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ABSTRACT

We propose a generalization error bound for a general family of deep neural net-
works based on the depth and width of the networks, as well as the spectral norm
of weight matrices. Through introducing a novel characterization of the Lips-
chitz properties of neural network family, we achieve a tighter generalization er-
ror bound. We further obtain a result that is free of linear dependence on norms
for bounded losses. Besides the general deep neural networks, our results can be
applied to derive new bounds for several popular architectures, including convolu-
tional neural networks (CNNs), residual networks (ResNets), and hyperspherical
networks (SphereNets). When achieving same generalization errors with previous
arts, our bounds allow for the choice of much larger parameter spaces of weight
matrices, inducing potentially stronger expressive ability for neural networks.

1 INTRODUCTION

We aim to provide a theoretical justification for the enormous success of deep neural networks
(DNNs) in real world applications (He et al., 2016; Collobert et al., 2011; Goodfellow et al., 2016).
In particular, our paper focuses on the generalization performance of a general class of DNNs.
The generalization bound is a powerful tool to characterize the predictive performance of a class of
learning models for unseen data. Early studies investigate the generalization ability of shallow neural
networks with no more than one hidden layer (Bartlett, 1998; Anthony & Bartlett, 2009). More
recently, studies on the generalization bounds of deep neural networks have received increasing
attention (Dinh et al., 2017; Bartlett et al., 2017; Golowich et al., 2017; Neyshabur et al., 2015;
2017). There are two major questions of our interest in these analysis of the generalization bounds:

(Q1) Can we establish tighter generalization error bounds for deep neural networks in terms of
the network dimensions and structure of the weight matrices?

(Q2) Can we develop generalization bounds for neural networks with special architectures?

For (Q1), (Neyshabur et al., 2015; Bartlett et al., 2017; Neyshabur et al., 2017; Golowich et al.,
2017) have established results that characterize the generalization bounds in terms of the depth
D and width p of networks and norms of rank-r weight matrices. For example, Neyshabur et al.
(2015) provide an exponential bound on D based on the Frobenius norm ‖Wd‖F, where Wd is the
weight matrix of d-th layer; Bartlett et al. (2017); Neyshabur et al. (2017) provide a polynomial
bound on p and D based on ‖Wd‖2 (spectral norm) and ‖Wd‖2,1 (sum of the Euclidean norms
for all rows of Wd). Golowich et al. (2017) provide a nearly size independent bound based on
‖Wd‖F. Nevertheless, the generalization bound depends on other than the spectral norms of the
weight matrices may be too loose. In specific, ‖Wd‖F (‖Wd‖2,1) is in general

√
r (r) times larger

than ‖Wd‖2. Given m training data points and suppose ‖Wd‖2 = 1 for ease of discussion, Bartlett
et al. (2017) and Neyshabur et al. (2017) demonstrate generalization error bounds as Õ(

√
D3pr/m),

and Golowich et al. (2017) achieve a bound Õ(rD/2 min(m−1/4,
√
D/m)), where Õ(·) represents

the rate by ignoring logarithmic factors. In comparison, we show a tighter generalization error bound
as Õ(

√
Dpr/m), which is significantly smaller than existing results and achieved based on a new

Lipschitz analysis for DNNs in terms of both the input and weight matrices. We notice that some
recent results characterize the generalization bound in more structured ways, e.g., by considering
specific error-resilience parameters (Arora et al., 2018), which can achieve empirically improved

1



Under review as a conference paper at ICLR 2019

Table 1: Comparison of existing results with ours on norm based generalization error bounds for
DNNs. For ease of illustration, we suppose the upper bound of input norm R and the Lipschitz
constant 1

γ of the class of loss functions gγ are generic constants. We use Bd,2, Bd,F, and Bd,2→1

as the upper bounds of ‖Wd‖2, ‖Wd‖F, and ‖Wd‖2,1 respectively. For notational convenience, we
suppose the width pd = p for all layers d = 1, . . . , D. We further show the results when ‖Wd‖2 = 1
for all d = 1, . . . , D, where ‖Wd‖F = Θ(

√
r) and ‖Wd‖2,1 = Θ(r) in generic scenarios.

Generalization Bound Original Results ‖Wd‖2 = 1

Neyshabur et al. (2015) O
(

2D·ΠDd=1Bd,F√
m

)
O
(

2D·rD/2√
m

)
Bartlett et al. (2017) Õ

(
ΠDd=1Bd,2√

m

(∑D
d=1

B
2/3
d,2→1

B
2/3
d,2

)3/2
)

Õ
(√

D3pr√
m

)
Neyshabur et al. (2017) Õ

(
ΠDd=1Bd,2√

m

√
D2p

∑D
d=1

B2
d,F

B2
d,2

)
Õ
(√

D3pr√
m

)
Golowich et al. (2017) Õ

(
ΠD
d=1Bd,F ·min

{
1

4
√
m
,
√

D
m

})
Õ
(
rD/2 ·min

{
1

4
√
m
,
√

D
m

})
Our results Theorem 1: Õ

(
ΠDd=1Bd,2

√
Dpr√

m

)
Õ
(√

Dpr√
m

)

generalization bounds than existing ones based on the norms of weight matrices. However, it is
not clear how the weight matrices explicitly control these parameters, which makes the results less
interpretable. Thus, we do not compare with these types of results. We summarize the comparison
between existing norm based generalization bounds with our results in Table 1, as well as the results
when ‖Wd‖2 = 1 for more explicit comparison in terms of the network sizes (i.e, depth and width).

For (Q2), we consider several widely used architectures to demonstrate, including convolutional
neural networks (CNNs) (Krizhevsky et al., 2012), residual networks (ResNets) (He et al., 2016),
and hyperspherical networks (SphereNets) (Liu et al., 2017b). By taking their structures of weight
matrices into consideration, we provide tight characterization of their resulting capacities. In partic-
ular, we consider orthogonal filters and normalized weight matrices, which show good performance
in both optimization and generalization (Mishkin & Matas, 2015; Xie et al., 2017). This is closely
related with normalization frameworks, e.g., batch normalization (Ioffe & Szegedy, 2015) and layer
normalization (Ba et al., 2016), which have achieved great empirical performance (Liu et al., 2017a;
He et al., 2016). Take CNNs as an example. By incorporating the orthogonal structure of convolu-
tional filters, we achieve Õ

((
k
s

)D
2
√
Dk2/

√
m
)
, while Bartlett et al. (2017); Neyshabur et al. (2017)

achieve Õ
((
k
s

)D−1
2
√
D3p2/

√
m
)

and Golowich et al. (2017) achieve Õ
(
p
D
2 min

{
1

4√m ,
√

D
m

})
(rank(Wd) = p in CNNs), where k is the filter size that satisfies k � p and s is stride size that
is usually of the same order with k; see Section 4.1 for details. Here we achieve stronger results
in terms of both depth D and width p for CNNs, where our bound only depend on k rather than
p. Some recent result achieved results that is free of the linear dependence on the weight matrix
norms by considering networks with bounded outputs (Zhou & Feng, 2018). We can achieve similar
results using bounded loss functions as discussed in Section 3.2, but do not restrict ourselves to this
scenario in general. Analogous improvement is also attained for ResNets and SphereNets. In addi-
tion, we consider some widely used operations for width expansion and reduction, e.g., padding and
pooling, and show that they do not increase the generalization bound. Further numerical evaluation
is provided for quantitative comparison in Section 4.5.

Our tighter bounds result in potentially stronger expressive power, hence higher training/testing
accuracy for the DNNs. In particular, when achieving the same order of generalization errors, we
allow the choice of a larger parameter space with deeper/wider networks and larger matrix spectral
norms. We further show numerically that a larger parameter space can lead to better empirical
performance. Quantitative analysis for the expressive power of DNNs is of great interest on its
own, which includes (but not limited to) studying how well DNNs can approximate general class
of functions and distributions (Cybenko, 1989; Hornik et al., 1989; Funahashi, 1989; Barron, 1993;
1994; Lee et al., 2017; Petersen & Voigtlaender, 2017; Hanin & Sellke, 2017), and quantifying the
computation hardness of learning neural networks; see e.g., Shamir (2016); Eldan & Shamir (2016);
Song et al. (2017). We defer our investigation toward this to future efforts.
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Notation. Given an integer n > 0, we define [n] = {1, . . . , n}. Given a matrix A ∈ Rn×m,
we denote ‖A‖ as a generic norm, ‖A‖2 as the spectral norm, ‖A‖F as the Frobenius norm, and
‖A‖2,1 =

∑n
i=1 ‖Ai∗‖2. We use the standard notations O (·), Θ (·), and Ω (·) to denote limiting

behaviors ignoring constants, and Õ (·), Θ̃ (·) and Ω̃ (·) to further ignore logarithmic factors.

2 PRELIMINARIES

We provide a brief description of the DNNs. Given an input x ∈ Rp0 , the output of a D-layer
network is defined as fDf (WD, x) = fWD

(· · · fW1
(x)) ∈ RpD , where fWd

(y) = σd (Wd · y) :
Rpd−1 → Rpd with an entry-wise activation function σd(·). We specify σd as the rectified linear
unit (ReLU) activation (Nair & Hinton, 2010) for ease of discussion. The extension to more general
activations, e.g., Lipschitz continuous functions, is straightforward. Then we denote DNNs with
bounded weight matricesWD = {Wd ∈ Rpd×pd−1}Dd=1 and ranks as

FD,‖·‖ =
{
f (WD, x) | ∀d ∈ [D],Wd ∈ WD, ‖Wd‖ ≤ Bd, rank (Wd) ≤ rd

}
, (1)

where x ∈ Rp0 is an input, and {Bd} are real positive constants. We will specify the norm ‖·‖ and
the corresponding upper bounds Bd, e.g., ‖·‖2 and Bd,2, or ‖·‖F and Bd,F, when necessary.

Given a loss function g(·, ·), we denote a class of loss functions measuring the discrepancy between
a DNN’s output f (WD, x) and the corresponding observation y ∈ Ym for a given input x ∈ Xm as

G
(
FD,‖·‖

)
=
{
g(f (WD, x) , y) ∈ R | x ∈ Xm, y ∈ Ym, f (·, ·) ∈ FD,‖·‖

}
,

where the sets of bounded inputs Xm and the corresponding observations Ym are

Xm = {xi ∈ Rp0 | ‖xi‖2 ≤ R for all i ∈ [m]} ⊂ X and Ym = {yi ∈ [pD] for all i ∈ [m]} ⊂ Y.
Then the empirical Rademacher complexity (ERC) of G

(
FD,‖·‖

)
given Xm and Ym is

Rm
(
G
(
FD,‖·‖

))
= E
ε∈{±1}m

[
sup

f(·,·)∈FD,‖·‖

∣∣∣∣ 1

m

m∑
i=1

εi · g (f (WD, xi) , yi)

∣∣∣∣
∣∣∣∣∣ Xm,Ym

]
, (2)

where {±1}m ∈ Rm is the set of vectors only containing entries +1 and−1, and ε ∈ Rm is a vector
with Rademacher entries, i.e., εi = +1 or −1 with equal probabilities.

Take the classification as an example. For multi-class classification, suppose pD = Nclass is the
number of classes. Consider g with bounded outputs, namely the ramp risk. Specifically, for an
input x belonging to class y ∈ [Nclass], we denote ν = (f (WD, x))y −maxi 6=y (f (WD, x))i. For
a given real value γ > 0, the class of ramp
risk functions with parameter γ is Gγ

(
FD,‖·‖

)
={

gγ (f (WD, x) , y) |fD ∈ FD,‖·‖
}

, where gγ is
1
γ -Lipschitz continuous, defined in (3). For conve-

gγ (f (WD, x) , y) =

 0, ν > γ
1− ν

γ , ν ∈ [0, γ]

1, ν < 0,
(3)

nience, we denote gγ (f (WD, x) , y) as gγ (f (WD, x)) (or gγ) in the rest of the paper.

Then the generalization error bound for PAC learning (Bartlett et al., 2017) (Lemma 3.1) states the
following. Given any real δ ∈ (0, 1) and gγ , with probability at least 1 − δ, we have that for any
f (·, ·) ∈ FD,‖·‖, the generalization error is upper bounded with respect to (w.r.t.) the ERC satisfies

E [gγ (f (WD, x))]− 1
m

∑m
i=1 gγ (f (WD, xi)) ≤ 2Rm

(
Gγ
(
FD,‖·‖

))
+ 3

√
log( 2

δ )
2m . (4)

The right hand side of (4) is viewed as a guaranteed error bound for the gap between the testing and
the empirical training performance. Since the ERC is generally the dominating term in (4), a small
Rm is desired for DNNs given the loss function gγ . Analogous results hold for regression tasks; see
e.g., Kearns & Vazirani (1994); Mohri et al. (2012) for details.

3 GENERALIZATION ERROR BOUND FOR DNNS

We introduce some additional notations first. Given any two layers i, j ∈ [D] and input x, we denote
Jxi:j as the Jacobian from layer i to layer j, i.e., fWj

(· · · fWi
(x)) = Jxi:j · x. For convenience, we

denote fWi
(x) = Jxi,i · x when i = j and denote Jxi:j = I when i > j. Next, we denote BJac,x

i:j,2 as an
upper bound of the norm of Jacobian for input x over the parameter, i.e., supWD

∥∥Jxi,i∥∥2
≤ BJac,x

i:j,2 .
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3.1 A TIGHTER ERC BOUND FOR DNNS

We first provide the ERC bound for the class of DNNs defined in (1) and Lipschitz loss functions in
the following theorem. The proof is provided in Appendix B.
Theorem 1. Let gγ be a 1

γ -Lipschitz loss function and FD,‖·‖2 be the class of DNNs defined in

(1), pd = p, rd = r for all d ∈ [D], BJac
\d,2 = maxd∈[D],x∈Xm B

Jac,x
1:(d−1),2B

Jac,x
(d+1):D,2, and CNet =

BJac
\d,2·R

√
Dm/r·maxd Bd,2

supf∈FD,‖·‖2
,x∈Xm gγ(f(WD,x)) . Then the ERC satisfies

Rm
(
Gγ
(
FD,‖·‖2

))
= O

(
R·
∏D
d=1 Bd,2

√
Dpr logCNet

γ
√
m

)
. (5)

Remark 1. Note that CNet depends on the norm of Jacobian, which is significantly smaller than the
product of matrix norms that is exponential on D in general. For example, when we obtain the net-
work from stochastic gradient descent using randomly initialized weights, then BJac

\d,2 �
∏
dBd,2.

Empirical distributions of BJac
\d,2 and

∏
dBd,2 are provided in Appendix A.2, where BJac

\d,2’s are
constants that are orders of magnitude smaller than

∏
dBd,2. Further experiment in Appendix A.3

shows thatBJac
\d,2 has a dependence slower than some low degree poly(depth), rather than exponential

on the depth as in
∏
dBd,2. Thus, logCNet can be considered as a constant almost independent of

D in practice. Even in the worst case that BJac
\d,2 ≈

∏
dBd,2 (this almost never happens in practice),

our bound is still tighter than existing spectral norm based bounds (Bartlett et al., 2017; Neyshabur
et al., 2017) by an order of

√
D. Also note that CNet is a quantity (including BJac

\d,2) only depending
on the training dataset, which is due to the fact that the ERC only depends on the training dataset.

For convenience, we treat R/γ as a constant here. We achieve Õ(ΠD
d=1Bd,2 ·

√
Dpr/m) in The-

orem 1, which is tighter than existing results based on the network sizes and norms of weight
matrices, as shown in Table 1. In particular, Neyshabur et al. (2015) show an exponential depen-
dence on D, i.e., O(2DΠD

d=1Bd,F/
√
m), which can be significantly larger than ours. Bartlett et al.

(2017); Neyshabur et al. (2017) demonstrate polynomial dependence on sizes and the spectral norm
of weights, i.e., Õ(ΠD

d=1Bd,2 ·
√
D3pr/m). Our result in (5) is tighter by an order of D, which is

significant in practice. More recently, Golowich et al. (2017) demonstrate a bound w.r.t the Frobe-
nius norm as Õ

(
ΠD
d=1Bd,F ·min

{√
D
m
,m−

1
4 · log

3
4 (m)

√
log (C )

})
, where C =

R·ΠDd=1Bd,F
supx∈Xm‖f(WD,x)‖2

.
This has a tighter dependence on network sizes. Nevertheless, ‖Wd‖F is generally

√
r times larger

than ‖Wd‖2, which results in an exponential dependence pD/2 compared with the bound based on
the spectral norm. Moreover, log(C ) is linear on D except that the stable ranks ‖Wd‖F / ‖Wd‖2
across all layers are close to 1 (rather than almost independent on D as in (5) without low-rank
constraints). In addition, it has m−

1
4 dependence rather than m−

1
2 except when D = O (

√
m). Note

that our bound is based on a novel characterization of Lipschitz properties of DNNs, which may be
of independent interest from the learning theory point of view. We refer to Appendix B for details.

We also remark that when achieving the same order of generalization errors, we allow the choices of
larger dimensions (D, p) and spectral norms of weight matrices, which lead to stronger expressive
power for DNNs. For example, when achieving the same bound with ‖Wd‖2 = 1 in spectral norm
based results (e.g. in ours) and ‖Wd‖F = 1 in Frobenius norm based results (e.g., in Golowich et al.
(2017)), they only have ‖Wd‖2 = O(1/

√
r) in Frobenius norm based results. The later results in a

much smaller space for eligible weight matrices as r is of order p in general (i.e., r = δp for some
constant δ ∈ (0, 1)), which may lead to weaker expressive ability of DNNs. We also demonstrate
numerically in Section 4.5 that when norms of weight matrices are constrained to be very small,
both training and testing performance degrade significantly. A quantitative analysis for the tradeoff
between the expressive ability and the generalization for DNNs is deferred to a future effort.

3.2 A SPECTRAL NORM FREE ERC BOUND

When, in addition, the loss function is bounded, we have the ERC bound free of the linear depen-
dence on the spectral norm, as in the following corollary. The proof is provided in Appendix C.
Corollary 1. In addition to the conditions in Theorem 1, suppose we further let gγ be bounded, i.e.,
|gγ | ≤ b. Then the ERC satisfies

Rm
(
Gγ
(
FD,‖·‖2

))
= O

(
min

{
R
∏D
d=1 Bd,2
γ , b

}
·
√

Dpr logCNet

m

)
. (6)
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The boundedness of Gγ holds for certain loss functions, e.g., the ramp risk defined in (3). When b
is constant (e.g., b = 1 for the ramp risk) and R

∏D
d=1Bd,2 > γ, we have that the ERC reduces to

Õ(
√
Dpr/m). This is close to the VC dimension of DNNs, which can be significantly tighter than

existing norm based bounds in general. Similar norm free results hold for the architectures discussed
in Section 4 using argument for Corollary 1, which we skip due to space limit. Moreover, our bound
(6) is also tighter than recent results that are free of linear dependence on

∏D
d=1Bd,2 (Zhou &

Feng, 2018; Arora et al., 2018). Specifically, Zhou & Feng (2018) show that the generalization
bound for CNNs is Õ

(
D
√
pr2/m

)
, which results in a bound larger than (6) by O(

√
Dr). Arora

et al. (2018) derive a bound for a compressed network in terms of some error-resilience parameters,
which is Õ(

√
D3p2/m) since the cushion parameter therein is of the order µ = O(1/

√
p). Further

discussion is provided in Appendix A.1.

4 EXPLORING NETWORK STRUCTURES

The generic result in Section 3 does not highlight explicitly the potential impacts for specific struc-
tures of the networks. In this section, we consider several popular architectures of DNNs, including
convolutional neural networks (CNNs) (Krizhevsky et al., 2012), residual networks (ResNets) (He
et al., 2016), and hyperspherical networks (SphereNets) (Liu et al., 2017b), and provide sharp char-
acterization of the corresponding generalization bounds. In particular, we consider orthogonal filters
and normalized weight matrices, which have shown good performance in both optimization and gen-
eralization (Mishkin & Matas, 2015; Huang et al., 2017). Such constraints can be enforced using
regularizations on filters and weight matrices, which is very efficient to implement in practice. This
is also closely related with normalization approaches, e.g., batch normalization (Ioffe & Szegedy,
2015) and layer normalization (Ba et al., 2016), which have achieved tremendous empirical success.

4.1 CNNS WITH ORTHOGONAL FILTERS

CNNs are one of the most powerful architectures in deep learning, especially in tasks related to im-
ages and videos (Goodfellow et al., 2016). We consider a tight characterization of the generalization
bound for CNNs by generating the weight matrices using unit norm orthogonal filters, which has
shown great empirical performance (Huang et al., 2017; Xie et al., 2017). Specifically, we generate
the weight matrices using a circulant approach, as follows. For the convolutional operation at the d-
th layer, we have nd channels of convolution
filters, each of which is generated from a kd-
dimensional feature using a stride side sd. Sup-
pose that sd divides both kd and pd−1, i.e., kd−1

sd

and pd−1

sd
are integers, then we have pd = nd·pd−1

sd
.

This is equivalent to fixing the weight matrix at
the d-th layer to be generated as in (7), where

for all j ∈ [nd], each W
(j)
d ∈ R

pd−1
sd
×pd−1

is formed in a circulant-like way using a vector
w(d,j) ∈ Rkd with unit norms for all j as in (8).

Wd =
[
W

(1)>
d · · · W (nd)>

d

]>
∈ Rpd×pd−1 , (7)

W
(j)
d =



w(d,j) 0 · · · · · · · · · · · · · · · · · · · · · · 0︸ ︷︷ ︸
∈Rpd−1−kd

0 · · · 0︸ ︷︷ ︸
∈Rsd

w(d,j) 0 · · · · · · · · · · · · · · · · 0︸ ︷︷ ︸
∈Rpd−1−kd−sd

...
w

(d,j)
(sd+1):kd

0 · · · · · · · · · · · · 0︸ ︷︷ ︸
∈Rpd−1−kd

w
(d,j)
1:sd


. (8)

When the stride size sd = 1, W (j)
d corresponds to a standard circulant matrix (Davis, 2012). The

following lemma establishes that when
{
w(d,j)

}nd
j=1

are orthogonal vectors with unit Euclidean
norms, the generalization bound only depend on sd and kd that are independent of the width pd. The
proof is provided in Appendix D.

Corollary 2. Let gγ be a 1
γ -Lipschitz and bounded loss function, i.e., |gγ | ≤ b, and FD,‖·‖2 be the

class of CNNs defined in (1). Suppose the weight matrices in CNNs are formed as in (7) and (8)
with sd = s, kd = k, and s divides both k and pd for all d ∈ [D], where

{
w(d,j)

}nd
j=1

satisfies

w(j)>w(i) = 0 for all i, j ∈ [nd] and i 6= j with
∥∥w(d,j)

∥∥
2

= 1 for all j ≤ nd. Denote CNet =

BJac
\d,2·R

√
Dm/s

supf∈FD,‖·‖2
,x∈Xm gγ(f(WD,x)) . Then the ERC for CNNs satisfies

Rm
(
Gγ
(
FD,‖·‖2

))
= O

(
min

{
R(k/s)D/2

γ , b
}
·
√

k
∑D
d=1 nd·logCNet

m

)
.
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Since nd ≤ k in our setting, the ERC for CNNs is proportional to
√
Dk2 instead of

√
Dpr. For the

orthogonal filtered considered in Corollary 2, we have ‖Wd‖F =
√
pd and ‖Wd‖2,1 = pd, which

lead to the bounds of CNNs in existing results in Table 2. In practice, one usually has kd � pd,
which exhibit a significant improvement over existing results, i.e.,

√
Dk2 �

√
D3p2. Even without

the orthogonal constraint on filters, the rank r in CNNs is usually of the same order with width p,
which also makes the existing bound unde-
sirable. On the other hand, it is widely
used in practice that kd = µsd for some
small constant µ ≥ 1 in CNNs, then we
have (kd/sd)

D/2 � pD/2 resulted from
Rm

(
Gγ
(
FD,‖·‖F

))
.

Remark 2. We consider vector input in
Corollary 2. For matrix inputs, e.g., images,
similar results hold by considering vectorized
input and permuting columns of Wd. Specif-
ically, suppose

√
kd and

√
pd−1 are integers

for ease of discussion. Consider the input as a
pd−1 dimensional vector obtained by vector-
izing a

√
pd−1 ×

√
pd−1 input matrix. When

the 2-dimensional (matrix) convolutional fil-
ters are of size

√
kd ×

√
kd, we form the rows

of each W (j)
d by concatenating

√
kd vectors

{w(j,i)}
√
kd

i=1 padded with 0’s, each of which is
a concatenation of one row of the filter of size√
kd with some zeros as follows:

Table 2: Comparison with existing norm based
bounds of CNNs. We suppose R and γ are generic
constants for ease of illustration. The results of
CNNs in existing works are obtained by substitut-
ing the corresponding norms of the weight matri-
ces generated by orthogonal filters, i.e., ‖Wd‖2 =√
k/s, ‖Wd‖F =

√
p, and ‖Wd‖2,1 = p.

Generalization Bound CNNs

Neyshabur et al. (2015) O
(

2D·p
D
2

√
m

)
Bartlett et al. (2017) Õ

(
( ks )

D−1
2 ·
√
D3p2

√
m

)
Neyshabur et al. (2017) Õ

(
( ks )

D−1
2 ·
√
D3p2

√
m

)
Golowich et al. (2017) Õ

(
p
D
2 min

{
1

4√m ,
√

D
m

})
Our results Õ

(
( ks )

D
2
√
Dk2

√
m

)

w(j,1)︸ ︷︷ ︸
∈R
√
kd

0 · · · · · · 0︸ ︷︷ ︸
∈R

√
pd−1
kd
−
√
kd

· · · · · · · · · w(j,
√
kd)︸ ︷︷ ︸

∈R
√
kd

0 · · · · · · 0︸ ︷︷ ︸
∈R

√
pd−1
kd
−
√
kd

0 · · · · · · · · · · · · 0︸ ︷︷ ︸
∈Rpd−1−

√
pd−1

.

Correspondingly, the stride size is s2d
kd

on average and we have ‖Wd‖2 ≤
kd
sd

if
∥∥w(j,i)

∥∥
2

= 1 for all
i, j; see Appendix F for details. This is equivalent to permuting the columns of Wd generated as in
(8) by vectorizing the matrix filters in order to validate the convolution of the filters with all patches
of the matrix input.
Remark 3. A more practical scenario for CNNs is when a network has a few fully connected layers
after the convolutional layers. Suppose we have DC convolutional layers and DF fully connected
layers. From the analysis in Corollary 2, when sd = kd for convolutional layers and ‖Wd‖2 = 1 for

fully connected layers, we have that the overall ERC satisfies Õ
(
R·
√
DCk

2+DF pr

γ
√
m

)
.

4.2 RESNETS WITH STRUCTURED WEIGHT MATRICES

Residual networks (ResNets) (He et al., 2016) is one of the most powerful architectures that allows
training of tremendously deep networks. Then we denote the class of ResNets with bounded weight
matrices VD = {Vd ∈ Rpd×qd}Dd=1, UD = {Ud ∈ Rqd×pd−1}Dd=1 as

FRN
D,‖·‖ =

{
f (VD,UD, x) ∈ RpD

∣∣ ‖Vd‖ ≤ BVd , ‖Ud‖ ≤ BUd}, (9)

Given an input x ∈ Rp0 , the output of a D-layer ResNet is defined as f (VD,UD, x) =
fVD,UD (· · · fV1,U1 (x)) ∈ RpD , where fVd,Ud (x) = σ (Vd · σ (Udx) + x). For any two layers i, j ∈
[D] and input x, we denote Jxi:j as the Jacobian from layer i to layer j, i.e., fVi,Uj (· · · fVi,Ui (x)) =

Jxi:j · x, and BJac,x
i:j,2 as an upper bound of the norm of Jacobian for input x over the parameter, i.e.,

supWD

∥∥Jxi,i∥∥2
≤ BJac,x

i:j,2 . We then provide an upper bound of the ERC for ResNets in the following
corollary. The proof is provided in Appendix E.
Corollary 3. Let gγ be a 1

γ -Lipschitz and bounded loss function, i.e., |gγ | ≤ b, and FRN
D,‖·‖2

be
the ResNets defined in (9) with pd = p and qd = q for all d ∈ [D], BJac

\d,2 = maxd∈[D],x∈Xm

BJac,x
1:(d−1),2B

Jac,x
(d+1):D,2, and CNet =

BJac
\d,2 maxd(BVd,2+BUd,2)R

√
m/q

supf∈FD,‖·‖2
,x∈Xm gγ(f(VD,VD,x)) . Then the ERC satisfies
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Rm
(
Gγ
(
FRN
D,‖·‖2

))
= O

(
min

{
R·
∏D
d=1(BVd,2BUd,2+1)

γ , b

}
·
√

Dpq·logCNet

m

)
.

Compared with the D-layer networks without shortcuts (1), ResNets have a stronger dependence
on the input due to the shortcuts structure, which leads to (BVd,2BUd,2 + 1) dependence for each
layer. When BVd,2 and BUd,2 are of order 1/

√
D, we still have

∏D
d=1 (BVd,2BUd,2 + 1) = O(1). This

partially explains the observation in practice that ResNets have good performance when the weight
matrices have relatively small scales. Also note that to achieve the same bound forRm

(
Gγ
(
FRN
D,‖·‖F

))
,

we require BVd,F, BUd,F ≤ c, which leads to a much smaller parameter space than the space corre-
sponding to BVd,2, BUd,2 ≤ c for the same c.

4.3 HYPERSPHERICAL NETWORKS

We also consider the hyperspherical networks (SphereNets) (Liu et al., 2017b), which demonstrate
improved performance than the vanilla DNNs. In specific, the SphereNets has the same architec-
ture with DNNs defined in (1), except that the weight matrix can be viewed as W̃d = SWd

Wd,
where SWd

is a diagonal matrix with the i-th diagonal entries being the Euclidean norm of the
i-th row of Wd. Note that we do not normalize the input x as in (Liu et al., 2017b) for ease
of the discussion. A direct result of applying Theorem 1 implies that Rm

(
Gγ
(
FSN
D,‖·‖2

))
=

Õ(R ·
∏D
d=1 BW̃d,2 ·

√
Dpr/ (γ

√
m)). Such a self-normalization architecture has a benefit that B

W̃d,2

is small (close to 1) in general when the weights are spread out. In addition, it has lower com-
putational costs than the weight normalization based on the spectral norm directly, and improved
empirical results over batch normalization have been observed (Liu et al., 2017b;a).

4.4 EXTENSION TO WIDTH-CHANGE OPERATIONS

Change the width for certain layers is a widely used operation, e.g., for CNNs and ResNets,
which can be viewed as a linear transformation in many cases. In specific, denote x{d} ∈ Rpd
as the output of the d-th layer. Then we can use a transformation matrix Td ∈ Rpd+1×pd to
denote the operation to change the dimension between the output of the d-th layer and the in-
put of the (d + 1)-th layer as fWd+1

(
x{d}

)
= σ

(
Wd+1Tdx

{d}). Denote the set of layers
with width changes by IT ⊆ [D]. Combining with Theorem 1, we have that the ERC satisfies

Rm
(
Gγ
(
FD,‖·‖2

))
= Õ

(
R·ΠDd=1Bd,2·Πt∈IT ‖Tt‖2·

√
Dpr

γ
√
m

)
. Next, we illustrate several popular ex-

amples to show that Πt∈IT ‖Tt‖2 is a size independent constant. We refer to Goodfellow et al.
(2016) for more operations of changing the width.

Width Expansion. Two popular types of width expansion are padding and 1 × 1 convolution. For
ease of discussion, suppose pd+1 = s · pd for some positive integer s ≥ 1. Taking padding with 0 as
an example, where we plug in (s− 1) zeros before each entry of x{d}, which is equivalent to setting
Td ∈ Rspd×pd with (Td)ij = 1 if i = js, and (Td)ij = 0 otherwise. This implies that ‖Td‖2 = 1.

For 1 × 1 convolution, suppose that the convolution features are {c1, . . . , cs}. Then we expand
width by performing convolution (essentially entry-wise product) using s features respectively. This
is equivalent to setting Td ∈ Rspd×pd with (Td)ij = ck if i = j+(k−1)s for k ∈ [s], and (Td)ij = 0

otherwise. It implies that ‖Td‖2 =
√∑s

i=1 c
2
i . When

∑s
i=1 c

2
i ≤ 1, we have ‖Td‖2 ≤ 1.

Width Reduction. Two popular types of width reduction are average pooling and max pooling.
Suppose pd+1 = pd

s is an integer for some positive integer s. For average pooling, we pool each
nonoverlapping s features into one feature. This is equivalent to setting Td ∈ R

pd
s ×pd with (Td)ij =

1/s if j = (i− 1)s+ k for k ∈ [s], and (Td)ij = 0 otherwise. This implies that ‖Td‖2 =
√

1/s.

For max pooling, we choose the largest entry in each nonoverlapping feature segment of length s.
Denote the set Is = {(i− 1)× s+ 1, . . . , i · s}. This is equivalent to setting Td ∈ R

pd
s ×pd with

(Td)ij = 1 if |(x{d})j | ≥ |(x{d})k| ∀ k ∈ Is, k 6= j, and (Td)ij = 0 otherwise. This implies that
‖Td‖2 = 1. For pooling with overlapping features, similar results hold.
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4.5 NUMERICAL EVALUATION

To better illustrate the difference between our result and existing ones, we demonstrate some com-
parison results in Figure 1 using real
data. In specific, we train a simpli-
fied VGG19-net (Simonyan & Zisser-
man, 2014) using 3 × 3 convolution fil-
ters (with unit norm constraints) on the
CIFAR-10 dataset (Krizhevsky & Hinton,
2009). We first compare with the capacity
terms in Bartlett et al. (2017) (Bound1),
Neyshabur et al. (2017) (Bound2), and
Golowich et al. (2017) (Bound3) by ignor-
ing the common factor R

γ
√
m

as follows:

• Ours: ΠD
d=1Bd,2

√
k
∑D
d=1 nd

• Bound1: ΠD
d=1Bd,2

(∑D
d=1

B
2/3
d,2→1

B
2/3
d,2

)3/2

• Bound2: ΠD
d=1Bd,2

√
D2p

∑D
d=1

pdB
2
d,F

B2
d,2

• Bound3: ΠD
d=1Bd,F

√
D

105

1010

1015

Ours Bound1 Bound2 Bound3

}
} }

}

0.99 0.98

0.81

0.26

0.92 0.91

0.76

0.23
Training Accuracy
Testing Accuracy

1 1/5 1/25 1/100

Filter Norm

A
cc

ur
ac

y

0.07 0.07

0.05

0.03

(a) (b)

Figure 1: Panel (a) shows comparison results for the
same VGG19 network trained on CIFAR10 using unit
norm filters. The vertical axis the corresponding bounds
in the logarithmic scale. Panel (b) shows the training ac-
curacy (red diamond), testing accuracy (blue cross), and
the empirical generalization error using different scales
of the filters listed on the horizontal axes.

Note that since we may have more filters nd than their dimension k, we do not assume orthogonality
here. Thus we simply use the upper bounds of norms Bd rather than the form as in Table 2. Follow-
ing the analysis of Theorem 1, we have

√
k
∑D
d=1 nd dependence rather than

√
Dpr as k

∑D
d=1 nd

is the total number free parameter for CNNs, where nd is the number of filters at d-th layer. Also
note that we ignore the logarithms factors in all bounds for simplicity and their empirical values are
small constants compared with the the dominating terms.

For the same network and corresponding weight matrices, we see from Figure 1 (a) that our result
(104 ∼ 105) is significantly smaller than Bartlett et al. (2017); Neyshabur et al. (2017) (108 ∼ 109)
and Golowich et al. (2017) (1014 ∼ 1015). As we have discussed, our bound benefits from tighter
dependence on the dimensions. Note that k

∑D
d=1 nd is approximately of order Dk2, which is sig-

nificantly smaller than
(∑D

d=1 B
2/3
d,2→1/B

2/3
d,2

)3 in Bartlett et al. (2017) and D2p
∑D
d=1 pdB

2
d,F/B

2
d,2 in

Neyshabur et al. (2017) (both are of order D3pr). In addition, this verifies that spectral dependence
is significantly tighter than Frobenius norm dependence in Golowich et al. (2017). Further, we show
the training accuracy, testing accuracy, and the empirical generalization error using different scales
on the norm of the filters in Figure 1 (b). We see that the generalization errors decrease when the
norm of filters decreases. However, note that when the norms are too small, the accuracies drop
significantly due to a potentially much smaller parameter space. Thus, the scales (norms) of the
weight matrices should be nether too large (induce large generalization error) nor too small (induce
low accuracy) and choosing proper scales is important in practice as existing works have shown. On
the other hand, this also support our claim that when Rm

(
Gγ
(
FD,‖·‖F

))
(or other existing bound)

attains the same order with our Rm
(
Gγ
(
FD,‖·‖2

))
, we have better training/testing performance.

Further experimental result that compare our bound (Corollary 1) with (Zhou & Feng, 2018; Arora
et al., 2018) in the bounded output case is provided in Appendix A.1.

We want to remark that all numerical evaluations are empirical estimation of the generalization
bounds, rather than their exact values. This is because all existing bounds requires to take uniform
bounds of some quantities on parameters or the supremum value over the entire space, which is em-
pirically not accessible. For example, in the case that when it involve the upper/lower bound of quan-
tities (norm, rank, or other parameters) depending on weight matrices, theoretically we should take
the values of their upper/lower bounds (this leads to worse empirical bounds) rather than estimating
them from the training process; or in the case that the bounds involve some quantities depending on
the supremum over the entire parameter space, numerical evaluations cannot exhaust the entire pa-
rameter space to reach the supremum (Bartlett et al., 2017; Golowich et al., 2017; Neyshabur et al.,
2015; 2017; Zhou & Feng, 2018; Arora et al., 2018). Our experiments here (including Appendix A)
cannot avoid such restrictions, but the comparison is fair across various bounds as they are obtained
from the same training process.
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A EXTENDED NUMERICAL RESULTS

A.1 COMPARISON WITH EXISTING RESULTS WITH BOUNDED OUTPUT

We compared our norms based bound with several other norm based results in Section 4.5. In
this section, we further compare our result with bounded output in Corollary 1 with Zhou & Feng
(2018); Arora et al. (2018). Analogous to Section 4.5, we train a simplified VGG19-net (Simonyan
& Zisserman, 2014) using 3 × 3 convolution filters (with unit norm constraints) on the CIFAR-10
dataset (Krizhevsky & Hinton, 2009). We compare with the capacity terms in Zhou & Feng (2018)
(Bound 1) and Arora et al. (2018) (Bound 2) by ignoring the factor R

γ
√
m

as follows:

• Ours: b
√
k
∑D
d=1 nd. Note that b = 1 in this case.

• Bound1:
√
Dk
∑D
d=1 rank(Wd) · nd. Note that their activation functions for the interme-

diate layers are sigmoid and the last layer is softmax, with squared error, which essentially
has a bounded output. We also take the last layer as convolution layer for ease of discussion.

• Bound2: maxx∈Xm ‖f(WD, x)‖2 · CDβ
√∑D

d=1
dk/se2
µ2
dµ

2
d→

, where C = Ω(1) is the activa-

tion contraction, β = Ω(1) is the well-distributed Jacobian, µd = O(1/
√
p) is the layer

cushion, and µd→ = O(1/
√
p) is the interlayer cushion. See more details in Arora et al.

(2018).

105

101

103

Ours Bound1 Bound2

102

104

Figure 2: Comparison results for the same VGG19 network trained on CIFAR10. The vertical axis
is the corresponding bounds in the logarithmic scale.

The resulting bounds on the trained networks are provided in Figure 2. We observe that our bound is
smaller than Zhou & Feng (2018); Arora et al. (2018) by at least an order of magnitude. Specifically,
our bound is of order ≈ 102, while Zhou & Feng (2018) result in a bound of order > 103 and Arora
et al. (2018) result in a bound of order > 104. This coincide with our discussion in Section 3.2 and
allows us to obtain non-vacuous bound (generalization bound < 1) with moderate training sample
sizes (e.g., m = Ω(104)). Also note that compared with the norm based based results in Figure 1,
the results here based on the bounded output are significantly tighter in general. We regard this as
a trade-off between the looser norm based bounds that allow more explicit interpretability in terms
of the weight matrix structures and the tighter bounds that are more obscure in terms of dependence
on the network structures. A result that have both merits are desired as a future direction.

A.2 COMPARISON BETWEEN BJAC
\d,2 AND

∏
dBd,2

We demonstrate the empirical difference between BJac
\d,2 and

∏
dBd,2. Using the same setting of the

network and dataset as above, we provide the empirical distribution of BJac
\d,2 and

∏
dBd,2 over the

training set using different random initializations of weight matrices, which is provided in Figure 3.
We can observe that the values of BJac

\d,2 are approximately 2 orders smaller than the values of∏
dBd,2, which support our claim that BJac

\d,2 is a tighter quantification then
∏
dBd,2.
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3026 28 32 34

BJac
\d,2

2500 29002700

⇧dBd,2

Figure 3: Empirical distribution of BJac
\d,2 and

∏
dBd,2 for the same VGG19 network trained on

CIFAR10.

A.3 DEPENDENCE OF BJAC
\d,2 AND

∏
dBd,2 ON DEPTH

We further provide an empirical evaluation to see how strong the quantities BJac
\d,2 and

∏
dBd,2

depend on the depth. Note that we use d as the variable for depth. Using the same setting as above,
we provide the magnitude of logBJac

\d,2 and log
∏
dBd,2 in Figure 4. We also provide the plots

for log d and log d2 as reference. We can observe that log
∏
dBd,2 has an approximately linear

dependence on the depth, which matches with our intuition. In terms of logBJac
\d,2, we can see that it

has a significantly slower increasing rate than log
∏
dBd,2. Compared with the reference plots log d

and log d2, we can observe even a slower rate than log d2. This further indicates that logBJac
\d,2 may

has a dependence slower than some low degree of poly(d).

2 64

⇧dBd,2

BJac
\d,2

d2

d

8 10 12 14

102

103

104

101

100

Depth

Figure 4: Comparison results for the dependence of BJac
\d,2 and

∏
dBd,2 on depth. The horizontal

axes is the depth and the vertical axes is the values of corresponding quantities in the logarithmic
scale.

B PROOF OF THEOREM 1

We start with some definitions of notations. Given a vector x ∈ Rp, we denote xi as the i-th
entry, and xi:j as a sub-vector indexed from i-th to j-th entries of x. Given a matrix A ∈ Rn×m,
we denote Aij as the entry corresponding to i-th row and j-th column, Ai∗ (A∗i) as the i-th row
(column), AI1I2 as a submatrix of A indexed by the set of rows I1 ⊆ [n] and columns I2 ⊆ [m].
Given two real values a, b ∈ R+, we write a . (&)b if a ≤ (≥)cb for some generic constant c > 0.

Our analysis is based on the characterization of the Lipschitz property of a given function on both
input and parameters. Such an idea can potentially provide tighter bound on the model capacity in
terms of these Lipschitz constants and the number of free parameters, including other architectures
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of DNNs. We first provide an upper bound for the Lipschitz constant of f (WD, x) in terms of the
input x.
Lemma 1. GivenWD, for any f (WD, ·) ∈ FD,‖·‖2 and x1, x2 ∈ Rp0 , we have

‖f (WD, x1)− f (WD, x2)‖2 ≤ ‖x1 − x2‖2 ·
D∏
d=1

Bd.

Proof. We prove by induction. Specifically, we have

‖f (WD, x1)− f (WD, x2)‖2 = ‖σ (WDf (WD−1, x1))− σ (WDf (WD−1, x2))‖2
(i)

≤ ‖WDf (WD−1, x1)−WDf (WD−1, x2)‖2
≤ ‖WD‖2 · ‖f (WD−1, x1)− f (WD−1, x2)‖2
≤ BD · ‖f (WD−1, x1)− f (WD−1, x2)‖2 ,

where (i) comes from the entry-wise 1–Lipschitz continuity of σ(·). For the first layer, we have

‖f (W1, x1)− f (W1, x2)‖2 = ‖σ (W1x1)− σ (WDx2)‖2 ≤ ‖W1x1 −W1x2‖2
≤ B1 · ‖x1 − x2‖2 .

By repeating the argument above, we complete the proof.

Next, we provide an upper bound for the Lipschitz constant of f (WD, x) in terms of the parameters
WD.

Lemma 2. Given any x ∈ Rp0 satisfying ‖x‖2 ≤ R, for any f (WD, x) , f
(
W̃D, x

)
∈ FD,‖·‖2

withWD = {Wd}Dd=1 and W̃D =
{
W̃d

}D
d=1

, and denoteBJac,x
\d,2 = maxd∈[D]B

Jac,x
1:(d−1),2B

Jac,x
(d+1):D,2,

then we have ∥∥∥f (WD, x)− f
(
W̃D, x

)∥∥∥
2
≤ BJac,x

\d,2 ·R
√
D

√√√√ D∑
d=1

‖Wd − W̃d‖2F.

Proof. Given x and two sets of weight matrices {Wd}Dd=1,
{
W̃d

}D
d=1

, we have∥∥∥fWD

(
fWD−1

(· · · fW1 (x))
)
− f

W̃D

(
f
W̃D−1

(
· · · f

W̃1
(x)
))∥∥∥

2

(i)
=

∥∥∥∥∥
D∑
d=1

fWD

(
· · · fWd+1

(
f
W̃d

(
· · · f

W̃1
(x)
)))

− fWD

(
· · · fWd

(
f
W̃d−1

(
· · · f

W̃1
(x)
)))∥∥∥∥∥

2

≤
D∑
d=1

∥∥∥fWD

(
· · · fWd+1

(
f
W̃d

(
· · · f

W̃1
(x)
)))

− fWD

(
· · · fWd

(
f
W̃d−1

(
· · · f

W̃1
(x)
)))∥∥∥

2

(ii)
=

D∑
d=1

∥∥∥Jx(d+1):D · fW̃d

(
· · · f

W̃1
(x)
)
− Jx(d+1):D · fWd

(
f
W̃d−1

(
· · · f

W̃1
(x)
))∥∥∥

2

(iii)

≤
D∑
d=1

BJac,x
(d+1):D ·

∥∥∥W̃dfW̃d−1

(
· · · f

W̃1
(x)
)
−WdfW̃d−1

(
· · · f

W̃1
(x)
)∥∥∥

2

≤
D∑
d=1

BJac,x
(d+1):D ·

∥∥∥Wd − W̃d

∥∥∥
2
·
∥∥∥fW̃d−1

(
· · · f

W̃1
(x)
)∥∥∥

2
, (10)

where (i) is derived from adding and subtracting intermediate neural network functions recurrently,
where fWD

(
· · · fWd+1

(
f
W̃d

(
· · · f

W̃1
(x)
)))

share the same output of activation functions from

d + 1-th layer to D-the layer with fWD

(
fWD−1

(· · · fW1 (x))
)
, (ii) is from fixing the activation

13
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function output, and (iii) is from the entry-wise 1–Lipschitz continuity of σ(·). On the other hand,
for any d ∈ [D], we further have

‖fWd
(· · · fW1

(x))‖2 = ‖Jx1:d · x‖2 ≤ B
Jac,x
1:d · ‖x‖2 . (11)

where (i) is from the entry-wise 1–Lipschitz continuity of σ(·) and (ii) is from recursively applying
the same argument.

In addition, we denote Wd = UdV
>
d and W̃d = ŨdṼ

>
d , where Ud, Vd, Ũd, Ṽd ∈ Rp×r and ‖U‖2 =

‖V ‖2 =
∥∥∥Ũ∥∥∥

2
=
∥∥∥Ṽ ∥∥∥

2
= ‖Wd‖1/22 . Then we have∥∥∥Wd − W̃d

∥∥∥
2

=
∥∥∥UdV >d − ŨdṼ >d ∥∥∥

2

=
∥∥∥UdV >d − UdṼ >d + UdṼ

>
d − ŨdṼ >d

∥∥∥
2

≤ ‖U‖2
∥∥∥V − Ṽ ∥∥∥

2
+
∥∥∥Ṽ ∥∥∥

2

∥∥∥U − Ũ∥∥∥
2

≤ ‖Wd‖1/22

(∥∥∥V − Ṽ ∥∥∥
F

+
∥∥∥U − Ũ∥∥∥

F

)
. (12)

Applying (10) recursively and combining (11) and (12), we obtain the desired result as∥∥∥fWD

(
fWD−1

(· · · fW1
(x))

)
− f

W̃D

(
f
W̃D−1

(
· · · f

W̃1
(x)
))∥∥∥

2

≤
D∑
d=1

BJac,x
(d+1):D ·B

Jac,x
1:(d−1) · ‖x‖2 · ‖Wd‖1/22

(∥∥∥V − Ṽ ∥∥∥
F

+
∥∥∥U − Ũ∥∥∥

F

)
≤ BJac,x

\d,2 ·R
√
D ·max

d
B

1/2
d,2

D∑
d=1

(∥∥∥V − Ṽ ∥∥∥
F

+
∥∥∥U − Ũ∥∥∥

F

)

≤ BJac,x
\d,2 ·R

√
2D ·max

d
B

1/2
d,2

√√√√ D∑
d=1

∥∥∥V − Ṽ ∥∥∥2

F
+
∥∥∥U − Ũ∥∥∥2

F
.

Lemma 3. Suppose g(w, x) is Lw-Lipschitz over w ∈ Rh with ‖w‖2 ≤ K and α =
supg∈G,x∈Xm |g(w, x)|. Then the ERC of G = {g(w, x)} satisfies

Rm (G) = O

α
√
h log KLw

√
m

α
√
h√

m

 .

Proof. For any w, w̃ ∈ Rh and Xm = {xi}mi=1, we consider the matric ∆ (g1, g2) =
maxxi∈Xm |g1(xi)− g2(xi)|, which satisfies

∆ (g1, g2) = max
x∈Xm

|g1(x)− g2(x)| = |g (w, x)− g (w̃, x)| ≤ Lw ‖w − w̃‖2 . (13)

Since g is a parametric function with h parameters, then we have the covering number of G under
the metric ∆ in (13) satisfies

N (G,∆, δ) ≤
(

3KLw
δ

)h
.

Then using the standard Dudley’s entropy integral bound on the ERC (Mohri et al., 2012), we have
the ERC satisfies

Rm (G) . inf
β>0

β +
1√
m

∫ supg∈G ∆(g,0)

β

√
logN (G,∆, δ) dδ. (14)

Since we have

α = sup
g∈G,x∈Xm

∆ (g, 0) = sup
g∈G,x∈Xm

|g(w, x)| .

14
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Then we have

Rm (G) . inf
β>0

β +
1√
m

∫ α

β

√
h log

KLw
δ

dδ

≤ inf
β>0

β + α

√
h log KLw

β

m

(i)

.
α
√
h log KLw

√
m

α
√
h√

m
,

where (i) is obtained by taking β = α
√
h/m.

By definition, we have α = supf∈FD,‖·‖2 ,x∈Xm
gγ (f (WD, x)). From Lemma 1 and 1

γ -Lipschitz
continuity of g, we also have

α ≤ LxR

γ
≤
R ·
∏D
d=1Bd,2
γ

. (15)

From Lemma 2, we have

Lw ≤ max
x∈Xm

BJac,x
\d,2 ·R

√
2D ·max

d
B

1/2
d,2 .

Moreover, when pd = p for all d ∈ [D], we have

K =

√√√√ D∑
d=1

‖Wd‖2F ≤
√
pD ·max

d
Bd,2.

Combining the results above with Lemma 3 and h = 2Dpr, we have

Rm (G) .
α
√
h log KLw

√
m

α
√
h√

m

.

R ·
∏D
d=1Bd,2

√
Dpr log

BJac
\d,2·R

√
Dm/r·maxd Bd,2

supf∈FD,‖·‖2
,x∈Xm gγ(f(WD,x))

γ
√
m

.

C PROOF OF COROLLARY 1

The analysis follows Theorem 1, except that the bound for α in (15) satisfies

α ≤ min

{
b,
R ·
∏D
d=1Bd,2
γ

}
,

since g satisfies |g| ≤ b and 1
γ -Lipschitz continuous. Then we have the desired result.

D PROOF OF COROLLARY 2

We first show that using unit norm filters for all d ∈ [D] and nd ≤ kd, we have

‖Wd‖2 =

√
kd
sd
, (16)

First note that when nd = kd, due to the orthogonality of
{
w(d,j)

}kd
j=1

, for all i, q ∈ [kd], i 6= q, we
have

kd∑
j=1

(
w

(d,j)
i

)2

= 1 and
kd∑
j=1

w(d,j)
q · w(d,j)

i = 0. (17)

15
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When nd = kd, we have for all i ∈ [pd−1], the diagonal entries of W>d Wd satisfy

(
W>d Wd

)
ii

=

kd∑
j=1

∥∥∥(W (j)
d

)
∗i

∥∥∥
2

=

kd∑
j=1

kd
sd∑
h=1

(
w

(d,j)
(i%sd)+(h−1)sd

)2 (i)
=
kd
sd
. (18)

where (i) is from (17). For the off-diagonal entries of W>d Wd, i.e., for i 6= q, i, q ∈ [pd], we have

(
W>d Wd

)
iq

=

kd∑
j=1

(
W

(j)
d

)>
∗q

(
W

(j)
d

)
∗i

=

kd∑
j=1

kd
sd∑
h=1

w
(d,j)
(i%sd)+(h−1)sd

· w(d,j)
(q%sd)+(h−1)sd

(i)
= 0, (19)

where (i) is from (17). Combining (18) and (19), we have that W>d Wd is a diagonal matrix with∥∥W>d Wd

∥∥
2

=
kd
sd

=⇒ ‖Wd‖2 =

√
kd
sd
.

For nd < nk, we have that Wd is a row-wise submatrix of that when nd = kd, denoted as W̃d. Let

S ∈ R
ndkd
sd
×pd be a row-wise submatrix of an identity matrix corresponding to sampling the row of

Wd to form W̃d. Then we have that (16) holds, and since∥∥∥W̃d

∥∥∥
2

=

√∥∥S ·WdW>d · S>
∥∥2

2
=

√
kd
sd
.

Suppose k1 = · · · = kD = k for ease of discussion. Then following the same argument as in the
proof of Theorem 1 and Lemma 3, we have

α = sup
f∈FD,‖·‖2 ,x∈Xm

gγ (f (WD, x)) ≤
R ·
∏D
d=1Bd,2
γ

=
R ·
∏D
d=1

√
k
sd

γ
,

Lw ≤ max
x∈Xm

BJac,x
\d,2 ·R

√
2Dk/s,

K =

√√√√ D∑
d=1

nd∑
j=1

∥∥w(d,j)
∥∥2

2
=

√√√√ D∑
d=1

nd, and

h = k

D∑
d=1

nd.

Using the fact that the number of parameters in each layer is no more than knd rather than 2pr, we
have

Rm (G) .
α
√
h log KLw

√
m

α
√
h√

m

.

R ·
∏D
d=1

√
k
sd
·

√
k
∑D
d=1 nd log

BJac
\d,2·R

√
Dm/s

supf∈FD,‖·‖2
,x∈Xm gγ(f(WD,x))

γ
√
m

.

E PROOF OF COROLLARY 3

The analysis is analogous to the proof for Theorem 1, but with different construction of the interme-
diate results. We first provide an upper bound for the Lipschitz constant of f (VD,UD, x) in terms
of x.

16
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Lemma 4. Given VD and UD, for any f (VD,UD, ·) ∈ FD,‖·‖2 and x1, x2 ∈ Rp0 , we have

‖f (VD,UD, x1)− f (VD,UD, x2)‖2 ≤ ‖x1 − x2‖2 ·Π
D
d=1 (BUd,2BVd,2 + 1) . (20)

Proof. Consider the ResNet layer, for any x1, x2 ∈ Rk, we have

‖f (VD,UD, x1)− f (VD,UD, x2)‖2
= ‖fVD,UD (· · · fV1,U1

(x1))− fVD,UD (· · · fV1,U1
(x2))‖2

=
∥∥σ (VD · σ (UD · fVD−1,UD−1

(· · · fV1,U1 (x1))
)

+ fVD−1,UD−1
(· · · fV1,U1 (x1))

)
− σ

(
VD · σ

(
UD · fVD−1,UD−1

(· · · fV1,U1
(x2))

)
+ fVD−1,UD−1

(· · · fV1,U1
(x2))

) ∥∥
2

(i)

≤
∥∥VD · σ (UD · fVD−1,UD−1

(· · · fV1,U1
(x1))

)
− VD · σ

(
UD · fVD−1,UD−1

(· · · fV1,U1
(x2))

)∥∥
2

+
∥∥fVD−1,UD−1

(· · · fV1,U1 (x1))− fVD−1,UD−1
(· · · fV1,U1 (x2))

∥∥
2

(ii)

≤ (‖VD‖2 ‖UD‖2 + 1) ·
∥∥fVD−1,UD−1

(· · · fV1,U1 (x1))− fVD−1,UD−1
(· · · fV1,U1 (x2))

∥∥
2
,

where (i) is the fact that σ is 1–Lipschitz, and (ii) is from repeating the arguments of (i) and (ii).
By recursively applying the argument above, we have the desired result.

Next, we provide an upper bound for the Lipschitz constant of f (VD,UD, x) in terms of VD and
UD.

Lemma 5. Given any x ∈ Rp0 satisfying ‖x‖2 ≤ R, for any f (VD,UD, x) , f
(
ṼD, ŨD, x

)
∈

FD,‖·‖2 with VD = {Vd}Dd=1, UD = {Ud}Dd=1 ,ṼD =
{
Ṽd

}D
d=1

, and ŨD =
{
Ũd

}D
d=1

, and denote

BJac,x
\d,2 = maxd∈[D]B

Jac,x
1:(d−1),2B

Jac,x
(d+1):D,2, then we have

∥∥∥f (VD,UD, x)− f
(
ṼD, ŨD, x

)∥∥∥
2

≤ BJac,x
\d,2 max

d
(BVd,2 +BUd,2)R

√
2D ·

√√√√ D∑
d=1

∥∥∥VD − ṼD∥∥∥2

F
+

D∑
d=1

∥∥∥UD − ŨD∥∥∥2

F
.

17
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Proof. Given x and two sets of weight matrices {Wd}Dd=1,
{
W̃d

}D
d=1

, we have∥∥∥fVD,UD (fVD−1,UD−1
(· · · fV1,U1

(x))
)
− fṼD,ŨD

(
fṼD−1,ŨD−1

(
· · · fṼ1,Ũ1

(x)
))∥∥∥

2

≤

∥∥∥∥∥
D∑
d=1

fVD,UD

(
· · · fVd+1,Ud+1

(
fṼd,Ũd (· · · )

))
− fVD,UD

(
· · · fVd+1,Ud+1

(
fṼd,Ud (· · · )

))
+ fVD,UD

(
· · · fVd+1,Ud+1

(
fṼd,Ud (· · · )

))
− fVD,UD

(
· · · fVd,Ud

(
fṼd−1,Ũd−1

(· · · )
))∥∥∥∥∥

2

≤
D∑
d=1

∥∥∥fVD,UD (· · · fVd+1,Ud+1

(
fṼd,Ũd (· · · )

))
− fVD,UD

(
· · · fVd+1,Ud+1

(
fṼd,Ud (· · · )

))∥∥∥
2

+

D∑
d=1

∥∥∥fVD,UD (· · · fVd+1,Ud+1

(
fṼd,Ud (· · · )

))
− fVD,UD

(
· · · fVd,Ud

(
fṼd−1,Ũd−1

(· · · )
))∥∥∥

2

=
D∑
d=1

∥∥∥Jx(d+1):D · fṼd,Ũd
(
fṼd−1,Ũd−1

(· · · )
)
− Jx(d+1):D · fṼd,Ud

(
fṼd−1,Ũd−1

(· · · )
)∥∥∥

2

+

D∑
d=1

∥∥∥Jx(d+1):D · fṼd,Ud
(
fṼd−1,Ũd−1

(· · · )
)
− Jx(d+1):D · fVd,Ud

(
fṼd−1,Ũd−1

(· · · )
)∥∥∥

2

≤
D∑
d=1

BJac,x
(d+1):D ·

∥∥∥fṼd,Ũd (fṼd−1,Ũd−1
(· · · )

)
− fṼd,Ud

(
fṼd−1,Ũd−1

(· · · )
)∥∥∥

2

+

D∑
d=1

BJac,x
(d+1):D ·

∥∥∥fṼd,Ud (fṼd−1,Ũd−1
(· · · )

)
− fVd,Ud

(
fṼd−1,Ũd−1

(· · · )
)∥∥∥

2

(i)

≤
D∑
d=1

BJac,x
(d+1):D ·

∥∥∥Ṽdσ (Ũd · fṼd−1,Ũd−1
(· · · )

)
− Ṽdσ

(
Ud · fṼd−1,Ũd−1

(· · · )
)∥∥∥

2

+

D∑
d=1

BJac,x
(d+1):D ·

∥∥∥Ṽdσ (Ud · fṼd−1,Ũd−1
(· · · )

)
− Vdσ

(
Ud · fṼd−1,Ũd−1

(· · · )
)∥∥∥

2

(ii)

≤
D∑
d=1

BJac,x
(d+1):D ·

(∥∥∥Ud − Ũd∥∥∥
2
‖Vd‖2 +

∥∥∥Vd − Ṽd∥∥∥
2
‖Ud‖2

)∥∥∥fṼd−1,Ũd−1
(· · · )

∥∥∥
2
, (21)

where (i) and (ii) from the entry-wise 1–Lipschitz continuity of σ(·). In addition, for any d ∈ [D],
we further have ∥∥∥fṼd−1,Ũd−1

(
· · · fṼ1,Ũ1

(x)
)∥∥∥

2
= ‖Jx1:d · x‖2 ≤ B

Jac,x
1:(d−1) · ‖x‖2 . (22)

Combining (21) and (22), we obtain∥∥∥fVD,UD (· · · fV1,U1
(x))− fṼD,ŨD

(
· · · fṼ1,Ũ1

(x)
)∥∥∥

2

≤
D∑
d=1

BJac,x
(d+1):D ·B

Jac,x
1:(d−1) · ‖x‖2 ·

(∥∥∥Vd − Ṽd∥∥∥
F
· ‖Ud‖2 +

∥∥∥Ud − Ũd∥∥∥
F
·
∥∥∥Ṽd∥∥∥

2

)
≤ BJac,x

\d,2 max
d

(BVd,2 +BUd,2)R

D∑
d=1

·
(∥∥∥Vd − Ṽd∥∥∥

F
+
∥∥∥Ud − Ũd∥∥∥

F

)

≤ BJac,x
\d,2 max

d
(BVd,2 +BUd,2)R

√
2D ·

√√√√ D∑
d=1

∥∥∥VD − ṼD∥∥∥2

F
+

D∑
d=1

∥∥∥UD − ŨD∥∥∥2

F
.
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On the other hand, for any d ∈ [D], we have

‖fVd,Ud (· · · fV1,U1
(x))‖2

(i)

≤ ‖Vd‖2 ‖Ud‖2 ·
∥∥fVd−1,Ud−1

(· · · fV1,U1 (x))
∥∥

2
+
∥∥fVd−1,Ud−1

(· · · fV1,U1 (x))
∥∥

2

(ii)

≤
d∏
i=1

(‖Vi‖2 ‖Ui‖2 + 1) · ‖x‖2 . (23)

where (i) is from the entry-wise 1–Lipschitz continuity of σ(·) and (ii) is from recursively applying
the same argument.

Let p1 = · · · = pD = p and q1 = · · · = qD = q. Then following the same argument as in the proof
of Theorem 1 and (23), we have

α = sup
f∈FD,‖·‖2 ,x∈Xm

gγ (f (VD,VD, x)) ≤
R ·
∏D
d=1 (BVd,2BUd,2 + 1)

γ
,

Lw ≤ max
x∈Xm

BJac,x
\d,2 max

d
(BVd,2 +BUd,2)R

√
2D,

K =

√√√√ D∑
d=1

‖Vd‖2F + ‖Ud‖2F ≤
√
pD ·max

d
(BVd,2 +BUd,2) , and h = 2Dpq,

Combining Lemma 3, and Lemma 4, Lemma 5, we have

Rm (G) .
α
√
h log KLw

√
m

α
√
h√

m

≤
R ·
∏D
d=1 (BVd,2BUd,2 + 1) ·

√
Dpq · log

(
BJac
\d,2 maxd(BVd,2+BUd,2)R

√
m/q

supf∈FD,‖·‖2
,x∈Xm gγ(f(VD,VD,x))

)
γ
√
m

.

F SPECTRAL BOUND FOR Wd IN CNNS WITH MATRIX FILTERS

We provide further discussion on the upper bound of the spectral norm for the weight matrix Wd in
CNNs with matrix filters. In particular, by denoting Wd using submatrices as in (7), i.e.,

Wd =
[
W

(1)>
d · · · W (nd)>

d

]>
∈ Rpd×pd−1 ,

we have that each block matrix W (j)
d is of the form

W
(j)
d =


W

(j)
d (1, 1) W

(j)
d (1, 2) · · · W

(j)
d

(
1,
√
pd−1

)
W

(j)
d (2, 1) W

(j)
d (2, 2) · · · W

(j)
d

(
2,
√
pd−1

)
...

...
. . .

...

W
(j)
d

(√
pd−1kd
sd

, 1

)
W

(j)
d

(√
pd−1kd
sd

, 2

)
· · · W

(j)
d

(√
pd−1kd
sd

,
√
pd−1

)
 ,
(24)
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where W (j)
d (i, l) ∈ R

√
pd−1kd
sd

×√pd−1 for all i ∈
[√

pd−1kd
sd

]
and l ∈

[√
pd−1

]
. Particularly, off-

diagonal blocks are zero matrices, i.e., W (j)
d (i, l) = 0 for i 6= l. For diagonal blocks, we have

W
(j)
d (i, i) =



w(j,1)︸ ︷︷ ︸
∈R
√
kd

0 · · · · · · · · · · · · 0︸ ︷︷ ︸
∈R

√
pd−1
kd
−
√
kd

· · · · · · · · · · · · · · ·w(j,
√
kd)︸ ︷︷ ︸

∈R
√
kd

0 · · · · · · · · · · · · · · · · · · · · · 0︸ ︷︷ ︸
∈R

√
pd−1
kd
−
√
kd

0 · · · 0︸ ︷︷ ︸
∈R

sd√
kd

w(j,1)︸ ︷︷ ︸
∈R
√
kd

0 · · · · · · · · · · · · 0︸ ︷︷ ︸
∈R

√
pd−1
kd
−
√
kd

· · · · · · · · · · · · · · ·w(j,
√
kd)︸ ︷︷ ︸

∈R
√
kd

0 · · · · · · · · · · · · · ·0︸ ︷︷ ︸
∈R

√
pd−1
kd
−
√
kd−

sd√
kd

...
w

(j,1){
sd√
kd

} 0 · · · · · · · · · · · · 0︸ ︷︷ ︸
∈R

√
pd−1
kd
−
√
kd

· · · · · · · · ·w(j,
√
kd)︸ ︷︷ ︸

∈R
√
kd

0 · · · · · · · · · · · · · · · · · · · ·0︸ ︷︷ ︸
∈R

√
pd−1
kd
−
√
kd

w
(j,1)

{ sd1 }


.

(25)

where w(j,1)

{ sd1 }
= w

(j,1)

1:
sd√
kd

∈ R
sd√
kd and w(j,1){

sd√
kd

} = w
(j,1)(√

kd−
sd√
kd

+1

)
:
√
kd

∈ R
sd√
kd . Combining (24)

and (25), we have that the stride for W (j)
d is s2d

kd
. Using the same analysis for Corollary 2. We have

‖Wd‖2 = 1 if
√∑

i

∥∥w(j,i)
∥∥2

2
= kd

sd
.

For image inputs, we need an even smaller matrix W (j)
d (i, i) with fewer rows than (25), denoted as

W
(j)
d (i, i) =



w(j,1)︸ ︷︷ ︸
∈R
√
kd

0 · · · · · · · · · · · · 0︸ ︷︷ ︸
∈R

√
pd−1
kd
−
√
kd

· · · · · · · · · · · · · · ·w(j,
√
kd)︸ ︷︷ ︸

∈R
√
kd

0 · · · · · · · · · · · · · · · · · · · · · 0︸ ︷︷ ︸
∈R

√
pd−1
kd
−
√
kd

0 · · · 0︸ ︷︷ ︸
∈R

sd√
kd

w(j,1)︸ ︷︷ ︸
∈R
√
kd

0 · · · · · · · · · · · · 0︸ ︷︷ ︸
∈R

√
pd−1
kd
−
√
kd

· · · · · · · · · · · · · · ·w(j,
√
kd)︸ ︷︷ ︸

∈R
√
kd

0 · · · · · · · · · · · · · ·0︸ ︷︷ ︸
∈R

√
pd−1
kd
−
√
kd−

sd√
kd

...
0 · · · · · · · · · · · · · · · · · · 0︸ ︷︷ ︸

∈R

√
pd−1
kd
−
√
kd

w(j,1)︸ ︷︷ ︸
∈R
√
kd

0 · · · · · · · · · · · · · · · 0︸ ︷︷ ︸
∈R

√
pd−1
kd
−
√
kd

· · · · · · · · · · · · · · ·w(j,
√
kd)︸ ︷︷ ︸

∈R
√
kd


.

(26)

Then ‖Wd‖2 ≤ 1 still holds if
√∑

i

∥∥w(j,i)
∥∥2

2
= kd

sd
since Wd generated using (26) is a submatrix

of Wd generated using (25).

20


	Introduction
	Preliminaries
	Generalization Error Bound for DNNs
	A Tighter ERC Bound for DNNs
	A Spectral Norm Free ERC Bound

	Exploring Network Structures
	CNNs with Orthogonal Filters
	ResNets with Structured Weight Matrices
	Hyperspherical Networks
	Extension to Width-Change Operations
	Numerical Evaluation

	Extended Numerical Results
	Comparison with Existing Results with Bounded Output
	Comparison between BJac"026E30F d,2 and d Bd,2
	Dependence of BJac"026E30F d,2 and d Bd,2 on Depth

	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Corollary 2
	Proof of Corollary 3
	Spectral Bound for Wd in CNNs with Matrix Filters

