vestigated. A low complexity learning algorithm was presented. The preliminary results w.r.t. the
introduced measures and the recognition accuracy on the used databases showed promising perfor-
mance. We showed that it is possible to increase the discrimination power with information loss.
Moreover, we highlight that when expanding to high dimensional space with non-linear transforms
how the loss of information reflects the similarity concentrations is crucial for the discriminative
properties. A study on the recognition capabilities for other databases are our next steps. An ex-
tention considering the sufficient conditions for increase in discrimination power in the transform
domain, under supervised and unsupervised case, together with an analysis for a deep architecture
where per single layer we have a non-linear transforms are left for our future work.
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APPENDIX A.

A.1 THE GLOBAL OPTIMAL SOLUTION

Given X and the curent estimate of Y, the estimate of the transform is a solution to the following
problem

min
A
‖AX−Y‖22 +

λ2

2
‖A‖2F +

λ3

2
‖AAT − I‖2F − λ4 log |det ATA|. (18)

Theorem 2 (golobal optimal solution) Given X ∈ <N×CK and Y ∈ <M×CK , if and only if the
joint decomposition

XXT = UXΣ2
XUT

X

XYT = UXΣXY VT
XY ,

(19)

exists, where UX ∈ <N×N is orthonormal, VXY ∈ <M×N is per columns orthonormal and
ΣX ,ΣXY ∈ <N×N are diagonal matrices with positive diagonal elements, then (18) has a global
minimum as

A = VXY ΣAΣ−1
X UT

X , (20)

ΣA(n, n) = σA(n), ∀n, σA(n) ≥ 0 and σA(n) are positive solutions to

λ3

σ4
X(n)

σ4
A(n) +

σ2
X(n)− 2λ3

σ2
X(n)

σ2
A(n)− σXY (n)

σX(n)
σA(n)− 2λ4 log

σX(n)

σA(n)
= 0. (21)

Proof of Theorem 2 Consider the equvalent trace form of (18)

min
A
Tr{(AX−Y)TAX−Y}+ λ2Tr{ATA}+

λ3Tr{(AAT − I)T (AAT − I)} − λ4 log |ATA|.
(22)

Note that since λ2 ≥ 0,XXT + λ2I is a symetric positive definite matrix whit all eigenvalues
non-negative, therfore it decomposes as

UXΣ2
XUT

X = UXΣXUT
XUXΣXUT

X = XXT + λ2I. (23)

Let
A = BD,D = UXΣ−1UT

X , (24)
Define

g1 = BDXYT ,g2 = BBT , g3 = (BDDTBT )(BDDTBT )T

g4 = (BDDTBT ), g5 = log |det BDDTBT |,
(25)

Then (18) equvalently is

min
B
−Tr{g1}+ Tr{g2}+ λ3Tr{g3 − g4} − λ4g5. (26)

Asumme that B decomposes as
UBΣBVT

B (27)
where ΣB is a diagonal matrix with positive diagonal elements, UB is column orthogonal and VB

is orthogonal square matrix. Moreover, let the following decomposition on XYT exists

XYT = UXΣXY VT
XY , and substitute as UB = VXY ,VB = UX , (28)

then
Tr{g1} = Tr{UBΣBVT

BUXΣ−1
X UT

XXYT } = Tr{ΣBΣ−1
X ΣXY }. (29)

The term

Tr{g2} = {BBT } = Tr{(UBΣBVT
B)(UBΣBVT

B)T } = Tr{Σ2
B}, (30)

and
Tr{g4} = {BDDTBT } = Tr{ΣBΣ−1

X Σ−1
X ΣB} = Tr{Σ−2

X Σ2
B}. (31)

Tr{g3} ={(BDDTBT )(BDDTBT )T } = Tr{Σ−4
X Σ4

B}, (32)

13
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g5 = log |det AAT | = log |det DTBTBD| =
log |det UXΣ−1

X Σ2
BΣ−1

X UT
X | = log |det Σ−2

X Σ2
B |

(33)

Finnaly, (18) is reduced to

minσB(n)

N∑
n=1

λ3

σ4
X(n)

σ4
B(n) +

σ2
X(n)− 2λ3

σ2
X(n)

σ2
B(n)− σXY (n)

σX(n)
σB(n)− 2λ4 log

σX(n)

σA(n)
, (34)

equalling to zero the first order derivative of the objective (33) w.r.t. σB(n) and multiplaing by
σB(n) gives

4
λ3

σ4
X(n)

σ4
B(n) + 2

σ2
X(n)− 2λ3

σ2
X(n)

σ2
B(n)− σXY (n)

σX(n)
σB(n)− 2λ4 = 0 (35)

A closed form solution to (34) exists and depends on the discriminint of the quartic polynomial.
Moreover, since 4 λ3

σ4
X(n)

is positive a global minimum to (18) exists if and only if the decompsition
(19) exists �

A.2 THE ε-CLOSE CLOSED FORM APPROXIMATION

Consider the equvalent trace form (26) of (18) and note that since λ2 ≥ 0,XXT +λ2I is a symetric
positive definite matrix whit all eigenvalues non-negative, therfore it decomposes as

UXΣ2
XUT

X = UXΣXUT
XUXΣXUT

X = XXT + λ2I. (36)

Let the following decomposition exists

UUXXY ΣUXXY VT
UXXY = UXXYT . (37)

Define
A = BD, where D = UXΣ−1

X UT
X (38)

Assume that B decomposes as UBΣBVT
B = B, where ΣB is a diagonal matrix with positive

diagonal elements, UB is column orthogonal and VB is orthogonal square matrix and let

UB = (UUXXY VT
UXXY )T ,VB = UX , (39)

then
Tr{AXYT } =Tr{BUXΣ−1

X UT
XXYT } =

Tr{VUXXY UT
UXXY ΣBΣ−1

X UUXXY UUXXY ΣT
VXXY }.

(40)

Consider the decomposition UBΣBVT
B of B, use Mirsky (1959) and Neumann (1937) and note

that
min
ΣB

max
UB ,VB

Tr{UBΣBVT
BUXΣ−1

X UT
XXYT } ≤ min

ΣB

Tr{ΣBΣ−1
X ΣΓ}, (41)

where ΣΓ is a diagonal matrix, having diagonal elements ΣΓ(n, n) = σΓ(n) = T (n, n),∀n ∈ N
and T = UUXXY ΣUXXY VT

UXXY
.

Note that the term Tr{(AX)(AX)T } = Tr{BBT } = Tr{Σ2
B} and as in the Apendix

subsection A.1 Tr{AAT } = Tr{BDDTBT } = Tr{Σ2
BΣ−2

X }, Tr{(AAT )(AAT )T } =

Tr{(BDDTBT )(BDDTBT )} = Tr{Σ4
BΣ−4

X } and log |det AAT | = log |det DTBTBD| =

log |det UXΣ−1
X Σ2

BΣ−1
X UT

X | = log |det Σ−2
X Σ2

B |.
Finally, the aproximation of (18) using the bound (41) is reduced to

minσB(n)

N∑
n=1

λ3

σ4
X(n)

σ4
B(n) +

σ2
X(n)− 2λ3

σ2
X(n)

σ2
B(n)− σΓ(n)

σX(n)
σB(n)− 2λ4 log

σX(n)

σA(n)
, (42)

equalling to zero the first order derivative of the objective (42) w.r.t. σB(n) and multiplaing by
σB(n) gives

4
λ3

σ4
X(n)

σ4
B(n) + 2

σ2
X(n)− 2λ3

σ2
X(n)

σ2
B(n)− σΓ(n)

σX(n)
σB(n)− 2λ4 = 0. (43)

14
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A closed form solution to (43) exists and depends on the discriminint of the quartic polynomial.
Moreover, since 4 λ3

σ4
X(n)

is positive a global minimum to (42) exists. Therfore, having the decom-

position UBΣBVT
B = B, the substitutions UB = (UUXXY VT

UXXY
)T and VB = UX with the

solution of (42) gives the ε-close closed form approximative solution to problem (18) as

A = VUXXY UT
UXXY ΣBΣ−1

X UT
X , (44)

where the bound (41) implies that the ε-close closed form approximative solution is a lower bound
to the solution of (18) �

APPENDIX B.

Let yc1,k1 = y+
c1,k1 + y−c1,k1,y

+
c1,k1 ∈ <M+ and y−c1,k1 ∈ <M− . Consider the measure DP

`1
(X)

DP
`1(X) =

∑
c1,c2
c1 6=c2

∑
k1,k2

‖y+
c1,k1 � y+

c2,k2‖1 +
∑
c1,c2
c16=c2

∑
k1,k2

‖y−c1,k1 � y−c2,k2‖1 =

∑
c1,c2
c1 6=c2

∑
k1,k2

|y+
c1,k1|

T |y+
c2,k2|+

∑
c1,c2
c16=c2

∑
k1,k2

|y−c1,k1|
T |y−c2,k2|.

(45)

Let A and Y\{c1,k1} be given then problem PDP has only one varible yc1,k1. Conseqently in (45),
yc1,k1 is releted with only a part of the transform representations in DP

`1
(X), the rest are constants

for the reduced problem PDP , in particulary we have

|y+
c1,k1|

T
∑
c2

c2 6=c1

∑
k2

|y+
c2,k2|+ |y

−
c1,k1|

T
∑
c2

c26=c1

∑
k2

|y−c2,k2| = |y
+
c1,k1|

Td+
c + |y−c1,k1|

Td−c , (46)

where d+
c =

∑
c2,

c26=c1

∑
k2 |y

+
c2,k2|, d−c =

∑
c2

c2 6=c1

∑
k2 |y

−
c2,k2| and we abuse notation by denot-

ing |yc1,k1| as the vector whose elements are the absolute values of the elements in yc1,k1.

Note that
SP`2(X) =

∑
c1,c2
c1 6=c2

∑
k1,k2

‖yc1,k1 � yc2,k2‖22 =

∑
c1,c2
c1 6=c2

∑
k1,k2

(yc1,k1 � yc1,k1)T (yc2,k2 � yc2,k2).
(47)

simmilary as in (46) we have∑
c2

c26=c1

∑
k2

(yc1,k1 � yc1,k1)T (yc2,k2 � yc2,k2) =

(yc1,k1 � yc1,k1)T (
∑
c2

c26=c1

∑
k2

yc2,k2 � yc2,k2) = (yc1,k1 � yc1,k1)T sc,
(48)

where sc =
∑

c2
c2 6=c1

∑
k2 yc2,k2 � yc2,k2. Denote qc1,k1 = Axc1,k1 and consider the problem

minyc1,k1
‖qc1,k1 − yc1,k1‖22+

λ0((y+
c1,k1)Td+

c + (y−c1,k1)Td−c + (yc1,k1 � yc1,k1)T sc) + λ1‖yc1,k1‖1,
(49)

by taking the first order derivative w.r.t. yc1,k1 we have that

(yc1,k1 − qc1,k1) + λ0(sign(y+
c1,k1)� d+

c + sign(y−c1,k1)� d−c + yc1,k1 � sc)

λ1sign(yc1,k1) = 0,
(50)

take sign magnitude decomposition of yc1,k1 = sign(yc1,k1)� |yc1,k1| then we have

sign(yc1,k1)� |yc1,k1| � (1 + 2λ0sc)− sign(qc1,k1)� |qc1,k1|+
λ0(sign(y+

c1,k1)� d+
c + sign(y−c1,k1)� d−c ) + λ1sign(yc1,k1) = 0.

(51)
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X
T P−−→ Y

↓ ↓

log
DB

N

`1,c(X)

DB
N

`1
(X)+ε

log
DP`1,c(X)

DP`1
(X)+ε

= log
DB

M

`1,c(Y)

DB
M

`1
(Y)+ε

↓ ↓
Io It

Figure 7: The relation for the definition of the discrimination power in the original and the transform
domain under the base models BN and BM .

Let the sign of yc1,k1, i.e. sign(yc1,k1) be equal to the sign of sign(qc1,k1), and Hadamar multiply
from the left side by sign(qc1,k1) then we have

|yc1,k1| � (1 + 2λ0sc)− |qc1,k1|+ λ0(sign(qc1,k1)� sign(q+
c1,k1)� d+

c +

sign(qc1,k1)� sign(q−c1,k1)� d−c ) + λ11 = 0,
(52)

note that sign(qc1,k1) � sign(q+
c1,k1) = sign(q+

c1,k1) and that sign(qc1,k1) � sign(q−c1,k1) =

sign(−q−c1,k1), theretofore we have

|yc1,k1| � (1 + 2λ0sc) = |qc1,k1| − λ0(sign(q+
c1,k1)� d+

c + sign(−q−c1,k1)� d−c )−
λ11,

(53)

since the magnitude might be only positive we have that |yc1,k1| � (1 + 2λ0sc) = max(|qc1,k1| −
λ0(sign(q+

c1,k1) � d+
c + sign(−q−c1,k1) � d−c ) − λ11,0). Denote gc = (sign(q+

c1,k1) � d+
c +

sign(−q−c1,k1)� d−c ) then the closed form solution to (49) is:

yc1,k1 =sign(Axc1,k1)�max(|Axc1,k1| − λ0gc − λ11,0)� (1 + λ0sc), (54)
which completes the proof �

APPENDIX C. SENSITIVITY ANALYSIS AND INTERPRETATIONS

The similarity concentration measure provides possibility to measure the discriminative properties,
their deviation, increase (or decrease) and the corresponding relations between different non-linear
transform models across one domain or different domains, thereby quantifying their quality w.r.t.
the discriminative properties.

C.1 SENSITIVITY ANALYSIS W.R.T. THE SIMILARITY CONCENTRATION MEASURES

An illustration about the definition of discriminative power given by a diagram is shown in Figure
7.

To measure the ability for an increase in discriminative properties by a non-linear transform9 we
first have to define a notion for the discriminative properties on a data set under different non-
linear transform models. Therefore, first we introduce the ”special” base models and then analyze
the properties of the similarity concentration measures under the change in model parameter and
the relation between the base model and the proposed non-linear transform model defined by a
parameter set P = {A ∈ <M×N , τ ∈ <M}.
Any data set X in the original domain might have a transform model with parameters BN = {Ao ∈
<N×N , τ = 0 ∈ <N+}, if Ao = I ∈ DN+ we refer to it as a base original model. Similarly as in
the original domain, any data set Y in the transform domain might have a transform model with
parameters BM = {At ∈ <M×M , τ = 0 ∈ <M+ }, if At = I ∈ DM+ we refer to it as a base
transform model. Any base model, defined ether in the original domain BN or in the transform
domain BM , has domain equal to the co-domain, since xc,k = T BN

(xc,k) and yc,k = T BM

(yc,k)
holds trivially, for the respective sets of parameters BN = {Ao = I ∈ DN+ , τ = 0 ∈ <N+} and
BM = {At = I ∈ DM+ , τ = 0 ∈ <M+ }. This is illustrated with a diagram shown in Figure 8.

9Instead of using the term non-liner transform model as defined by (1) or (2) for short we just use the term
model.
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original domain transform domain

X
T P−−→ Y

lT B
N

lT B
M

X Y
transform domain transform domain

Figure 8: The original and the transform domains under a non-linear transforms with a set of param-
eters BN , P and BM , note that for T BN

and T BM

the original and the transform domains are the
same.

A base original model provides a possibility to compare it with any other non-linear transform model
with parameters P = {A ∈ <M×N , τ ∈ <M+ }. Additionally, note that for BM = {At = I ∈
DM , τ = 0 ∈ <M} we have that DB

M

`1,c
(Y) = DP`1,c(X) and that DB

M

`1
(Y) = DP`1(X). It implies

that the similarity concentrations can be analyzed as a function in the original domain under model
P or in the transform domain under model BM . The main relations considering the preservation
of change in the similarity concentration between two models, defined not necessary in the same
domain are stated by Lemma 1.

Lemma 1: The non-linear transform model (2) totally preserves the information in the change for
the similarity concentration for a data set X w.r.t. a small change in the parameters of the models
BN , BM and P if ‖δo‖∗ = 0 and ‖δt‖∗ = 0 as

(R1) : A

(
∂DB

N

`1,c
(X)

∂Ao
|Ao=I +

∂DB
N

`1
(X)

∂Ao
|Ao=I

)
=
∂DP`1,c(X)

∂A
+
∂DP`1(X)

∂A
+ δo

(R2) : A

(
∂DP`1,c(X)

∂A
+
∂DP`1(X)

∂A

)T
=
∂DB

M

`1,c
(Y)

∂At
|At=I +

∂DB
M

`1
(Y)

∂At
|At=I + δt

(R3) : AδTo =
∂DB

M

`1,c
(Z)

∂At
|At=I +

∂DB
M

`1
(Z)

∂At
|At=I + δTt ,

(55)

where

∂DP`1,c(X)

∂A
+
∂DP`1(X)

∂A
=
∑
c,c1

∑
k,k1
k 6=k1

yc1,k1x
T
c,k + yc,kx

T
c1,k1

∂DB
M

`1,c
(Y)

∂At
|At=I +

∂DB
M

`1
(Y)

∂At
|At=I =

∑
c,c1

∑
k,k1
k 6=k1

yc1,k1y
T
c,k + yc,ky

T
c1,k1

∂DB
M

`1,c
(Z)

∂At
|At=I +

∂DB
M

`1
(Z)

∂At
|At=I =

∑
c,c1

∑
k,k1
k 6=k1

zc1,k1z
T
c,k + zc,kz

T
c1,k1

∂DB
N

`1,c
(X)

∂Ao
|Ao=I =

∑
c

∑
k,k1

xc,kx
T
c,k1 + xc,k1x

T
c,k

∂DB
N

`1
(X)

∂Ao
|Ao=I =

∑
c,c1,c6=c1

∑
k,k1

xc,kx
T
c1,k1 + xc1,k1x

T
c,k

δo =
∑
c,c1

∑
k,k1
k 6=k1

zc1,k1x
T
c,k + zc,kx

T
c1,k1

δt =
∑
c,c1

∑
k,k1
k 6=k1

zc1,k1y
T
c,k + zc,ky

T
c1,k1

(56)
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The proof is given in Appendix C.2.

The terms zc,k represent the non-linear transform error vectors that appear in the model Axc,k =
yc,k + zc,k as a result of applying an element-wise non-liner operation Hτ to Axc,k, i.e., yc,k =
Hτ (Axc,k). As an example in the sparsifying transform model zc,k is the ”loss of information”, that
is the information about the values of the elements in Axc,k that are discarded. The terms δo and δt
correlate the errors zc,k with the original data xc1,k1 and transform data yc1,k1, respectively. Note
that if there is no loss of information (in the earlier example it means that there is no thresholding
and just a simple linear transform model is used) then δo = 0 and δt = 0. Moreover, δo and δt bear
important information about the discriminative properties in the transform domain.

The terms
∂DP`1,c(X)

∂A and
∂DP`1

(X)

∂A represent the change of the similarity concentrations under in-

finitesimally small change of the parameter A from the model P . The terms
∂DB

N

`1,c(X)

∂Ao
|Ao=I and

∂DB
N

`1
(X)

∂Ao
|Ao=I have dual interpretation. Assuming metric Ao = I, then the first one is considered

as a change of the similarity concentrations under infinitesimally small change of the space metric,
or equivalently under small metric perturbation. Conversely, assuming the data samples are dis-
tributed under a Gaussian distribution with parameters identity covariance matrix and zero mean,

i.e. xc,k ∼ N (µ = 0,Σ = I), then
∂DB

N

`1,c(X)

∂Ao
|Ao=I and

∂DB
N

`1
(X)

∂Ao
|Ao=I represent the change of the

similarity concentrations under small change in the assumption away from a Gaussian distribution.

Equation (R1) relates the base transform for the original domain BN with any arbitrary transform
defined in the original domain P . The relation (R2) is a result about the preservation of change
in the similarity concentration between two models BM and P defined on two different domains.
Whereas (R3) gives the preservation of change in the similarity concentration between the error in
the transform domain.

The next result highlights the relation between: the linear projection (by the linear map A that
appears in the model P) of the change in the similarity concentration under the model BN in the
original domain and the change of the similarity concentration under the model BM in the transform
domain.

This relation exists independently for
∂DB

N

`1,c(X)

∂Ao
|Ao=I and

∂DB
N

`1
(X)

∂Ao
|Ao=I, nevertheless, we will

define the summarized and the independent versions. Therefore, first we define ∂J`1
(X)

∂Ao
|Ao=I =

∂DB
N

`1,c(X)

∂Ao
|Ao=I +

∂DB
N

`1
(X)

∂Ao
|Ao=I and ∂J`1

(Y)

∂At
|At=I =

∂DB
N

`1,c(Y)

∂At
|At=I +

∂DB
N

`1
(Y)

∂At
|At=I and

rewrite (R1) as A∂J (X)
∂Ao

|Ao=I − δo =
∂DP`1,c(X)

∂A +
∂DP`1 (X)

∂A , then replace
∂DP`1,c(X)

∂A +
∂DP`1 (X)

∂A

in (R2) by the same term in (R1), use (R3), reorder and we have the following result.

Lemma 2: For fixed τ any non-linear transform model (2) preservers the information in the change
of similarity concentrations w.r.t. a small change in A by

(R4) :A
∂J`1(X)

∂Ao
|Ao=IA

T =
∂J`1(V)

∂At
|At=I =

∂J`1(Y)

∂At
|At=I + ξc + ξ,

(R5) :A
∂D`1,c(X)

∂Ao
|Ao=IA

T =
∂D`1(V)

∂At
|At=I =

∂D`1,c(Y)

∂At
|At=I + ξc,

(R6) :A
∂D`1(X)

∂Ao
|Ao=IA

T =
∂D`1(V)

∂At
|At=I =

∂D`1(Y)

∂At
|At=I + ξ,

(57)

where
V =AX

ξc + ξ =
∂J`1(Z)

∂At
|At=I +

∂J`1(Y; Z)

∂At
|At=I

∂J`1(Z)

∂At
|At=I =

∂DB
N

`1,c
(Z)

∂At
|At=I +

∂DB
N

`1
(Z)

∂At
|At=I

∂J`1(Y; Z)

∂At
|At=I = δt + δTt

(58)
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The expressions (R4) actually relate the metric in the original domain under the model BN
to the induced metric in the transform domain for the model BM , with induction done by the
model P with parameter set {A ∈ <M×N , τ ∈ <M+ }. Moreover, the model P might describe
a transform domain with a non-smooth manifold. Since the manifolds of the original and the
transform domain under the models BN and BM are smooth the analysis of their relations re-
veals insights about the relation between the manifolds under the models BN and P . The terms
∂J`1

(Z)

∂At
|At=I and ∂J`1

(Y;Z)

∂At
|At=I carry out the information about the breaks and the discontinu-

ities of the regularity and smoothness in the manifold induced by the model P . Also we note

that ∂nJ`1
(X)

∂nAo
|Ao=I = 4

∂n−1J`1
(X)

∂n−1Ao
|Ao=I and ∂nJ`1

(Y)

∂nAt
|At=I = 4

∂n−1J`1
(Y)

∂n−1At
|At=I therefore,

∂J`1
(X)

∂Ao
|Ao=I = 1

4

∂2J`1
(X)

∂2Ao
|Ao=I and ∂J`1

(Y)

∂At
|At=I = 1

4

∂2J`1
(Y)

∂2At
|At=I might be interpreted as

Fisher information matrices evaluated at Ao = I ∈ DN and At = I ∈ DM . Furthermore, if
‖∂J`1

(Z)

∂At
|At=I‖∗ = 0 and ‖∂J`1

(Y;Z)

∂At
|At=I‖∗ = 0, then (R4) in information geometry is seen as

change of coordinates on a manifold, where the intrinsic properties of curvature remain unchanged
under different parametrization.

APPENDIX C.2

Note that for the model Pt we have that

y =T (Ax) = max(Ax− τ ,0)−max(−Ax− τ ,0),

q =T (Ax) = max(Ag − τ ,0)−max(−Ag − τ ,0),
(59)

since
sign(a) max(|a| − b, 0) = max(a− b, 0)−max(−a− b, 0), (60)

The first order derivative of the divergence DP
t

`1
(x; g) w.r.t. the parameter A is:

∂DP
t

`1
(x; g)

∂A
=

∂(max(Ax− τ ,0)T max(Ag − τ ,0))

∂A
+
∂(max(−Ax− τ ,0)T max(−Ag − τ ,0))

∂A

(61)

we assume that the threshold parameter τ is chosen such that the vector |Ax| − τ (or for any other
q, the vector |Aq| − τ ) has least one non-zero element, then

∂(max(Ax− τ ,0)T max(Ag − τ ,0))

∂A
= max(Ag − τ ,0)xT + max(Ax− τ ,0)gT , (62)

and
∂(max(−Ax− τ ,0)T max(−Ag − τ ,0))

∂A
=

−max(−Ag − τ ,0)xT −max(−Ax− τ ,0)gT ,

(63)

combining (62) and (63) we have that

∂DP
t

`1
(x; g)

∂A
=

max(Ag − τ ,0)xT + max(Ax− τ ,0)gT−
(max(−Ag + τ ,0)xT + max(−Ax− τ ,0)gT ) =

qxT + ygT

(64)

where
y(m) = sign(aTmx) max(|aTmx| − τ(m), 0)

q(m) = sign(aTmg) max(|aTmg| − τ(m), 0),
(65)

∀m ∈M.
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Similarity, note that for the model Po0 = {Ao, τ = 0} we have that

xo =T P
o
0 (Aox) =

sign(Aox)�max(|Aox| − 0,0) =

max(Aox− 0,0)−max(−Aox− 0,0),

go =T P
o
0 (Aog) =

sign(Aog)�max(|Aog| − g,0) =

max(Aog − 0,0)−max(−Aog − 0,0).

(66)

The first order derivative of the divergence DP
o
0

`1
(x; g) w.r.t Ao is:

∂D
Po

0

`1
(x; g)

∂Ao
= xog

T + gox
T , (67)

note that at Ao = I, Pt0 = BN and we have that

∂DB
N

`1
(x; g)

∂Ao
|Ao=I = xgT + gxT (68)

Also for the model Pt0 = {At, τ = 0} we have that

yt =T P
t
0(Aty) =

sign(Aty)�max(|Aty| − 0,0) =

max(Aty − 0,0)−max(−Aty − 0,0),

qt =T P
t
0(Atq) =

sign(Atq)�max(|Atq| − q,0) =

max(Atq− 0,0)−max(−Atq− 0,0).

(69)

The first order derivative of the divergence DP
t
0

`1
(y; q) w.r.t At is:

∂D
Pt

0

`1
(y; q)

∂At
= ytq

T + qty
T , (70)

note that at At = I, Pt0 = BM and we have that

∂DB
M

`1
(y; q)

∂At
|Ao=I = yqT + qyT (71)

Consider the following

Ag = q + z1/x
T

Ax = y + z2/g
T →

{
AxgT = ygT + z1g

T

AgxT = qxT + z2x
T

A(xgT + gxT ) = ygT + qxT + z1g
T + z2x

T

(72)

where
z1 = Ax− sign(Ax) max(|Ax| − τ1,0)

z2 = Ag − sign(Ag) max(|Ag| − τ1,0)
(73)

A closer look at (72) reveals us that

A
∂DB

N

`1
(x; g)

∂Ao
|Ao=I =

∂DP`1(x; g)

∂A
+ δz1,z2o

(74)
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where
δz1,z2o = z1g

T + z2x
T (75)

By similar construction applied to the rest of the pairs of data samples we have the result:

A

(
∂DB

N

`1,c
(X)

∂Ao
|Ao=I +

∂DB
N

`1
(X)

∂Ao
|Ao=I

)
=
∂DP`1,c(X)

∂A
+
∂DP`1(X)

∂A
+ δo� (76)

Note that
Ax = y + z1/q

T

Ag = q + z2/y
T →

{
AxqT = yqT + z1q

T

AgyT = qyT + z2y
T

A(xyT + qgT ) = yqT + qyT + z1q
T + z2y

T ,

(77)

where
z1 = Ax− sign(Ax) max(|Ax| − τ1,0)

z2 = Ag − sign(Ag) max(|Ag| − τ1,0)
(78)

A closer look at (77) reveals us

A

(
∂DP`1(x; g)

∂A

)T
=
∂DB

M

`1
(y; q)

∂At
|At=I + δz1,z2t . (79)

where
δz1,z2t = z1q

T + z2y
T (80)

By similar construction applied to the rest of the pairs of data samples we have the result:

A

(
∂DP

t

`1,c
(X)

∂A
+
∂DP

t

`1
(X)

∂A

)T
=

(
∂DB

M

`1,c
(Y)

∂At
|At=I +

∂DB
M

`1
(Y)

∂At
|At=I

)
+ δt� (81)

Note that
Ax = y + z1/z

T
2

Ag = q + z2/z
T
1
→
{

AxzT2 = yzT2 + z1z
T
2

AgzT1 = qzT1 + z2z
T
1

A(xzT2 + qzT1 ) = yzT2 + qzT1 + z1z
T
2 + z2z

T
1 ,

(82)

where
z1 = Ax− sign(Ax) max(|Ax| − τ1,0)

z2 = Ag − sign(Ag) max(|Ag| − τ1,0)
(83)

A closer look at (82) reveals us

A(δz1,z2o )T =
∂DB

M

`1
(z1; z2)

∂At
|At=I + (δz1,z2t )T . (84)

where
δz1,z2t = z1q

T + z2y
T (85)

By similar construction applied to the rest of the pairs of data samples we have the result:

Aδo
T =

(
∂DB

M

`1,c
(Z)

∂At
|At=I +

∂DB
M

`1
(Z)

∂At
|At=I

)
+ δTt � (86)
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Figure 9: The ratio C1/C2 of the similarity concentrations C1 = DB
M

`1,c
(Y) and C2 = DB

M

`1
(Y)

and the discrimination power log(C1/C2) = It for randomly chosen subsets from all of the used
databases under a non-linear transform with transform dimension M = 19000 and varying thresh-
olding parameter τ = λ1.

APPENDIX D

The result in by Lemma 2 (58) decomposes on the contribution components for simmilarity and on
the contributiong components for dissimilarity

∂J`1(AX)

∂At
|At=I =

∂J`1(AX)

∂At
|At=I|s −

∂J`1(AX)

∂At
|At=I|d + ξc|s − ξc|d + ξ|s − ξ|d.

(87)
Moreover, w.r.t. the simmilarity concentrations we have the following decompositions

Tr{
∂DB

M

`1,c
(AX)

∂At
|At=I} =DB

M

`1,c(Y) + Tr{ξc|s} = DP`1,c(X) + Tr{ξc|s}

Tr{
∂DB

M

`1
(AX)

∂At
|At=I} =DB

M

`1 (Y) + Tr{ξ|s} = DP`1(X) + Tr{ξ|s},

(88)

therfore we have the following bounds

a : Tr{A
∂DB

N

`1,c
(X)

∂Ao
|Ao=IA

T } ≤ DP`1,c(X) ≤ Tr{
∂DB

M

`1,c
(AX)

∂At
|At=I|s} = DB

M

`1,c(AX)

b : Tr{A
∂DB

N

`1
(X)

∂Ao
|Ao=IA

T } ≤ DP`1(X) ≤ Tr{
∂DB

M

`1
(AX)

∂At
|At=I|s} = DB

M

`1 (AX)

(89)

Additionaly, we have that c : λmin(ATA)Tr{∂D
BN
`1,c(X)

∂Ao
|Ao=I} ≤ Tr{A∂DB

N

`1,c(X)

∂Ao
|Ao=IA

T },
where λmin(ATA) is the minimum singlular value of the matrix ATA. Taking the logarithm of the

ratio
DP`1,c(X)

DP`1
(X)+ε

using the bounds a, b and c we arrive at the desired result �

APPENDIX E

The exact steps of the proposed non-linear transform learning are described by Algorithm 1.

APPENDIX F

The ratio C1/C2 between the similarity concentrations C1 = DB
M

`1,c
(Y) and C2 = DB

M

`1
(Y) and

the discrimination power log(C1/C2) = It on subsets of the used databases after applying a non-
linear transform with transform dimension M = 19000 and varying the thresholding parameter
τ = λ1 is shown in Figure 9. We used 70 different values for the parameter λ, sampled uniformly
from the interval

(
0, (max1≤c≤C,1≤k≤K max1≤m≤M |aTmxc,k|)

)
. The results were obtained using
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Algorithm 1 Non-linear transform learning algorithm
Input X, λ0, λ1, λ2, λ3, λ4

A← inicialize
repeat

DISCRIMINATIVE ENCODING closed form solution per data sample
Y ← AX
repeat

for ∀c ∈ C do
d−c ←

∑
c1
c16=c

∑
k1 y−c1,k1, d+

c ←
∑

c1
c16=c

∑
k1 y+

c1,k1 and

sc ←
∑

c1
c16=c

∑
k1 yc1,k1 � yc1,k1

end for
for ∀c ∈ C and ∀k ∈ K do

g← sign(max(Axc,k,0))� d+
c + sign(max(−Axc,k,0))� d−c

yc,k ← sign(Axc,k)�max (Axc,k − λ0g + λ11,0)� (1 + 2λ0sc)
end for

until convergence
TRANSFORM UPDATE ε-close closed form solution

UXΣ2
XUT

X ← XXT + λ2I and UUXXY ΣUXXY VT
UXXY

← UT
XXYT

minσA(n)
λ3

σX
4σ

4
A(n) +

(
σ2
X(n)−2λ3

σ2
X(n)

)
σ2
A(n)− σΓ(n)

σX(n)σA(n)− 2λ4 log σA(n)
σX(n)

where σΓ(n)← T (n, n), T← UUXXY ΣUXXY UT
UXXY

, ∀n ∈ N
A←VUXXY UT

UXXY
ΣAΣ−1

X UT
X

until convergence
Output A,Y
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Figure 10: The ratio of the similarity concentrations similarity concentrations C1 = DB
M

`1,c
(Y)

and C2 = DB
M

`1
(Y) and the discrimination power log(C1/C2) = It for the Extended Yale B and

MNIST databases under non-linear transforms having different transform dimensionM and varying
thresholding parameter τ = λ1.

a non-linear transform learned with one value for parameter λ for all the databases. Since all the
databases have different variabilities and the amount of available data is different, this result suggest
that per different database there should be different optimal values for the parameter λ.
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The results about the ratio C1/C2 between the similarity concentrations C1 = DB
M

`1,c
(Y) and

C2 = DB
M

`1
(Y) and the discrimination power log(C1/C2) = It on the Extanded-Yale-B and

the MNIST data sets after applying a non-linear transform with transform dimensions M =
{100, 500, 1500, 4000} and M = {1000, 4000, 6000, 12000}, and varying the thresholding param-
eter τ = λ1 are shown in Figure 10. We again used 70 different values for the parameter λ,
sampled uniformly from the interval

(
0, (max1≤c≤C,1≤k≤K max1≤m≤M |aTmxc,k|)

)
. The results

were obtained using a non-linear transforms learned with optimally choose values (by using cross-
validation) of the parameter λ for the two different databases. As expected, we can see that the
extreme points of the ratio between the `∗-norms C1 and C2 of the similarity concentrations and
the discrimination power is around the optimal values of the parameter τ = λ1.
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