
Published as a conference paper at ICLR 2019

SPECTRAL INFERENCE NETWORKS:
UNIFYING DEEP AND SPECTRAL LEARNING

David Pfau1, Stig Petersen1, Ashish Agarwal2, David G. T. Barrett1 & Kimberly L. Stachenfeld1

1DeepMind 2Google Brain
London, UK Mountain View, CA, USA
{pfau, svp, agarwal, barrettdavid, stachenfeld}@google.com

ABSTRACT

We present Spectral Inference Networks, a framework for learning eigenfunctions
of linear operators by stochastic optimization. Spectral Inference Networks gen-
eralize Slow Feature Analysis to generic symmetric operators, and are closely
related to Variational Monte Carlo methods from computational physics. As such,
they can be a powerful tool for unsupervised representation learning from video or
graph-structured data. We cast training Spectral Inference Networks as a bilevel
optimization problem, which allows for online learning of multiple eigenfunc-
tions. We show results of training Spectral Inference Networks on problems in
quantum mechanics and feature learning for videos on synthetic datasets. Our
results demonstrate that Spectral Inference Networks accurately recover eigen-
functions of linear operators and can discover interpretable representations from
video in a fully unsupervised manner.

1 INTRODUCTION

Spectral algorithms are central to machine learning and scientific computing. In machine learning,
eigendecomposition and singular value decomposition are foundational tools, used for PCA as well
as a wide variety of other models. In scientific applications, solving for the eigenfunction of a given
linear operator is central to the study of PDEs, and gives the time-independent behavior of classical
and quantum systems. For systems where the linear operator of interest can be represented as a
reasonably-sized matrix, full eigendecomposition can be achieved in O(n3) time (Pan et al., 1998),
and in cases where the matrix is too large to diagonalize completely (or even store in memory),
iterative algorithms based on Krylov subspace methods can efficiently compute a fixed number of
eigenvectors by repeated application of matrix-vector products (Golub & Van Loan, 2012).

At a larger scale, the eigenvectors themselves cannot be represented explicitly in memory. This
is the case in many applications in quantum physics and machine learning, where the state space
of interest may be combinatorially large or even continuous and high dimensional. Typically, the
eigenfunctions of interest are approximated from a fixed number of points small enough to be stored
in memory, and then the value of the eigenfunction at other points is approximated by use of the
Nyström method (Bengio et al., 2004). As this depends on evaluating a kernel between a new
point and every point in the training set, this is not practical for large datasets, and some form of
function approximation is necessary. By choosing a function approximator known to work well in a
certain domain, such as convolutional neural networks for vision, we may be able to bias the learned
representation towards reasonable solutions in a way that is difficult to encode by choice of kernel.

In this paper, we propose a way to approximate eigenfunctions of linear operators on high-
dimensional function spaces with neural networks, which we call Spectral Inference Networks
(SpIN). We show how to train these networks via bilevel stochastic optimization. Our method finds
correct eigenfunctions of problems in quantum physics and discovers interpretable representations
from video. This significantly extends prior work on unsupervised learning without a generative
model and we expect will be useful in scaling many applications of spectral methods.

Code is available at https://github.com/deepmind/spectral_inference_networks

1

https://github.com/deepmind/spectral_inference_networks

Published as a conference paper at ICLR 2019

The outline of the paper is as follows. Sec 2 provides a review of related work on spectral learning
and stochastic optimization of approximate eigenfunctions. Sec. 3 defines the objective function for
Spectral Inference Networks, framing eigenfunction problems as an optimization problem. Sec. 4
describes the algorithm for training Spectral Inference Networks using bilevel optimization and
a custom gradient to learn ordered eigenfunctions simultaneously. Experiments are presented in
Sec. 5 and future directions are discussed in Sec. 6. We also include supplementary materials with
more in-depth derivation of the custom gradient updates (Sec. A), a TensorFlow implementation of
the core algorithm (Sec. B), and additional experimental results and training details (Sec. C).

2 RELATED WORK

Spectral methods are mathematically ubiquitous, arising in a number of diverse settings. Spectral
clustering (Ng et al., 2002), normalized cuts (Shi & Malik, 2000) and Laplacian eigenmaps (Belkin
& Niyogi, 2002) are all machine learning applications of spectral decompositions applied to graph
Laplacians. Related manifold learning algorithms like LLE (Tenenbaum et al., 2000) and IsoMap
(Roweis & Saul, 2000) also rely on eigendecomposition, with a different kernel. Spectral algorithms
can also be used for asymptotically exact estimation of parametric models like hidden Markov mod-
els and latent Dirichlet allocation by computing the SVD of moment statistics (Hsu et al., 2012;
Anandkumar et al., 2012).

In the context of reinforcement learning, spectral decomposition of predictive state representations
has been proposed as a method for learning a coordinate system of environments for planning and
control (Boots et al., 2011), and when the transition function is symmetric its eigenfunctions are
also known as proto-value functions (PVFs) (Mahadevan & Maggioni, 2007). PVFs have also been
proposed by neuroscientists as a model for the emergence of grid cells in the entorhinal cortex
(Stachenfeld et al., 2017). The use of PVFs for discovering subgoals in reinforcement learning has
been investigated in (Machado et al., 2017) and combined with function approximation in (Machado
et al., 2018), though using a less rigorous approach to eigenfunction approximation than SpIN. A
qualitative comparison of the two approaches is given in the supplementary material in Sec. C.3.

Spectral learning with stochastic approximation has a long history as well. Probably the earliest
work on stochastic PCA is that of “Oja’s rule” (Oja, 1982), which is a Hebbian learning rule that
converges to the first principal component, and a wide variety of online SVD algorithms have ap-
peared since. Most of these stochastic spectral algorithms are concerned with learning fixed-size
eigenvectors from online data, while we are concerned with cases where the eigenfunctions are over
a space too large to be represented efficiently with a fixed-size vector.

The closest related work in machine learning on finding eigenfunctions by optimization of paramet-
ric models is Slow Feature Analysis (SFA) (Wiskott & Sejnowski, 2002), which is a special case
of SpIN. SFA is equivalent to function approximation for Laplacian eigenmaps (Sprekeler, 2011),
and it has been shown that optimizing for the slowness of features in navigation can also lead to the
emergence of units whose response properties mimic grid cells in the entorhinal cortex of rodents
(Wyss et al., 2006; Franzius et al., 2007). SFA has primarily been applied to train shallow or linear
models, and when trained on deep models is typically trained in a layer-wise fashion, rather than
end-to-end (Kompella et al., 2012; Sun et al., 2014). The features in SFA are learned sequentially,
from slowest to fastest, while SpIN allows for simultaneous learning of all eigenfunctions, which is
more useful in an online setting.

Spectral methods and deep learning have been combined in other ways. The spectral networks of
Bruna et al. (2014) are a generalization of convolutional neural networks to graph and manifold
structured data based on the idea that the convolution operator is diagonal in a basis defined by
eigenvectors of the Laplacian. In (Ionescu et al., 2015) spectral decompositions were incorporated
as differentiable layers in deep network architectures. Spectral decompositions have been used in
combination with the kernelized Stein gradient estimator to better learn implicit generative models
like GANs (Shi et al., 2018). While these use spectral methods to design or train neural networks,
our work uses neural networks to solve large-scale spectral decompositions.

In computational physics, the field of approximating eigenfunctions of a Hamiltonian operator is
known as Variational Quantum Monte Carlo (VMC) (Foulkes et al., 2001). VMC methods are
usually applied to finding the ground state (lowest eigenvalue) of electronic systems, but extensions

2

Published as a conference paper at ICLR 2019

to excited states (higher eigenvalues) have been proposed (Blunt et al., 2015). Typically the class of
function approximator is tailored to the system, but neural networks have been used for calculating
ground states (Carleo & Troyer, 2017) and excited states (Choo et al., 2018). Stochastic optimization
for VMC dates back at least to Harju et al. (1997). Most of these methods use importance sampling
from a well-chosen distribution to eliminate the bias due to finite batch sizes. In machine learning
we are not free to choose the distribution from which the data is sampled, and thus cannot take
advantage of these techniques.

3 SPECTRAL DECOMPOSITION AS OPTIMIZATION

3.1 FINITE-DIMENSIONAL EIGENVECTORS

Eigenvectors of a matrix A are defined as those vectors u such that Au = λu for some scalar λ, the
eigenvalue. It is also possible to define eigenvectors as the solution to an optimization problem. If
A is a symmetric matrix, then the largest eigenvector of A is the solution of:

max
u

uT u=1

uTAu (1)

or equivalently (up to a scaling factor in u)

max
u

uTAu

uTu
(2)

This is the Rayleigh quotient, and it can be seen by setting derivatives equal to zero that this is
equivalent to finding u such that Au = λu, where λ is equal to the value of the Rayleigh quotient.
We can equivalently find the lowest eigenvector of A by minimizing the Rayleigh quotient instead.
Amazingly, despite being a nonconvex problem, algorithms such as power iteration converge to the
global solution of this problem (Daskalakis et al., 2018, Sec. 4).

To compute the top N eigenvectors U = (u1, . . . ,uN), we can solve a sequence of maximization
problems:

ui = arg max
u

uT
j u=0
j<i

uTAu

uTu
(3)

If we only care about finding a subspace that spans the top N eigenvectors, we can divide out the
requirement that the eigenvectors are orthogonal to one another, and reframe the problem as a single
optimization problem (Edelman et al., 1998, Sec. 4.4):

max
U

Tr
(
(UTU)−1UTAU

)
(4)

or, if ui denotes row i of U:

max
U

Tr

(∑
i

uiTui

)−1∑
ij

Aiju
iTuj

 (5)

Note that this objective is invariant to right-multiplication of U by an arbitrary matrix, and thus we
do not expect the columns of U to be the separate eigenvectors. We will discuss how to break this
symmetry in Sec. 4.1.

3.2 FROM EIGENVECTORS TO EIGENFUNCTIONS

We are interested in the case where both A and u are too large to represent in memory. Suppose
that instead of a matrix A we have a symmetric (not necessarily positive definite) kernel k(x,x′)
where x and x′ are in some measurable space Ω, which could be either continuous or discrete.
Let the inner product on Ω be defined with respect to a probability distribution with density p(x),
so that 〈f, g〉 =

∫
f(x)g(x)p(x)dx = Ex∼p(x)[f(x)g(x)]. In theory this could be an improper

3

Published as a conference paper at ICLR 2019

density, such as the uniform distribution over Rn, but to evaluate it numerically there must be some
proper distribution over Ω from which the data are sampled. We can construct a symmetric linear
operator K from k as K[f](x) = Ex′ [k(x,x′)f(x′)]. To compute a function that spans the top N
eigenfunctions of this linear operator, we need to solve the equivalent of Eq. 5 for function spaces.
Replacing rows i and j with points x and x′ and sums with expectations, this becomes:

max
u

Tr
(
Ex

[
u(x)u(x)T

]−1 Ex,x′
[
k(x,x′)u(x)u(x′)T

])
(6)

where the optimization is over all functions u : Ω→ RN such that each element of u is an integrable
function under the metric above. Also note that as ui is a row vector while u(x) is a column vector,
the transposes are switched. This is equivalent to solving the constrained optimization problem

max
u

Ex[u(x)u(x)T]=I

Tr
(
Ex,x′

[
k(x,x′)u(x)u(x′)T

])
(7)

For clarity, we will use Σ = Ex

[
u(x)u(x)T

]
to denote the covariance1 of features and Π =

Ex,x′
[
k(x,x′)u(x)u(x′)T

]
to denote the kernel-weighted covariance throughout the paper, so the

objective in Eq. 6 becomes Tr(Σ−1Π). The empirical estimate of these quantities will be denoted
as Σ̂ and Π̂.

3.3 KERNELS

The form of the kernel k often allows for simplification to Eq. 6. If Ω is a graph, and k(x,x′) = −1
if x 6= x′ and are neighbors and 0 otherwise, and k(x,x) is equal to the total number of neighbors
of x, this is the graph Laplacian, and can equivalently be written as:

k(x,x′)u(x)u(x′)T = (u(x)− u(x′)) (u(x)− u(x′))
T (8)

for neighboring points (Sprekeler, 2011, Sec. 4.1). It’s clear that this kernel penalizes the difference
between neighbors, and in the case where the neighbors are adjacent video frames this is Slow
Feature Analysis (SFA) (Wiskott & Sejnowski, 2002). Thus SFA is a special case of SpIN, and
the algorithm for learning in SpIN here allows for end-to-end online learning of SFA with arbitrary
function approximators. The equivalent kernel to the graph Laplacian for Ω = Rn is

k(x,x′) = lim
ε→0

∑n
i=1 ε

−2(2δ(x− x′)− δ(x− x′ − εei)− δ(x− x′ + εei)) (9)

where ei is the unit vector along the axis i. This converges to the differential Laplacian, and the linear
operator induced by this kernel is ∇2 ,

∑
i
∂2

∂x2
i

, which appears frequently in physics applications.
The generalization to generic manifolds is the Laplace-Beltrami operator. Since these are purely
local operators, we can replace the double expectation over x and x′ with a single expectation.

4 METHOD

There are many possible ways of solving the optimization problems in Equations 6 and 7. In prin-
ciple, we could use a constrained optimization approach such as the augmented Lagrangian method
(Bertsekas, 2014), which has been successfully combined with deep learning for approximating
maximum entropy distributions (Loaiza-Ganem et al., 2017). In our experience, such an approach
was difficult to stabilize. We could also construct an orthonormal function basis and then learn
some flow that preserves orthonormality. This approach has been suggested for quantum mechanics
problems by Cranmer et al. (2018). But, if the distribution p(x) is unknown, then the inner product
〈f, g〉 is not known, and constructing an explicitly orthonormal function basis is not possible. Also,
flows can only be defined on continuous spaces, and we are interested in methods that work for large
discrete spaces as well. Instead, we take the approach of directly optimizing the quotient in Eq. 6.

1Technically, this is the second moment, as u(x) is not necessarily zero-mean, but we will refer to it as the
covariance for convenience.

4

Published as a conference paper at ICLR 2019

4.1 LEARNING ORDERED EIGENFUNCTIONS

Since Eq. 6 is invariant to linear transformation of the features u(x), optimizing it will only give a
function that spans the top N eigenfunctions of K. If we were to instead sequentially optimize the
Rayleigh quotient for each function ui(x):

max
ui

Ex[ui(x)ui(x)]=1
Ex[ui(x)uj(x)]=0

j=1,...,i−1

Ex,x′ [k(x,x′)ui(x)ui(x
′)] (10)

we would recover the eigenfunctions in order. However, this would be cumbersome in an online
setting. It turns out that by masking the flow of information from the gradient of Eq. 6 correctly, we
can simultaneously learn all eigenfunctions in order.

First, we can use the invariance of trace to cyclic permutation to rewrite the objective in Eq. 6 as
Tr
(
Π−1Σ

)
= Tr

(
L−TL−1Σ

)
= Tr

(
L−1ΠL−T

)
where L is the Cholesky decomposition of Σ.

Let Λ = L−1ΠL−T , this matrix has the convenient property that the upper left n × n block only
depends on the first n functions u1:n(x) = (u1(x), . . . , un(x))T . This means the maximum of∑n
i=1 Λii with respect to u1:n(x) spans the first n < N eigenfunctions. If we additionally mask the

gradients of Λii so they are also independent of any uj(x) where j is less than i:

∂̃Λii
∂uj

=

{
∂Λii

∂uj
if i = j

0 otherwise
(11)

and combine the gradients for each i into a single masked gradient ∇̃uTr(Λ) =
∑
i ∇̃uΛii =

(∂Λ11

∂u1
, . . . , ∂ΛNN

∂uN
) which we use for gradient ascent, then this is equivalent to independently op-

timizing each ui(x) towards the objective Λii. Note that there is still nothing forcing all u(x) to
be orthogonal. If we explicitly orthogonalize u(x) by multiplication by L−1, then we claim that
the resulting v(x) = L−1u(x) will be the true ordered eigenfunctions of K. A longer discussion
justifying this is given in the supplementary material in Sec. A. The closed form expression for the
masked gradient, also derived in the supplementary material, is given by:

∇̃uTr(Λ) = E[k(x,x′)u(x)T]L−Tdiag(L)−1 − E[u(x)T]L−T triu
(
Λdiag(L)−1

)
(12)

where triu and diag give the upper triangular and diagonal of a matrix, respectively. This gradient
can then be passed as the error from u back to parameters θ, yielding:

∇̃θTr(Λ) = E
[
k(x,x′)u(x)TL−Tdiag(L)−1 ∂u

∂θ

]
− E

[
u(x)TL−T triu

(
Λdiag(L)−1

) ∂u

∂θ

]
(13)

To simplify notation we can express the above as

∇̃θTr(Λ) = E
[
JΠ

(
L−Tdiag(L)−1

)]
− E

[
JΣ

(
L−T triu

(
Λdiag(L)−1

))]
(14)

Where JΠ(A) = k(x,x′)u(x)TA∂u
∂θ and JΣ(A) = u(x)TA∂u

∂θ are linear operators that denote
left-multiplication of the Jacobian of Π and Σ with respect to θ by A. A TensorFlow implementation
of this gradient is given in the supplementary material in Sec. B.

4.2 BILEVEL OPTIMIZATION

The expression in Eq. 14 is a nonlinear function of multiple expectations, so naively replacing Π,
Σ, L, Λ and their gradients with empirical estimates will be biased. This makes learning Spectral
Inference Networks more difficult than standard problems in machine learning for which unbiased
gradient estimates are available. We can however reframe this as a bilevel optimization problem, for
which convergent algorithms exist. Bilevel stochastic optimization is the problem of simultaneously
solving two coupled minimization problems minx f(x,y) and miny g(x,y) for which we only have

5

Published as a conference paper at ICLR 2019

Algorithm 1 Learning in Spectral Inference Networks

1: given symmetric kernel k, decay rates βt, first order optimizer OPTIM
2: initialize parameters θ0, average covariance Σ̄0 = I, average Jacobian of covariance J̄Σ0 = 0
3: while not converged do
4: Get minibatches xt1, . . . ,xtN and x′t1, . . . ,x

′
tN

5: Σ̂t = 1
2

(
1
N

∑
i uθt(xti)uθt(xti)

T + 1
N

∑
i uθt(x

′
ti)uθt(x

′
ti)
T
)
, covariance of minibatches

6: Π̂t = 1
N

∑
i k(xti,x

′
ti)uθt(xti)uθt(x

′
ti)
T

7: Σ̄t ← (1− βt)Σ̄t−1 + βtΣ̂t

8: J̄Σt
← (1− βt)J̄Σt−1

+ βtĴΣt

9: L̄t ← Cholesky decomposition of Σ̄t

10: Compute gradient ∇̃θTr(Λ(Π̂t, Σ̄t, ĴΠt
, J̄Σt

)) according to Eq. 14
11: θt ← OPTIM(θt−1, ∇̃θTr(Λ(Π̂t, Σ̄t, ĴΠt , J̄Σt

))

12: result Eigenfunctions vθ∗(x) = L−1uθ∗(x) of K[f](x) = Ex′ [k(x,x′)f(x′)]

noisy unbiased estimates of the gradient of each: E[F(x,y)] = ∇xf(x,y) and E[G(x,y)] =
∇yg(x,y). Bilevel stochastic problems are common in machine learning and include actor-critic
methods, generative adversarial networks and imitation learning (Pfau & Vinyals, 2016). It has
been shown that by optimizing the coupled functions on two timescales then the optimization will
converge to simultaneous local minima of f with respect to x and g with respect to y (Borkar, 1997):

xt ← xt−1 − αtF(xt−1,yt−1) (15)
yt ← yt−1 − βtG(xt,yt−1) (16)

where limt→∞
αt

βt
= 0,

∑
t αt =

∑
t βt =∞,

∑
t α

2
t <∞,

∑
t β

2
t <∞.

By replacing Σ and JΣ with a moving average in Eq. 14, we can cast learning Spectral Inference
Networks as exactly this kind of bilevel problem. Throughout the remainder of the paper, let X̂t

denote the empirical estimate of a random variable X from the minibatch at time t, and let X̄t

represent the estimate of X from a moving average, so Σ̄t and J̄Σt
are defined as:

Σ̄t ← Σ̄t−1 − βt(Σ̄t−1 − Σ̂t) (17)

J̄Σt ← J̄Σt−1 − βt(J̄Σt−1 − ĴΣt) (18)

This moving average is equivalent to solving

min
Σ,JΣ

1

2

(
||Σ− Σ̄t||2 + ||JΣ − J̄Σt

||2
)

(19)

by stochastic gradient descent and clearly has the true Σ and JΣ as a minimum for a fixed θ. Note
that Eq. 14 is a linear function of Π and JΠ, so plugging in Π̂t and ĴΠt gives an unbiased noisy
estimate. By also replacing terms that depend on Σ and JΣ with Σ̄t and J̄Σt , then alternately
updating the moving averages and θt, we convert the problem into a two-timescale update. Here
θt corresponds to xt, Σ̄t and J̄Σt

correspond to yt, ∇̃θTr(Λ(Π̂t, Σ̄t, ĴΠt
, J̄Σt

)) corresponds to
F(xt,yt) and (Σ̄t−1 − Σ̂t, J̄Σt−1 − ĴΣt) corresponds to G(xt,yt).

6

Published as a conference paper at ICLR 2019

(a) Eigenvectors found by exact eigensolver on a grid

(b) Eigenfunctions found by SpIN without bias correction (β = 1)

(c) Eigenfunctions found by SpIN with β = 0.01 to correct for biased gradients

(d) Eigenvalues without bias correction (β = 1) (e) Eigenvalues with bias correction (β = 0.01)

Figure 1: Results of SpIN for solving two-dimensional hydrogen atom.
Black lines in (d) and (e) denote closed-form solution.

4.3 DEFINING SPECTRAL INFERENCE NETWORKS

We can finally combine all these elements together to define what a Spectral Inference Network is.
We consider a Spectral Inference Network to be any machine learning algorithm that:

1. Minimizes the objective in Eq. 6 end-to-end by stochastic optimization

2. Performs the optimization over a parametric function class such as deep neural networks

3. Uses the modified gradient in Eq. 14 to impose an ordering on the learned features

4. Uses bilevel optimization to overcome the bias introduced by finite batch sizes

The full algorithm for training Spectral Inference Networks is given in Alg. 1, with TensorFlow pseu-
docode in the supplementary material in Sec. B. There are two things to note about this algorithm.
First, we have to compute an explicit estimate ĴΣt

of the Jacobian of the covariance with respect to
the parameters at each iteration. That means if we have N eigenfunctions we are computing, each
step of training will requireN2 backward gradient computations. This will be a bottleneck in scaling
the algorithm, but we found this approach to be more stable and robust than others. Secondly, while
the theory of stochastic optimization depends on proper learning rate schedules, in practice these
proper learning rate schedules are rarely used in deep learning. Asymptotic convergence is usually
less important than simply getting into the neighborhood of a local minimum, and even for bilevel
problems, a careful choice of constant learning rates often suffices for good performance. We follow
this practice in our experiments and pick constant values of α and β.

5 EXPERIMENTS

In this section we present empirical results on a quantum mechanics problem with a known closed-
form solution, and an example of unsupervised feature learning from video without a generative

7

Published as a conference paper at ICLR 2019

(a) Heatmap of activation of each eigenfunction as a function of position of objects

(b) Frames which most (top) and least (bottom) activate eigenfunction with heatmap outlined in green in Fig. 2a.
Successive frames are overlaid in red and blue.

Figure 2: Results of Deep SFA on video of bouncing balls

model. We also provide experiments comparing our approach against the successor feature approach
of Machado et al. (2018) for eigenpurose discovery on the Arcade Learning Environment in Sec. C.3
in the supplementary material for the interested reader. Code for the experiments in Sec. 5.1 and C.3
is available at https://github.com/deepmind/spectral_inference_networks.

5.1 SOLVING THE SCHRÖDINGER EQUATION

As a first experiment to demonstrate the correctness of the method on a problem with a known
solution, we investigated the use of SpIN for solving the Schrödinger equation for a two-dimensional
hydrogen atom. The time-independent Schrödinger equation for a single particle with mass m in a
potential field V (x) is a partial differential equation of the form:

Eψ(x) =
−~2

2m
∇2ψ(x) + V (x)ψ(x) = H[ψ](x) (20)

whose solutions describe the wavefunctions ψ(x) with unique energy E. The probability of a parti-
cle being at position x then has the density |ψ(x)|2. The solutions are eigenfunctions of the linear
operator H , −h2

2m ∇
2 + V (x) — known as the Hamiltonian operator. We set ~2

2m to 1 and choose
V (x) = 1

|x| , which corresponds to the potential from a charged particle. In 2 or 3 dimensions this
can be solved exactly, and in 2 dimensions it can be shown that there are 2n+ 1 eigenfunctions with
energy −1

(2n+1)2 for all n = 0, 1, 2, . . . (Yang et al., 1991).

We trained a standard neural network to approximate the wavefunction ψ(x), where each unit of
the output layer was a solution with a different energy E. Details of the training network and
experimental setup are given in the supplementary material in Sec. C.1. We found it critical to
set the decay rate for RMSProp to be slower than the decay β used for the moving average of the
covariance in SpIN, and expect the same would be true for other adaptive gradient methods. To
investigate the effect of biased gradients and demonstrate how SpIN can correct it, we specifically
chose a small batch size for our experiments. As an additional baseline over the known closed-form
solution, we computed eigenvectors of a discrete approximation toH on a 128× 128 grid.

Training results are shown in Fig. 1. In Fig. 1a, we see the circular harmonics that make up the
electron orbitals of hydrogen in two dimensions. With a small batch size and no bias correction,
the eigenfunctions (Fig. 1b) are incorrect and the eigenvalues (Fig. 1d, ground truth in black) are
nowhere near the true minimum. With the bias correction term in SpIN, we are able to both accu-
rately estimate the shape of the eigenfunctions (Fig. 1c) and converge to the true eigenvalues of the
system (Fig. 1e). Note that, as eigenfunctions 2-4 and 5-9 are nearly degenerate, any linear com-
bination of them is also an eigenfunction, and we do not expect Fig. 1a and Fig. 1c to be identical.
The high accuracy of the learned eigenvalues gives strong empirical support for the correctness of
our method.

8

https://github.com/deepmind/spectral_inference_networks

Published as a conference paper at ICLR 2019

5.2 DEEP SLOW FEATURE ANALYSIS

Having demonstrated the effectiveness of SpIN on a problem with a known closed-form solution,
we now turn our attention to problems relevant to representation learning in vision. We trained
a convolutional neural network to extract features from videos, using the Slow Feature Analysis
kernel of Eq. 8. The video is a simple example with three bouncing balls. The velocities of the
balls are constant until they collide with each other or the walls, meaning the time dynamics are
reversible, and hence the transition function is a symmetric operator. We trained a model with
12 output eigenfunctions using similar decay rates to the experiments in Sec. 5.1. Full details of
the training setup are given in Sec. C.2, including training curves in Fig. 3. During the course of
training, the order of the different eigenfunctions often switched, as lower eigenfunctions sometimes
took longer to fit than higher eigenfunctions.

Analysis of the learned solution is shown in Fig. 2. Fig. 2a is a heatmap showing whether the feature
is likely to be positively activated (red) or negatively activated (blue) when a ball is in a given posi-
tion. Since each eigenfunction is invariant to change of sign, the choice of color is arbitrary. Most of
the eigenfunctions are encoding for the position of balls independently, with the first two eigenfunc-
tions discovering the separation between up/down and left/right, and higher eigenfunctions encoding
higher frequency combinations of the same thing. However, some eigenfunctions are encoding more
complex joint statistics of position. For instance, one eigenfunction (outlined in green in Fig. 2a)
has no clear relationship with the marginal position of a ball. But when we plot the frames that most
positively or negatively activate that feature (Fig. 2b) we see that the feature is encoding whether
all the balls are crowded in the lower right corner, or one is there while the other two are far away.
Note that this is a fundamentally nonlinear feature, which could not be discovered by a shallow
model. Higher eigenfunctions would likely encode for even more complex joint relationships. None
of the eigenfunctions we investigated seemed to encode anything meaningful about velocity, likely
because collisions cause the velocity to change rapidly, and thus optimizing for slowness of features
is unlikely to discover this. A different choice of kernel may lead to different results.

6 DISCUSSION

We have shown that a single unified framework is able to compute spectral decompositions by
stochastic gradient descent on domains relevant to physics and machine learning. This makes it
possible to learn eigenfunctions over very high-dimensional spaces from very large datasets and
generalize to new data without the Nyström approximation. This extends work using slowness as a
criterion for unsupervised learning without a generative model, and addresses an unresolved issue
with biased gradients due to finite batch size. A limitation of the proposed solution is the requirement
of computing full Jacobians at every time step, and improving the scaling of training is a promising
direction for future research. The physics application presented here is on a fairly simple system,
and we hope that Spectral Inference Nets can be fruitfully applied to more complex physical systems
for which computational solutions are not yet available. The representations learned on video data
show nontrivial structure and sensitivity to meaningful properties of the scene. These representations
could be used for many downstream tasks, such as object tracking, gesture recognition, or faster
exploration and subgoal discovery in reinforcement learning. Finally, while the framework presented
here is quite general, the examples shown investigated only a small number of linear operators. Now
that the basic framework has been laid out, there is a rich space of possible kernels and architectures
to combine and explore.

REFERENCES

Anima Anandkumar, Dean P Foster, Daniel J Hsu, Sham M Kakade, and Yi-Kai Liu. A Spectral Al-
gorithm for Latent Dirichlet Allocation. In Advances in Neural Information Processing Systems,
pp. 917–925, 2012.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and
David Silver. Successor Features for Transfer in Reinforcement Learning. In Advances in Neural
Information Processing Systems, pp. 4055–4065, 2017.

9

Published as a conference paper at ICLR 2019

Mikhail Belkin and Partha Niyogi. Laplacian Eigenmaps and Spectral Techniques for Embedding
and Clustering. In Advances in Neural Information Processing Systems, pp. 585–591, 2002.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning Envi-
ronment: An Evaluation Platform for General Agents. Journal of Artificial Intelligence Research,
47:253–279, 2013.

Yoshua Bengio, Jean-François Paiement, Pascal Vincent, Olivier Delalleau, Nicolas L Roux, and
Marie Ouimet. Out-of-sample Extensions for LLE, IsoMap, MDS, Eigenmaps, and Spectral
Clustering. In Advances in Neural Information Processing Systems, pp. 177–184, 2004.

Dimitri P Bertsekas. Constrained Optimization and Lagrange Multiplier methods. Academic press,
2014.

NS Blunt, Ali Alavi, and George H Booth. Krylov-Projected Quantum Monte Carlo Method. Phys-
ical Review Letters, 115(5):050603, 2015.

Byron Boots, Sajid M Siddiqi, and Geoffrey J Gordon. Closing the Learning-Planning Loop with
Predictive State Representations. The International Journal of Robotics Research, 30(7):954–966,
2011.

Vivek S Borkar. Stochastic approximation with two time scales. Systems & Control Letters, 29(5):
291–294, 1997.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral Networks and Locally
Connected Networks on Graphs. In Proceedings of the 2nd International Conference on Learning
Representations, 2014.

Giuseppe Carleo and Matthias Troyer. Solving the Quantum Many-Body Problem with Artificial
Neural Networks. Science, 355(6325):602–606, 2017.

Kenny Choo, Giuseppe Carleo, Nicolas Regnault, and Titus Neupert. Symmetries and many-body
excitations with neural-network quantum states. Physical review letters, 121(16):167204, 2018.

Kyle Cranmer, Duccio Pappadopulo, and Siavash Golkar. Quantum Inference and Quantum Flows.
doi:10.6084/m9.figshare.6197069.v1, 2018.

Constantinos Daskalakis, Christos Tzamos, and Manolis Zampetakis. A Converse to Banach’s Fixed
Point Theorem and its CLS Completeness. In 50th Annual ACM Symposium on Theory of Com-
puting, 2018. URL http://arxiv.org/abs/1702.07339.

Alan Edelman, Tomás A Arias, and Steven T Smith. The Geometry of Algorithms with Orthogo-
nality Constraints. SIAM journal on Matrix Analysis and Applications, 20(2):303–353, 1998.

WMC Foulkes, L Mitas, RJ Needs, and G Rajagopal. Quantum Monte Carlo Simulations of Solids.
Reviews of Modern Physics, 73(1):33, 2001.

Mathias Franzius, Henning Sprekeler, and Laurenz Wiskott. Slowness and Sparseness Lead to Place,
Head-Direction, and Spatial-View Cells. PLoS Computational Biology, 3(8):e166, 2007.

Mike Giles. An Extended Collection of Matrix Derivative Results for Forward and Reverse Mode
Automatic Differentiation. Oxford University Computing Laboratory, Numerical Analysis Report,
08(01), 2008.

Gene H Golub and Charles F Van Loan. Matrix Computations, volume 3. JHU Press, 2012.

A Harju, B Barbiellini, S Siljamäki, Risto M Nieminen, and G Ortiz. Stochastic Gradient Approxi-
mation: An Efficient Method to Optimize Many-Body Wave Functions. Physical Review Letters,
79(7):1173, 1997.

Daniel Hsu, Sham M Kakade, and Tong Zhang. A Spectral Algorithm for Learning Hidden Markov
Models. Journal of Computer and System Sciences, 78:1460–1480, 2012.

10

http://arxiv.org/abs/1702.07339

Published as a conference paper at ICLR 2019

Catalin Ionescu, Orestis Vantzos, and Cristian Sminchisescu. Matrix Backpropagation for Deep Net-
works with Structured Layers. In Proceedings of the IEEE International Conference on Computer
Vision, pp. 2965–2973, 2015.

Varun Raj Kompella, Matthew Luciw, and Jürgen Schmidhuber. Incremental Slow Feature Analysis:
Adaptive Low-Complexity Slow Feature Updating from High-Dimensional Input Streams. Neural
Computation, 24(11):2994–3024, 2012.

Gabriel Loaiza-Ganem, Yuanjun Gao, and John P Cunningham. Maximum Entropy Flow Networks.
In Proceedings of the 5th International Conference on Learning Representations, 2017. URL
https://arxiv.org/abs/1701.03504.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. A Laplacian Framework for Op-
tion Discovery in Reinforcement Learning. Proceedings of the 34th International Conference on
Machine Learning, 2017.

Marlos C Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray
Campbell. Eigenoption Discovery through the Deep Successor Representation. In Proceedings of
the 6th International Conference on Learning Representations, 2018. URL http://arxiv.
org/abs/1710.11089.

Sridhar Mahadevan and Mauro Maggioni. Proto-value Functions: A Laplacian Framework for
Learning Representation and Control in Markov Decision Processes. Journal of Machine Learn-
ing Research, 8:2169–2231, 2007.

Iain Murray. Differentiation of the Cholesky decomposition. arXiv preprint arXiv:1602.07527,
2016.

Andrew Y Ng, Michael I Jordan, and Yair Weiss. On Spectral Clustering: Analysis and an Algo-
rithm. In Advances in Neural Information Processing Systems, pp. 849–856, 2002.

Erkki Oja. Simplified Neuron Model as a Principal Component Analyzer. Journal of Mathematical
Biology, 15(3):267–273, Nov 1982. ISSN 0303-6812. doi: 10.1007/BF00275687. URL http:
//link.springer.com/10.1007/BF00275687.

Victor Y Pan, Z Chen, Ailong Zheng, et al. The Complexity of the Algebraic Eigenproblem. Math-
ematical Sciences Research Institute, Berkeley, pp. 1998–71, 1998.

David Pfau and Oriol Vinyals. Connecting Generative Adversarial Networks and Actor-Critic Meth-
ods. NIPS Workshop on Adversarial Training, 2016.

S. T. Roweis and L K Saul. Nonlinear Dimensionality Reduction by Locally Linear Embedding.
Science, 290(5500):2323–2326, Dec 2000. ISSN 00368075. doi: 10.1126/science.290.5500.
2323.

Jianbo Shi and Jitendra Malik. Normalized Cuts and Image Segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

Jiaxin Shi, Shengyang Sun, and Jun Zhu. A Spectral Approach to Gradient Estimation for Implicit
Distributions. Proceedings of the 35th International Conference of Machine Learning, 2018.

Henning Sprekeler. On the Relation of Slow Feature Analysis and Laplacian Eigenmaps. Neural
Computation, 23(12):3287–3302, 2011.

Kimberly L Stachenfeld, Matthew M Botvinick, and Samuel J Gershman. The Hippocampus as a
Predictive Map. Nature Neuroscience, 20:16431653, 2017.

Lin Sun, Kui Jia, Tsung-Han Chan, Yuqiang Fang, Gang Wang, and Shuicheng Yan. DL-SFA:
Deeply-Learned Slow Feature Analysis for Action Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2625–2632, 2014.

J. B. Tenenbaum, V de Silva, and J C Langford. A Global Geometric Framework for Nonlinear
Dimensionality Reduction. Science, 290(5500):2319–2323, Dec 2000. ISSN 00368075. doi:
10.1126/science.290.5500.2319.

11

https://arxiv.org/abs/1701.03504
http://arxiv.org/abs/1710.11089
http://arxiv.org/abs/1710.11089
http://link.springer.com/10.1007/BF00275687
http://link.springer.com/10.1007/BF00275687

Published as a conference paper at ICLR 2019

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-RMSProp: Divide the Gradient by a Running
Average of its Recent Magnitude. COURSERA: Neural Networks for Machine Learning, 4(2):
26–31, 2012.

Laurenz Wiskott and Terrence J Sejnowski. Slow Feature Analysis: Unsupervised Learning of
Invariances. Neural Computation, 14(4):715–770, 2002.

Reto Wyss, Peter König, and Paul FM J Verschure. A Model of the Ventral Visual System Based
on Temporal Stability and Local Memory. PLoS Biology, 4(5):e120, 2006.

XL Yang, SH Guo, FT Chan, KW Wong, and WY Ching. Analytic Solution of a Two-Dimensional
Hydrogen Atom. I. Nonrelativistic Theory. Physical Review A, 43(3):1186, 1991.

12

Published as a conference paper at ICLR 2019

Supplementary Material for
“Spectral Inference Networks”
A BREAKING THE SYMMETRY BETWEEN EIGENFUNCTIONS

Since Eq. 6 is invariant to linear transformation of the features u(x), optimizing it will only give a
function that spans the top K eigenfunctions of K. We discuss some of the possible ways to recover
ordered eigenfunctions, explain why we chose the approach of using masked gradients, and provide
a derivation of the closed form expression for the masked gradient in Eq. 12.

A.1 ALTERNATIVE STRATEGIES TO BREAK SYMMETRY

If u∗(x) is a function to RN that is an extremum of Eq. 6, then Ex′ [k(x,x′)u∗(x′)] = Ωu∗(x) for
some matrix Ω ∈ RN×N which is not necessarily diagonal. We can express this matrix in terms of
quantities in the objective:

Ex′ [k(x,x′)u∗(x′)] = Ωu∗(x) (21)

Ex,x′
[
k(x,x′)u∗(x′)u∗(x)T

]
= ΩEx

[
u∗(x)u∗(x)T

]
(22)

Π = ΩΣ (23)
Ω = ΠΣ−1 (24)

To transform u∗(x) into ordered eigenfunctions, first we can orthogonalize the functions by multi-
plying by L−1 where L is the Cholesky decomposition of Σ. Let v∗(x) = L−1u∗(x), then

Ex′ [k(x,x′)v∗(x′)] = L−1Ex′ [k(x,x′)u∗(x′)] = L−1ΠΣ−1u∗(x) = L−1ΠL−Tv∗(x)

The matrix L−1ΠL−T = Λ is symmetric, so we can diagonalize it: Λ = VDVT , and then
w∗(x) = VTv∗(x) = VTL−1u∗(x) are true eigenfunctions, with eigenvalues along the diagonal
of D. In principle, we could optimize Eq. 6, accumulating statistics on Π and Σ, and transform
the functions u∗ into w∗ at the end. In practice, we found that the extreme eigenfunctions were
“contaminated” by small numerical errors in the others eigenfunctions, and that this approach strug-
gled to learn degenerate eigenfunctions. This inspired us to explore the masked gradient approach
instead, which improves numerical robustness.

A.2 CORRECTNESS OF MASKED GRADIENT APPROACH

Throughout this section, let xi:j be the slice of a vector from row i to j and let Ai:j,k:` be the block
of a matrix A containing rows i through j and columns k through `. Let Σ = Ex[u(x)u(x)T],
Π = Ex,x′ [k(x,x′)u(x)u(x′)T], L be the Cholesky decomposition of Σ and Λ = L−1ΠL−T . The
arguments here are not meant as mathematically rigorous proofs but should give the reader enough
of an understanding to be confident that the numerics of our method are correct for optimization
over a sufficiently expressive class of functions.
Claim 1. Λ1:n,1:n is independent of un+1:n(x).

The Cholesky decomposition of a positive-definite matrix is the unique lower triangular matrix with
positive diagonal such that LLT = Σ. Expanding this out into blocks yields:

(
L1:n,1:n 0

Ln+1:N,1:n Ln+1:N,n+1:N

)(
LT1:n,1:n LTn+1:N,1:n

0 LTn+1:N,n+1:N

)
=(

L1:n,1:nLT1:n,1:n L1:n,1:nLTn+1:N,1:n

Ln+1:N,1:nLT1:n,1:n Ln+1:N,1:nLTn+1:N,1:n + Ln+1:N,n+1:NLTn+1:N,n+1:N

)
=(

Σ1:n,1:n Σ1:n,n+1:N

Σn+1:N,1:n Σn+1:N,n+1:N

)

13

Published as a conference paper at ICLR 2019

Inspecting the upper left block, we see that L1:n,1:nLT1:n,1:n = Σ1:n,1:n. As L1:n,1:n is also lower-
triangular, it must be the Cholesky decomposition of Σ1:n,1:n. The inverse of a lower triangular
matrix will also be lower triangular, and a similar argument to the one above shows that the upper
left block of the inverse of a lower triangular matrix will be the inverse of the upper left block, so
the upper left block of Λ can be written as:

Λ1:n,1:n = L−1
1:n,1:nΠ1:n,1:nL−T1:n,1:n

which depends only on u1:n(x)

Claim 2. Let ∇̃uTr(Λ) =
(
∂Λ11

∂u1
, . . . , ∂ΛNN

∂uN

)
, and let v(x) = L−1u(x). If the parameters θ of

u(x) are maximized by gradient ascent so that ∇̃θTr(Λ) = 0, and the true eigenfunctions are in
the class of functions parameterized by θ, then v(x) will be the eigenfunctions of the operator K
defined as K[f](x) = Ex′ [k(x,x′)f(x′)], ordered from highest eigenvalue to lowest.

The argument proceeds by induction. Λ11 = L−1
11 Π11L

−1
11 = Π11

Σ11
, which is simply the Rayleigh

quotient in Eq. 10 for i = 1. The maximum of this is clearly proportional to the top eigenfunction,
and v1(x) = L−1

11 u1(x) = Σ
−1/2
11 u1(x) is the normalized eigenfunction.

Now suppose v1:n(x) = L−1
1:n,1:nu1:n(x) are the first n eigenfunctions of K. Because u1:n(x) span

the first n eigenfunctions, and Λii is independent of un+1(x) for i < n+1, u1:n+1(x) is a maximum
of
∑n
i=1 Λii no matter what the function un+1(x) is. Training un+1(x) with the masked gradient

∇̃uTr(Λ) is equivalent to maximizing Λ(n+1)(n+1), so for the optimal un+1(x), u1:n+1(x) will be
a maximum of

∑n+1
i=1 Λii. Therefore u1:n(x) span the first n eigenfunctions and u1:n+1(x) span

the first n+ 1 eigenfunctions, so orthogonalizing u1:n+1(x) by multiplication by L−1
1:n+1,1:n+1 will

subtract anything in the span of the first n eigenfunctions off of un+1(x), meaning vn+1(x) will be
the (n+ 1)th eigenfunction of K

A.3 DERIVATION OF MASKED GRADIENT

The derivative of the normalized features with respect to parameters can be expressed as

∂Λkk
∂θ

=
∂Λkk
∂u

∂u

∂θ
=

(
∂Λkk
∂vec(L)

∂vec(L)

∂vec(Σ)

∂vec(Σ)

∂u
+

∂Λkk
∂vec(Π)

∂vec(Π)

∂u

)
∂u

∂θ
(25)

if we flatten out the matrix-valued L, Σ and Π.

The reverse-mode sensitivities for the matrix inverse and Cholesky decomposition are given by Ā =
−CT C̄CT where C = A−1 and Σ̄ = L−TΦ(LT L̄)L−1 where L is the Cholesky decomposition
of Σ and Φ(·) is the operator that replaces the upper triangular of a matrix with its lower triangular
transposed (Giles, 2008; Murray, 2016). Using this, we can compute the gradients in closed form
by application of the chain rule.

To simplify notation slightly, let ∆k and Φk be matrices defined as:

∆k
ij =

{
1 if i = k and j = k

0 otherwise
Φkij =

1 if i = k and j ≤ k
1 if i ≤ k and j = k

0 otherwise
(26)

Then the unmasked gradient has the form:

∇ΠΛkk = L−T∆kL−1 (27)

∇ΣΛkk = −L−T (Φk ◦Λ)L−1 (28)

while the gradients of Π and Σ with respect to u are given (elementwise) by:

14

Published as a conference paper at ICLR 2019

∂Πij

∂uk
=
∂E[k(x,x′)ui(x)uj(x

′)]

∂uk
= δikE[k(x,x′)uj(x

′)] + δjkE[k(x,x′)ui(x)] (29)

∂Σij
∂uk

=
∂E[ui(x)uj(x)]

∂uk
= δikE[uj(x)] + δjkE[ui(x)] (30)

which, in combination, give the unmasked gradient with respect to u as:

∇uΛkk =
∑
ij

∂Λkk
∂Πij

∇uΠij +
∂Λkk
∂Σij

∇uΣij (31)

∝ E[k(x,x′)u(x)T]∇ΠΛkk + E[u(x)T]∇ΣΛkk (32)

Here the gradient is expressed as a row vector, to be consistent with Eq. 25, and a factor of 2 has
been dropped in the last line that can be absorbed into the learning rate.

To zero out the relevant elements of the gradient ∇uΛkk as described in Eq. 11, we can right-
multiply by ∆k. The masked gradients can be expressed in closed form as:

∇̃ΠTr(Λ) =
∑
k

∇ΠΛkk∆
k = L−Tdiag(L)−1 (33)

∇̃ΣTr(Λ) =
∑
k

∇ΣΛkk∆
k = −L−T triu

(
Λdiag(L)−1

)
(34)

∇̃uTr(Λ) =
∑
k

E[k(x,x′)u(x)T]∇ΠΛkk∆
k + E[u(x)T]∇ΣΛkk∆

k

= E[k(x,x′)u(x)T]L−Tdiag(L)−1 − E[u(x)T]L−T triu
(
Λdiag(L)−1

)
(35)

where triu and diag give the upper triangular and diagonal of a matrix, respectively. A TensorFlow
implementation of this masked gradient is given below.

B TENSORFLOW IMPLEMENTATION OF SPIN UPDATE

Here we provide a short pseudocode implementation of the updates in Alg. 1 in TensorFlow. The
code is not intended to run as is, and leaves out some global variables, proper initialization and code
for constructing networks and kernels. However all nontrivial elements of the updates are given in
detail here.

import tensorflow as tf
from tensorflow.python.ops.parallel_for import jacobian

@tf.custom_gradient
def covariance(x, y):

batch_size = float(x.shape[0].value)
cov = tf.matmul(x, y, transpose_a=True) / batch_size
def gradient(grad):

return (tf.matmul(y, grad) / batch_size,
tf.matmul(x, grad) / batch_size)

return cov, gradient

@tf.custom_gradient
def eigenvalues(sigma, pi):

"""Eigenvalues as custom op so that we can overload gradients."""
chol = tf.cholesky(sigma)
choli = tf.linalg.inv(chol)

rq = tf.matmul(choli, tf.matmul(pi, choli, transpose_b=True))

15

Published as a conference paper at ICLR 2019

eigval = tf.matrix_diag_part(rq)
def gradient(_):

"""Symbolic form of the masked gradient."""
dl = tf.diag(tf.matrix_diag_part(choli))
triu = tf.matrix_band_part(tf.matmul(rq, dl), 0, -1)
dsigma = -1.0*tf.matmul(choli, triu, transpose_a=True)
dpi = tf.matmul(choli, dl, transpose_a=True)

return dsigma, dpi
return eigval, gradient

def moving_average(x, c):
"""Creates moving average operation.

This is pseudocode for clarity!
Should actually initialize sigma_avg with tf.eye,
and should add handling for when x is a list.
"""
ma = tf.Variable(tf.zeros_like(x), trainable=False)
ma_update = tf.assign(ma, (1-c)*ma + c*x)
return ma, ma_update

def spin(x1, x2, network, kernel, params, optim):
"""Function to create TensorFlow ops for learning in SpIN.

Args:
x1: first minibatch, of shape (batch size, input dimension)
x2: second minibatch, of shape (batch size, input dimension)
network: function that takes minibatch and parameters and

returns output of neural network
kernel: function that takes two minibatches and returns

symmetric function of the inputs
params: list of tf.Variables with network parameters
optim: an instance of a tf.train.Optimizer object

Returns:
step: op that implements one iteration of SpIN training update
eigenfunctions: op that gives ordered eigenfunctions

"""

‘u1‘ and ‘u2‘ are assumed to have the batch elements along first
dimension and different eigenfunctions along the second dimension
u1 = network(x1, params)
u2 = network(x2, params)

sigma = 0.5 * (covariance(u1, u1) + covariance(u2, u2))
sigma.set_shape((u1.shape[1], u1.shape[1]))

For the hydrogen examples in Sec. 4.1, ‘kernel(x1, x2)*u2‘
can be replaced by the result of applying the operator
H to the function defined by ‘network(x1, params)‘.
pi = covariance(u1, kernel(x1, x2)*u2)
pi.set_shape((u1.shape[1], u1.shape[1]))

sigma_jac = jacobian(sigma, params)
sigma_avg, update_sigma = moving_average(sigma, beta)
sigma_jac_avg, update_sigma_jac = moving_average(sigma_jac, beta)

16

Published as a conference paper at ICLR 2019

with tf.control_dependencies(update_sigma_jac + [update_sigma]):
eigval = eigenvalues(sigma_avg, pi)
loss = tf.reduce_sum(eigval)
sigma_back = tf.gradients(loss, sigma_avg)[0]

gradients = [
tf.tensordot(sigma_back, sig_jac, [[0, 1], [0, 1]]) + grad
for sig_jac, grad in zip(sigma_jac_avg, tf.gradients(loss, params))

]

step = optim.apply_gradients(zip(gradients, params))
eigenfunctions = tf.matmul(u1,

tf.linalg.inv(tf.cholesky(sigma_avg)),
transpose_b=True)

return step, eigenfunctions

C EXPERIMENTAL DETAILS

C.1 SOLVING THE SCHRÖDINGER EQUATION

To solve for the eigenfunctions with lowest eigenvalues, we used a neural network with 2 inputs (for
the position of the particle), 4 hidden layers each with 128 units, and 9 outputs, corresponding to the
first 9 eigenfunctions. We used a batch size of 128 - much smaller than the 16,384 nodes in the 2D
grid used for the exact eigensolver solution. We chose a softplus nonlinearity log(1+exp(x)) rather
than the more common ReLU, as the Laplacian operator ∇2 would be zero almost everywhere for
a ReLU network. We used RMSProp (Tieleman & Hinton, 2012) with a decay rate of 0.999 and
learning rate of 1e-5 for all experiments. We sampled points uniformly at random from the box
[−D,D]2 during training, and to prevent degenerate solutions due to the boundary condition, we
multiplied the output of the network by

∏
i(
√

2D2 − x2
i −D), which forces the network output to

be zero at the boundary without the derivative of the output blowing up. We chose D = 50 for the
experiments shown here. We use the finite difference approximation of the differential Laplacian
given in Sec. 3.2 with ε some small number (around 0.1), which takes the form:

∇2ψ(x) ≈ 1

ε2

∑
i

ψ(x + εei) + ψ(x− εei)− 2ψ(x) (36)

when applied to ψ(x). Because the Hamiltonian operator is a purely local function of ψ(x), we
don’t need to sample pairs of points x,x′ for each minibatch, which simplifies calculations.

We made one additional modification to the neural network architecture to help separation of dif-
ferent eigenfunctions. Each layer had a block-sparse structure that became progressively more sep-
arated the deeper into the network it was. For layer ` out of L with m inputs and n outputs, the
weightwij was only nonzero if there exists k ∈ {1, . . . ,K} such that i ∈ [k−1

K−1
`−1
L m, k−1

K−1
`−1
L m+

L−`+1
L m] and j ∈ [k−1

K−1
`−1
L n, k−1

K−1
`−1
L n + L−`+1

L n]. This split the weight matrices into overlap-
ping blocks, one for each eigenfunction, allowing features to be shared between eigenfunctions in
lower layers of the network while separating out features which were distinct between eigenfunc-
tions higher in the network.

C.2 DEEP SLOW FEATURE ANALYSIS

We trained on 200,000 64×64 pixel frames, and used a network with 3 convolutional layers, each
with 32 channels, 5×5 kernels and stride 2, and a single fully-connected layer with 128 units before
outputting 12 eigenfunctions. We also added a constant first eigenfunction, since the first eigenfunc-
tion of the Laplacian operator is always constant with eigenvalue zero. This is equivalent to forcing
the features to be zero-mean. We used the same block-sparse structure for the weights that was used
in the Schrödinger equation experiments, with sparsity in weights between units extended to sparsity
in weights between entire feature maps for the convolutional layers. We trained with RMSProp with
learning rate 1e-6 and decay 0.999 and covariance decay rate β = 0.01 for 1,000,000 iterations.

17

Published as a conference paper at ICLR 2019

To make the connection to gradient descent clearer, we use the opposite convention to RMSProp:
β = 1 corresponds to zero memory for the moving average, meaning the RMS term in RMSProp
decays ten times more slowly than the covariance moving average in these experiments. Each batch
contained 24 clips of 10 consecutive frames. So that the true state was fully observable, we used two
consecutive frames as the input xt,xt+1 and trained the network so that the difference from that and
the features for the frames xt+1,xt+2 were as small as possible.

Figure 3: Training curves on bouncing ball videos

C.3 SUCCESSOR FEATURES AND THE ARCADE LEARNING ENVIRONMENT

We provide a qualitative comparison of the performance of SpIN with the SFA objective against the
successor feature approach for learning eigenpurposes Machado et al. (2018) on the Arcade Learning
Environment (Bellemare et al., 2013). As in Machado et al. (2018), we trained a network to perform
next-frame prediction on 500k frames of a random agent playing one game. We simultaneously
trained another network to compute the successor features (Barreto et al., 2017) of the latent code
of the next-frame predictor, and computed the “eigenpurposes” by applying PCA to the successor
features on 64k held-out frames of gameplay. We used the same convolutional network architecture
as Machado et al. (2018), a batch size of 32 and RMSProp with a learning rate of 1e-4 for 300k
iterations, and updated the target network every 10k iterations. While the original paper did not
mean-center the successor features when computing eigenpurposes, we found that the results were
significantly improved by doing so. Thus the baseline presented here is actually stronger than in the
original publication.

On the same data, we trained a spectral inference network with the same architecture as the encoder
of the successor feature network, except for the fully connected layers, which had 128 hidden units
and 5 non-constant eigenfunctions. We tested SpIN on the same 64k held-out frames as those used
to estimate the eigenpurposes. We used the same training parameters and kernel as in Sec. 5.2. As
SpIN is not a generative model, we must find another way to compare the features learned by each
method. We averaged together the 100 frames from the test set that have the largest magnitude
positive or negative activation for each eigenfunction/eigenpurpose. Results are shown in Fig. 4,
with more examples and comparison against PCA on pixels at the end of this section.

By comparing the top row to the bottom row in each image, we can judge whether that feature is
encoding anything nontrivial. If the top and bottom row are noticeably different, this is a good in-
dication that something is being learned. It can be seen that for many games, successor features
may find a few eigenpurposes that encode interesting features, but many eigenpurposes do not seem
to encode anything that can be distinguished from the mean image. Whereas for SpIN, nearly all
eigenfunctions are encoding features such as the presence/absence of a sprite, or different arrange-

18

Published as a conference paper at ICLR 2019

Figure 4: Comparison of Successor Features and SpIN on Beam Rider (top) and Space Invaders
(bottom).

ments of sprites, that lead to a clear distinction between the top and bottom row. Moreover, SpIN is
able to learn to encode these features in a fully end-to-end fashion, without any pixel reconstruction
loss, whereas the successor features must be trained from two distinct losses, followed by a third
step of computing eigenpurposes. The natural next step is to investigate how useful these features
are for exploration, for instance by learning options which treat these features as rewards, and see if
true reward can be accumulated faster than by random exploration.

19

Published as a conference paper at ICLR 2019

(a) SpIN

(b) Successor Features

(c) PCA

Figure 5: Beam Rider

20

Published as a conference paper at ICLR 2019

(a) SpIN

(b) Successor Features

(c) PCA

Figure 6: Breakout

21

Published as a conference paper at ICLR 2019

(a) SpIN

(b) Successor Features

(c) PCA

Figure 7: Freeway

22

Published as a conference paper at ICLR 2019

(a) SpIN

(b) Successor Features

(c) PCA

Figure 8: Montezuma’s Revenge

23

Published as a conference paper at ICLR 2019

(a) SpIN

(b) Successor Features

(c) PCA

Figure 9: Ms. PacMan

24

Published as a conference paper at ICLR 2019

(a) SpIN

(b) Successor Features

(c) PCA

Figure 10: Seaquest

25

Published as a conference paper at ICLR 2019

(a) SpIN

(b) Successor Features

(c) PCA

Figure 11: Space Invaders

26

	Introduction
	Related Work
	Spectral Decomposition as Optimization
	Finite-dimensional eigenvectors
	From Eigenvectors to Eigenfunctions
	Kernels

	Method
	Learning Ordered Eigenfunctions
	Bilevel Optimization
	Defining Spectral Inference Networks

	Experiments
	Solving the Schrödinger Equation
	Deep Slow Feature Analysis

	Discussion
	Supplementary Material for ``Spectral Inference Networks"
	Breaking the Symmetry Between Eigenfunctions
	Alternative Strategies to Break Symmetry
	Correctness of Masked Gradient Approach
	Derivation of Masked Gradient

	TensorFlow Implementation of SpIN Update
	Experimental Details
	Solving the Schrödinger Equation
	Deep Slow Feature Analysis
	Successor Features and the Arcade Learning Environment

