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ABSTRACT

Mobile health biophysical sensors that continuously measure our current condi-
tions provide the framework for a personalized guidance system for the main-
tenance of healthy behaviors. However, this physiological sensor data is com-
monly plagued with missingness issues that cripple their rich diagnostic utility
as well as their ability to enable temporally-precise interventions. While there
is a sizable amount of research focusing on imputation methods, surprisingly, no
works have addressed the patterns of missingness, quasi-periodic signal structure,
and the between-subject heterogeneity that characterizes physiological signals in
mHealth applications. We present the PulseImpute Challenge, the first challenge
dataset for physiological signal imputation which includes a large set of baselines’
performances on realistic missingness models and data. Next, we demonstrate
the potential to address this quasi-periodic structure and heterogeneity with our
Bottlenecked Dilated Convolution Transformer, a transformer architecture with a
self-attention mechanism that scalably increases the temporal receptive field of the
query and key transformations. We visually demonstrate that the kernel similar-
ity in the attention model gives high similarity to similar temporal features across
quasi-periodic periods, even when the query point has been masked out. We hope
the release of our challenge task definitions and baseline implementations will
spur the community to address this challenging and important problem.

1 INTRODUCTION

A key approach to improving health outcomes for individuals with chronic conditions like diabetes
and heart disease is the use of wearable sensors, e.g. in smart watches, to monitor physiological
states and perform diagnosis and intervention. The field of mobile health (mHealth) addresses the
challenges of 1) reliably collecting physiological signals, such as ECG and PPG, from wearable
sensors during daily life, 2) using machine learning to extract actionable information about health
states from sensor data, and 3) delivering mobile interventions to improve outcomes (Rehg et al.,
2017). A key challenge is dealing with missing data, which arises from multiple causes: insecure
attachment of sensors to the body during excessive movement, intermittent wireless dropouts when
transmitting sensor data, low battery, and other participant adherence issues (Rahman et al., 2017).
Complex patterns of missingness can cause the failure of downstream machine learning methods
and result in lost opportunities to identify states of health risk and trigger interventions that could
improve outcomes.

While the problem of missing data has been widely studied in statistics (Little & Rubin, 2020) and
machine learning (Shukla & Marlin, 2021; Nabi et al., 2020; Mohan et al., 2013), there has been
surprisingly little work that systematically addresses the imputation of missing physiological data in
the mHealth setting.1 In contrast, a variety of sophisticated imputation methods have been developed
and validated on clinical datasets such as EHR data (Shukla & Marlin, 2021; Rubanova et al., 2019;
Yadav et al., 2018). While both mHealth and clinical data contain physiological signals, mHealth

1While all deployed mHealth systems contain methods for handling missing sensor data (see (Hovsepian
et al., 2015) for a representative example), the approach is typically based on heuristic rules and frequently
lacks quantitative evaluation of imputation accuracy.
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applications utilize high sampling rates, so that the morphological properties of the signal can be
exploited for automated analysis. For example, sampling ECG at 100 Hz exposes the structure
of the QRS complex, enabling individual beats to be segmented using peak detection (Park et al.,
2017). In contrast, physiological data in an EHR is typically summarized at the level of minutes
or hours, which is sufficient for clinical decision-making. As a result, there is a lack of imputation
methods designed for pulsative signals, which we define as high-frequency physiological signals that
exhibit a quasi-periodic structure due to their cardio-pulmonary origin, but also exhibit substantial
heterogeneity within- and between-subjects. Since pulsative signals such as ECG (Seshadri et al.,
2020), PPG (Biswas et al., 2019), RIP (Geck, 2013), ICG (Patterson, 1989), BCG (Inan et al.,
2015), and SCG (Wang et al., 2018) are widely-used in mHealth applications, a systematic approach
is needed to develop effective imputation methods.

In this work we introduce PulseImpute, a novel benchmark challenge task for the imputation of pul-
sative signals. The PulseImpute challenge utilizes two public-domain ECG datasets in conjunction
with two missingness models that reflect real-world sensor data loss scenarios: packet loss due to
wireless data transfer and block loss that reflects the loss of longer intervals of sampled data due to
issues of loose sensor attachment. In addition to quantifying the signal reconstruction accuracy fol-
lowing imputation, we also provide a novel downstream baseline peak detection task, that quantifies
the effect of imputation on the segmentation of ECG beats. This downstream task captures the im-
pact of imputation on health-related signal analysis. We provide extensive experimental evaluation,
benchmarking the accuracy of eight different classical and modern imputation approaches on our
novel challenge task.

A key challenge in imputing pulsative signals is to learn representations of the quasi-periodic signal
structure that can support the estimation of missing samples. Recently, transformer architectures
have been shown to be effective in a self-training task which is based on imputation, making them
an attractive choice. While a standard transformer model does not yield good results on pulsative
signals, we introduce a new architecture, Bottlenecked Dilated Convolution (BDC) transformer,
which is able to effectively capture a larger temporal receptive field while transforming the inputs
into the query and key values.

This paper makes the following contributions: 1) Provide a suite of novel benchmarking tasks that
focuses on the unique missingness patterns and applications of pulsative mHealth sensor data 2)
Introduce our BDC self-attention module for transformers and demonstrate through weight visual-
izations that it can learn to attend to quasi-periodic features while respecting between-subject het-
erogeneity 3) Demonstrate the effectiveness of our BDC model against a collection of other classical
and deep learning-based imputation models.

2 RELATED WORK

We organize the related works in the following way: 1) Works addressing pulsative data, which
are the most closely related, followed by 2) imputation work on non-pulsative but health-related
datasets, then 3) other works that have addressed the use of deep learning models for imputation.
There are a large number of classical imputation methods and specialized techniques for differ-
ent data types and problems which we lack the space to review, see Little & Rubin (2020) for an
overview. Note that our work assumes an MCAR missingness model, which is an accurate first ap-
proximation to the properties of mHealth data, but many prior works have developed more complex
missingness models.

Imputation of Pulsative Signals The most closely-related body of work that handles high frequency
physiological sensor data is VAR-IM (Bashir & Wei, 2018). They assume stationarity within an ECG
time-series and utilize a vector autoregressive model with expectation maximization and prediction
error minimization for imputation. Yang et al. (2020) uses RPCA as a matrix completion method
for imputation in ECG signals as an intermediate step for arrhythmia classification. Sarker et al.
(2016) makes a Missing At Random assumption on their inductive plethysmography and ECG data
to utilize a KNN-imputation strategy, however their intervention algorithm is designed to skip over
time points that had to be imputed. Similarly, Pires et al. (2020) utilizes a KNN for accelerometer
data. These works do not explore deep learning approaches and have not developed a framework for
pulsative signal imputation.
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Imputation of non-Pulsative Health Data TAR-BRITS (Feng & Narayanan, 2019), is a SOTA deep
learning method which uses a bidirectional RNN to impute multivariate health data sampled at a low
frequency, such as breathing rate, heart rate, and steps.2 Wu et al. (2020) utilizes a meta-learning
approach with a convolutional autoencoder imputation model on low frequency heart rate data col-
lected from smartwatches, which is extended from previous work in Lin et al.. Cheng et al. uses
Gaussian Processes to impute daily total steps and daily sleep hours collected from user-generated
mHealth data. Note that a recent study Goldberg et al. (2021) found that 11/36 of surveyed mHealth
studies used a multiple imputation method to address missingness.

Widely-used datasets for benchmarking imputation performance include the PhysioNet/CinC Chal-
lenge 2012 and MIMIC-III Clinical Database, both of which consist of sparse irregularly-sampled
multivariate time-series of vital measurements (Silva et al., 2012; Johnson et al., 2016). The KDD
Challenge Cup 2018 is another common dataset, which is regularly sampled and quasi-periodic, but
it lacks the distinctive morphology present in longitudinal health sensors data that reflects each in-
dividual’s cyclic bodily functions (KDD (2018)). In summary, while these prior challenge datasets
are health-related, they lack the pulsative properties of the ECG signals in our benchmark.

In summary, prior work on imputation of health-related signals has not addressed the imputation of
pulsative signals in a systematic or thorough way, and there is a lack of a well-defined challenge task
and benchmarks to spur research progress. Our work addresses this gap.

Deep Learning-Based Imputation Models and Datasets In the area of time-series imputation, the
most prior works are SOTA models based on deep learning: DeepMVI (Bansal et al., 2021), BRITS
(Cao et al., 2018), and E2GAN (Luo et al., 2019). DeepMVI utilizes a convolutational self-attention
mechanism augmented by a parallel kernel regression on a wide array of time-series datasets, such
as sales and electricity consumption. BRITS utilizes a bidirectional RNN with a temporal decay fac-
tor, and achieving strong results on imputation accuracy tasks for clinical measurements, air quality,
and human activity (Cao et al. (2018)). E2GAN utilizes a RNN-based autoencoder generator and
discriminator. This architecture is able to achieve SOTA on multiple downstream classification tasks
on clinical measurement and weather datasets (Luo et al. (2019)). In contrast to these approaches,
we present a novel bottlenecked dilated attention architecture which is a parameter-efficient pro-
cedure for generating the large receptive fields that are needed for imputation of pulsative signals.
Bansal et al. (2021) is related to this work in that a block-based missingness approach is used to
evaluate pattern reconstruction. In contrast, the works Cao et al. (2018); Luo et al. (2019); Choi
et al. (2020); Zhang et al. (2021) utilize a missingness model in which every time point independent
and randomly-selected observations are masked out.

3 CHALLENGE DESCRIPTION

We propose utilizing electrocardiogram (ECG) signals as the primary task for physiological sensor
benchmarking due to their highly representative pulsative nature of other physiological signals. ECG
signals typically have up to 12 different leads, in which each lead measures a different direction
of this electrical signal propagation through the heart. In the following sections we explore ECG
signal’s pulsative nature.

3.1 PHYSIOLOGICAL SENSOR CHALLENGES

Here we elaborate on our two challenges associated with physiological sensor data: 1) Non-
stationary covariance stemming from its quasi-periodicity and the 2) between subject heterogeneity

Because ECG signals are a measurement of how the heart operates, they are influenced by the
biological phenomenon of the variation of heart beats intervals (heart rate variability), that causes
its period to constantly change, leading to its ”almost periodic” quasiperiodicity (Bohr, 2018).

Between subject heterogeneity can be seen in how the ECG morphology will drastically change
depending on the subject’s heart health with the relative heights and widths holding clinical signifi-
cance. Additionally, there is much signal heterogeneity for those even within a given heart condition

2Note that such low-frequency mHealth data as heart rate and steps is obtained via the automated analysis
of high-frequency raw signals (e.g. PPG and accelerometry). But these works do not address missingness at
the level of the high frequency signal.
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class. For example, if a patient has left ventricular hypertrophy (LVH), this will increase ventricular
depolarization and therefore increase the amplitude of the QRS complex.

3.2 MHEALTH MISSINGNESS TASKS

Rahman et al. (2014) formulates the major data loss factors found within mHealth data: Phone off,
sensor off, sensor battery down, attachment loss, loss due to jerks, wireless packet loss, wireless
connection loss.

Attachment issues are the most prevalent cause of of missing data within mHealth sensor studies,
losing 2.23 hours of ECG data per day during awake hours in one study and 1.58 hours per day
in another (Rahman et al., 2014). The most common cause of attachment issues was intermittent
loosening, which we seek to model with our extended signal loss task. Assuming that after a
loosening, the subject will notice and then fix it, this may lead to a missingness of period of 1 to 5
seconds. For our task, we iterate from 1 to 5 seconds, choosing a random part of the signal of that
length to mask out. With our time signals lasting 10 seconds, this corresponds to 10%-50% of the
signal missing.

Another missingness paradigm is given by wireless packet loss while sensor device is sending infor-
mation packets to the storage/analysis device. While uncommon, an untimely packet loss may mask
out the critical R peak in an ECG signal, thus leading the algorithm to not detect the heart beat. The
mobile wearables in Hovsepian et al. (2015) send packets that cover .036 seconds and R waves in
leads 1 and 2 last 0.35 seconds at the most, for normal individuals (Pérez-Riera et al., 2016). There-
fore for our packet loss imputation task, we divide the signal roughly into 0.04 second chunks so
that each chunk represents a packet being sent. Then with a given probability from .1 to .5, we will
lose a packet, and mask out the corresponding chunk.

Multi-lead ECG wearables are not commonplace in mHealth wearables just yet, but the technology
for it is steadily developing. Recently, Hsu et al. (2019) developed a Wearable 12-Lead non-contact
electrocardiogram monitoring system. In our PTB-XL dataset, we utilize all 12 leads, and applying
missing mechanism to each channel independently to allow models to model both temporal and
cross-channel relationships.

3.3 MHEALTH DOWNSTREAM TASK

R peak detection in ECG is widely used to diagnose heart rhythm irregularities and estimate heart-
rate variability (Park et al., 2017). Therefore, it is critically important that during imputation of such
ECG signals, the reconstructed signal is able to properly recreate the R in the correct places. As a
downstream task, we first run the Christov (2004) peak detection algorithm on the clean waveform,
then mask out the waveform according to the missingness strategies above, and rerun the peak
detection to flag the peaks that have been lost. Next we apply the various imputation strategies to
impute the masked chunks before running the peak detection one last time to calculate the percentage
of missing peaks we were able to reconstruct. Peaks were matched with a detection tolerance of .02
seconds.

3.4 PHYSIOLOGICAL SENSOR DATASETS

The two datasets that we propose benchmarking on are MIMIC-III Waveforms and PTB-XL. Each
of the datasets are cleaned and cut to a 10 second length at 100 Hz. The rest of the paper will now
assume the waveforms are 10 seconds with 100 Hz.

MIMIC-III Waveform Database is a companion to the MIMIC-III Clinical Database and is composed
67,830 record sets of various waveforms such as ECG and PPG for approximately 30,000 ICU
patients. Due to inter-waveform alignment problems, each lead is treated as a separate waveform,
thus lending itself to a univariate imputation problem. After data cleaning, we have 569,598 ECG 1
lead waveforms.

PTB-XL is composed of 21,837 clinical 12-lead ECGs from 18885 patients. This data was annotated
by up to two cardiologists for 71 different SCP-ECG statements that cover diagnostic, form, and
rhythm statements. It contains a rich coverage of different disease pathologies as well as a large
portion of healthy control samples.
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3.5 BOTTLENECK DILATED CONVOLUTION TRANSFORMER ARCHITECTURE

In this section we will go over our proposed architecture by first giving background on transformers
and previous work on convolutional self-attention. We will then explain our BDC self-attention
module in detail before explaining the full architecture and loss function.

3.5.1 BACKGROUND

Tsai et al. (2019) demonstrates how the self-attention module can be reformulated as a kernel
regression model in equation 1. From a kernel regression perspective, we can the query points act
as evaluation points, the keys act as inducing points, and the values act as a representation of the
data. Equation 2 demonstrates how the query and key functions only operate on one temporal point
at a time, significantly limiting the information within the kernel comparison.

Attention(xq|Sxk
) =

(∑
xk

k(fq(xq), fk(xk))∑
xk′

k(fq(xq), fk(xk′))

)
v(X) (1)

with v(X) as the value function and k(·, ·) as the similarity kernel between query and key
functions, which is an exponential kernel in Vaswani et al. (2017). The query and key functions
fq(xq) = xqWq and fk(xk) = (xkWk)

T can be defined as 1-D convolutions with kernel size=1.

fqt,1:D = Xt,1:DW
q

=

∞∑
s=−∞

f(t− s)Xs,1:D where f(t− s) =

{
W q t− s = 0

0 elsewhere
(2)

Li et al. (2019) introduced convolutional self-attention, which reformulates the filter function
in equation 2 as equation 3, allowing for a larger temporal context to be used within the kernel.

f(t− s) =

{
W qt−s |t− s| ≤ b i−12 c
0 elsewhere

where i > 1 is the filter size (3)

3.5.2 BOTTLENECKED DILATED CONVOLUTION SELF-ATTENTION

As seen in Fig. 1a)., our increased receptive field attention mechanism is able to infer that the query
position corresponds to a PR segment, even when its masked out, then allow for the PR segments in
other periods to attend to it. When the query position is shifted to where the R wave would be, the
attention focuses on the R waves as well. This attention also enhances imputation performance, as
shown by the dotted line.

If we were to use a vanilla transformer with a kernel size of 1, the learned attention weights are
not meaningful, which can be seen in Fig. 1c). Previous approaches by Li et al. (2019) and Bansal
et al. (2021) utilize a convolution self-attention with a maximum kernel size of 9 and 3 respectively,
which is much smaller than an ECG period of 75 time points (given 100 Hz sampling). In Figure
1b) we can visualize the convolutational attention weights learned, which also fails to capture the
quasi-periodicity. Additionally, naively increasing the kernel size is not scalable, especially given
the increased dimensionality with multiple ECG leads and how other datasets may contain sampling
rates up 1000 Hz (Nemcova et al., 2021).

In order to increase our receptive field in a scalable way, we draw from van den Oord et al. (2016)
utilize stacked dilated convolutions with bottleneck layers and residual connections. The architec-
ture is shown in Fig. 2. The initial bottleneck layer helps to minimize the effects of high dimensional
model allowing for longer and more filters and residual connections facilitate efficient training (He
et al., 2015). Our BDC model using this method has 11 million parameters with an effective tem-
poral receptive field of 127, compared to a model that utilizes a convolution with kernel size of 127
having 273 million parameters.
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Figure 1: Imputation results with attention weights

Figure 2: Bottlenecked Dilated Convolution Module. In our model, we have 4 layers with dilated
factors of 1,2,2,4

We can now visualize the attention weights in Fig. 1a) learned and see that all of the other key
positions corresponding to the query’s wave position have an increased attention weights, clearly
reflecting the quasi-periodicity of the signal.

3.5.3 FULL ARCHITECTURE

We can will now describe our full architecture. Due to the increased positional context being baked
into the self-attention layer, we find that positional embeddings are not necessary for giving posi-
tional information. Outside of the transformer module, the rest of the architecture is kept simple
to showcase the effectiveness of our modified self-attention layer with a single transformer encoder
layer.

For the initial embedding of the raw waveform signal, we utilize a singular 1-D convolution to
embed the raw signal to a dimensionality of 1024 with a kernel size of 11, followed by a BatchNorm
and ReLU. For the final reconstruction layer, we mirror the embedding with a 1-D convolution and
kernel size of 11, projecting the encoded signal into the original dimensionality for evaluation.

3.5.4 MASKED PREDICTIVE REGRESSION LOSS FUNCTION

For training we utilize a masked predictive regression loss, which builds upon Devlin et al. (2018)
and Jiang et al. (2019). This task is designed to force the model to be robust against scenarios where
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either a large chunk or a small chunk of data is missing as well as not relying too much on other
channels for imputation.

For each waveform there is an equal probability of the 2 scenarios occurring:

1. The time-series is divided into .55 second chunks with a probability of being flagged as .15

2. The time-series is divided into .05 second chunks with a probability of being flagged as .15

Then if a chunk is flagged, with a probability of .8, we will set the value of the window to be 0,
with a probability of .1, we will introduce sinusoidal noise to the existing waveform, and with a
probability of .1, the window will remain unchanged. Given a multivariate input, then there is an
equal probability of flagging all channels together or independently. L1 reconstruction loss from the
flagged windows will then be calculated and backpropogated.

4 EXPERIMENTS

4.1 BASELINES

We compare our method against the most relevant classical imputation methods as well modern
machine learning methods. Models were trained on 2 Titan V GPUs (for MIMIC) or 2 Titan X GPUs
(for PTB-XL) until convergence or after 20 hours, whichever came first. BRIT’s training conditions
were kept constant from the author’s original implementation, and all transformer variants were
trained with the Adam optimizer with PyTorch’s default parameters.

• Mean Filling: Replace missing values with given signal’s global mean.This is a naive
approach that may lead to biased approaches, even among missing completely at random
scenarios (Jamshidian & Bentler (1999)).

• KNN: Replace missing value with the k=10 nearest temporal neighbor samples. This is a
common strategy used for imputing mHealth data (Sarker et al., 2016).

• Matrix Factorization: The time-series is formulated as matrix and factorized into low-
rank matrices for imputation. A classical approach that takes advantage of information
shared across signal dimensions, but is not be applicable in univariate time-series imputa-
tion.

• BRITS: Bidrectional RNN architecture with delayed gradients with hidden layer size in-
creased to match total parameters of CLASS transformer (Cao et al., 2018). They achieve
state of the art results of multiple multivariate time-series imputation tasks. In order con-
trol for parameter size compared to our BDC transformer, the total parameters is 11 million
with the hidden layers being set to 1200.

• Vanilla Transformer: Vanilla transformer encoder introduced by Vaswani et al. (2017)
with convolution attention kernel size of 1. Devlin et al. (2018) showed its potential for
usage for word token imputation as a pre-training task. It has 8 million parameters

• Conv9 Transformer: Transformer with convolution attentional kernel size of 9, which
was first introduced by Li et al. (2019). Bansal et al. (2021) extended this work to use a
convolutional attention transformer for imputation on an array of multivariate time-series
imputation tasks. The maximum kernel size used in either work is 9. It has 25 million
parameters.

• Conv127 Transformer: To control for temporal receptive field compared to our BDC
transformer, this convolutational attention has a kernel size of 127. It has 273 million
parameters.

• BDC Transformer: Our proposed transformer architecture which uses the bottlenecked
dilated convolution self-attention module to enhance the locality of the attention weights.
It has an effective temporal receptive field of 127, with total parameter count of 11 million.

Other distinctive methods that were not benchmarked include E2GAN (Luo et al., 2019), mTAN
(Shukla & Marlin, 2021), and RC-VAE+NART (Qi et al., 2020). E2GAN utilizes a GAN architec-
ture with a RNN-based autoencoder generator and RNN-based discriminator. However, GAN-based
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Table 1: PTB-XL Multivariate ECG Dataset

Packet Loss (RMSE / % Missing Peaks Reconstructed)
Prob Mean KNN MF BRITS Van.Tran. C9Tran. C127Tran. BDCTran.
0.10 14.36 / 9.76% 6.03 / 62.54% 2.10 / 88.96% 3.03 / 76.18% 5.21 / 69.43% 3.89 / 73.67% 4.75 / 75.65% 1.98 / 82.80%
0.20 28.77 / 7.75% 12.87 / 59.23% 5.24 / 86.13% 7.53 / 70.17% 9.77 / 74.17% 7.39 / 77.02% 9.98 / 76.93% 3.78 / 85.27%
0.30 43.11 / 6.37% 20.77 / 64.79% 9.92 / 82.17% 13.65 / 13.65% 13.97 / 77.70% 10.63 / 79.39% 16.18 / 77.59% 5.57 / 86.73%
0.40 57.51 / 5.27% 30.26 / 64.94% 16.90 / 77.03% 21.04 / 58.44% 18.55 / 79.73% 14.12 / 80.58% 23.63 / 77.46% 7.46 / 87.85%
0.50 71.94 / 4.28% 42.60 / 64.76% 27.28 / 69.26% 29.70 / 53.16% 24.11 / 80.44% 18.44 / 80.77% 32.97 / 76.92% 9.76 / 88.47%

Extended Signal Loss (RMSE / % Missing Peaks Reconstructed)
Seconds Mean KNN MF BRITS Van.Tran. C9Tran. C127Tran. BDCTran.

1 14.25 / 1.44% 5.65 / 69.94% 2.14 / 94.00% 13.37 / 47.81% 4.81 / 79.39% 3.77 / 84.50% 6.25 / 81.07% 2.78 / 92.37%
2 28.72 / 0.65% 12.25 / 70.42% 5.64 / 89.12% 27.35 / 34.30% 8.36 / 85.89% 7.13 / 87.43% 13.09 / 82.96% 5.28 / 93.23%
3 43.65 / 0.42% 20.71 / 70.14% 12.19 / 79.22% 38.85 / 26.06% 12.26 / 88.93% 10.96 / 88.77% 21.63 / 83.47% 7.91 / 93.65%
4 59.52 / 0.39% 35.62 / 69.45% 24.57 / 60.70% 52.45 / 18.65% 18.95 / 89.14% 17.18 / 87.41% 34.10 / 82.16% 11.03 / 93.12%
5 76.15 / 0.67% 59.75 / 59.42% 45.13 / 41.37 69.18 / 13.93% 36.88 / 75.20% 31.58 / 73.17% 51.97 / 67.31% 21.01 / 81.65%

Table 2: MIMIC Univariate ECG Dataset

Packet Loss (RMSE / % Missing Peaks Reconstructed)
Prob Mean KNN MF BRITS Van.Tran. C9Tran. C127Tran. BCDTran.
0.10 3.82 / 1.02% 4.22 / 0.95% N/A 3.55 / 0.095% 3.34 / 0.96% 4.06 / 0.95% 3.31 / 0.92% 1.04 / 1.10%
0.20 7.66 / 1.18% 8.47 / 1.07% N/A 8.57 / 1.05% 5.80 / 1.10% 8.15 / 1.07% 6.74 / 1.03% 1.96 / 1.39%
0.30 11.49 / 1.33% 12.70 / 1.17% N/A 12.84 / 1.17% 8.50 / 1.25% 12.22 / 1.19% 10.26 / 1.12% 2.91 / 1.69%
0.40 15.32 / 1.45% 16.92 / 1.24% N/A 16.88 / 1.28% 11.60 / 1.39% 16.29/ 1.30% 13.91 / 1.19% 4.03 / 1.97%
0.50 19.16 / 1.56% 21.14 / 1.29% N/A 21.09 / 1.41% 15.11 / 1.54% 20.36 / 1.42% 17.75 / 1.27% 6.35 / 2.29 %

Extended Signal Loss (RMSE / % Missing Peaks Reconstructed)
Seconds Mean KNN MF BRITS Van.Tran. C9Tran. C127Tran. BCDTran.

1 3.84 / 0.78% 4.24 / 0.77% N/A 4.23 / 0.78% 3.94 / 0.78% 4.07 / 0.78% 4.13 / 0.77% 3.61 / 0.96%
2 7.72 / 0.74% 8.45 / 0.73% N/A 8.45 / 0.74% 7.93 / 0.75% 8.14 / 0.74% 8.29 / 0.73% 6.61 / 0.98%
3 11.61 / 0.70% 12.66 / 0.69% N/A 12.72 / 0.70% 11.91 / 0.71% 12.19 / 0.71% 12.42 / 0.70% 10.10 / 0.99%
4 15.50 / 0.67% 16.87 / 0.66% N/A 17.03 / 0.67% 15.87 / 0.69% 16.30 / 0.68% 16.69 / 0.67% 14.08 / 0.97%
5 19.38 / 0.74% 21.10 / 0.72% N/A 21.31 / 0.74% 19.81 / 0.77% 20.38 / 0.75% 20.86 / 0.74% 17.89 / 0.98%

imputation networks learn to follow the distribution of the incomplete data rather than the complete
data, which would make them not well suited for physiological sensors data. This data has high
between-subject heterogeneity, even among those in the same class (i.e. two people with the same
heart condition will have different relative waveform heights in an ECG). This requires imputation
networks to carefully impute based off of each individual’s own signal morphology. mTAN ad-
dresses imputation as an interpolation task in an irregularly sampled time-series, which may work
well in other sparsely yet regularly sampled time-series, but is not appropriate in our densely regu-
larly sampled time-series. RC-VAE+NART improves on Liu et al. (2019), achieving SOTA results
on sequential imputation for trajectories, but this is distinct from our signals domain.

4.2 RESULTS AND DISCUSSION

Figure 3: Visualization of Univariate Imputation Results with Increasing Chunk Size

Our BDC Transformer outperforms the other baselines on most of the imputation tasks designed
around the mHealth missing data paradigm. Despite this, as we can see in in Fig. 3 and for the
percentage of R peaks reconstructed, there is room for improvement in the imputation results in the
univariate setting. Matrix factorization does very well in the multivariate imputation problems, able
to exploit the cross channel correlations, but it unfortunately cannot be used in the univariate case, as

8



Under review as a conference paper at ICLR 2022

the data matrix starts out being rank 1. Vanilla transformer ends up doing consistently better than the
convolutional attention transformer models, likely because of the greatly increased dimensionality
from the convolutional attention.

5 CONCLUSION AND FUTURE WORK

In summary, we propose a new set of imputation tasks that focus on the unique missingness paradigm
present in mHealth pulsative sensors. We show the utility of our BDC Transformer model in utilizing
large temporal receptive fields to calculate attention, and its strong performance in these imputation
tasks. For future work, we will design additional tasks that utilize further downstream tasks to test
how the models impute key signal features, such as a R-R peak detection task and introducing further
missingness paradigms such as using accelerometer data to artificially generate missingness.

REFERENCES

Parikshit Bansal, Prathamesh Deshpande, and Sunita Sarawagi. Missing value imputation on mul-
tidimensional time series. CoRR, abs/2103.01600, 2021. URL https://arxiv.org/abs/
2103.01600.

Faraj Bashir and Hua-Liang Wei. Handling missing data in multivariate time series using a vector
autoregressive model-imputation (var-im) algorithm. Neurocomputing, 276:23–30, 2018.

Dwaipayan Biswas, Neide Simoes-Capela, Chris Van Hoof, and Nick Van Helleputte. Heart Rate
Estimation from Wrist-Worn Photoplethysmography: A Review. IEEE Sensors Journal, 19(16):
6560–6570, 2019.

Harald Bohr. Almost periodic functions. Courier Dover Publications, 2018.

Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional recurrent
imputation for time series. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grau-
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