
LoRACoE: Improving Large Language Models via
Compostion-based LoRA Expert

Anonymous ACL submission

Abstract

The Mixture of Experts (MoE) architecture im-001
proves large language models (LLMs) by uti-002
lizing sparsely activated expert sub-networks003
with a routing module, but it typically demands004
high training cost. Previous work introduces005
parameter-efficient fine-tuning (PEFT) mod-006
ules, e.g., LoRA, to achieve a lightweight MoE007
for training efficiency. However, they construct008
static experts by manually splitting the LoRA009
parameters into fixed groups, which limits flex-010
ibility and dynamism. Furthermore, this man-011
ual partitioning also hinders the effective uti-012
lization of well-initialized LoRA modules. To013
address the challenges, we first delve into the014
parameter patterns in LoRA modules, revealing015
that there exists task-relevant parameters that016
are concentrated along the rank dimension of017
the LoRA parameters. Based on this, we re-018
design the construction of experts and propose019
the method LoRACoE (LoRA Composition of020
Experts). Specifically, when confronted with021
a task, it dynamically builds experts based on022
rank-level parameter composition, i.e., experts023
can flexibly combine rank-level parameters in024
LoRA module. Extensive experiments demon-025
strate that compared to other LoRA-based MoE026
methods, our method achieves better task per-027
formance across a broader range of tasks.028

1 Introduction029

The Mixture of Experts (MoE) architecture (Fedus030

et al., 2022; Jiang et al., 2024; Liu et al., 2024;031

Pióro et al., 2024; Yu et al., 2024) enhances the per-032

formance of large language models (LLMs) over033

traditional dense architectures (Chen et al., 2024a).034

In MoE, the model’s parameters are organized into035

groups known as "experts." During each forward036

pass, these experts are sparsely activated via a rout-037

ing mechanism (Fedus et al., 2022; Jiang et al.,038

2024), reducing the inference cost of LLMs. How-039

ever, during fine-tuning (Wei et al., 2021; Taori040

et al., 2023), all model parameters (or experts) still041

Original LoRA LoRAMoE

routing
weights

routing
weights

LoRAMoE Routing
Uniform Routing

Expert 1

Expert 2

Expert 3

LoRACoE Routing

LoRACoE (Ours)

routing
weights

Expert1

Expert3

Expert2

Figure 1: Comparison of construction in LoRA, Lo-
RAMoE, and LoRACoE (Ours). Our method is based
on a finer-grained partitioning of LoRA parameters, in-
corporating a redesigned expert mechanism that dynam-
ically composite LoRA parameters at output, thereby
achieving improved task performance.

need to be optimized, which makes the training 042

process inefficient (Jiang et al., 2024; Liu et al., 043

2024; Pióro et al., 2024; Yu et al., 2024). 044

To achieve lightweight, training-efficient MoE, 045

recent work integrates MoE with Parameter- 046

Efficient Fine-Tuning (PEFT) techniques (Hu et al., 047

2021; Dettmers et al., 2023; Xu et al., 2024), repre- 048

sented by LoRA-based MoE (Huang et al., 2023; 049

Zhu et al., 2023; Dou et al., 2024; Feng et al., 050

2024b; Li et al., 2024). In LoRA-based MoE, only 051

the added low-rank adapters are updated during 052

fine-tuning. However, it manually partition low- 053

rank adapters into parameter groups based on the 054

rank dimension to define experts (see Figure 1). 055

This static construction approach fixes the number 056

of experts and the parameters assigned to each ex- 057

pert, limiting the flexibility and dynamism of the 058

MoE architecture. Furthermore, such approach also 059

1

hinders the effective utilization of well-initialized060

LoRA modules (Hayou et al., 2024), increasing the061

training cost.062

In this work, we reconsider the design of ex-063

perts in LoRA-based MoE to achieve a lightweight,064

dynamic, and flexible MoE. We begin by analyz-065

ing parameter importance (Molchanov et al., 2019;066

Zhang et al., 2022, 2024) within LoRA modules067

and observe that each parameter holds varying im-068

portance across different tasks. More precisely, this069

variation occurs along the rank dimension, i.e., for070

certain tasks, parameters in some ranks are more071

crucial than those in other ranks (see Section 2.2).072

This phenomenon inspires us to weight the outputs073

of different ranks in the LoRA module, allowing074

for better utilization of task-related parameters.075

Based on this insight, we propose LoRACoE076

(LoRA Composition of Experts) that can provides077

a flexible and dynamic construction of experts. In-078

stead of manually partitioning parameters to define079

experts, it define an expert as a weighted combi-080

nation of ranks. To be more specific, when con-081

fronted with a task, the route module predicts the082

importance weight of each rank, and the expert is083

build upon the rank parameters weighted by these084

predictions. This shift from partitioning to compo-085

sitional expert construction provides finer control086

over LoRA parameters, optimizing their utilization087

for better performance.088

Extensive experiments on commonsense reason-089

ing and mathematical tasks, conducted across six090

backbone models (Touvron et al., 2023; Zhu et al.,091

2024; Yang et al., 2024) and thirteen datasets (Hu092

et al., 2023; Mitra et al., 2024) , demonstrate that093

LoRACoE outperforms both the original LoRA094

method and LoRA-based MoE approaches by sig-095

nificant margins. Our contributions are summa-096

rized as follows: 1097

1. We reveal the task-specific importance distri-098

bution across the rank dimension within the099

original LoRA method through a parameter100

importance analysis.101

2. Based on the observation, we propose a new102

expert construction method called LoRACoE103

that shifts from static parameter partitioning104

to dynamic parameter combination.105

3. We conduct extensive experiments on com-106

monsense reasoning and mathematical tasks107

1We will release our implementations to the public.

across different six models and thirteen 108

datasets to demonstrate the effectiveness of 109

our method. 110

2 Preliminaries and Observations 111

2.1 Preliminaries 112

Low-Rank adaptation. Low-Rank Adaptation 113

(LoRA) (Hu et al., 2021) is a parameter efficient 114

fine-tuning technique for large pre-trained mod- 115

els. Traditional fine-tuning approaches update all 116

model parameters, which can be computationally 117

expensive. LoRA addresses this by inserting train- 118

able low-rank matrices into the FFN layers or at- 119

tention matrices of models to capture the necessary 120

updates. This approach significantly reduces the 121

number of trainable parameters, thereby lowering 122

computational and storage costs. 123

Concretely, given a pre-trained weight matrix 124

W0 ∈ Rd×k, LoRA approximates the update to 125

W0 as the product of two low-rank matrices,and 126

the updated weights W are calculated through: 127

W = W0 +BA, 128

where B ∈ Rd×r and A ∈ Rr×k, with r ≪ 129

min(d, k). During fine-tuning, only the matrices A 130

and B are updated, while the original weights W0 131

remain frozen, making the fine-tuning process both 132

memory and computation-efficient. 133

Mixture of experts. Mixture of Experts (MoE) 134

(Jacobs et al., 1991; Shazeer et al., 2017; Lepikhin 135

et al., 2020) utilizes a sparse parameter activation 136

pattern, enabling the model to scale the number of 137

parameters while maintaining a constant computa- 138

tional cost. MoE architecture divides the param- 139

eters of the traditional transformer Feed-Forward 140

Network (FFN) layer into N experts, denoted as 141

{Ei}Ni=1, and designs a corresponding router g. For 142

a given input x, the output y of the MoE layer is a 143

weighted sum of outputs from N experts: 144

y =

N∑
i=1

gi(x)Ei(x), 145

where Ei(x) is the output of expert i, and gi(x) is 146

the routing function’s output. The routing function 147

varies depending on the specific routing algorithm 148

design. 149

Parameter importance. In previous studies on 150

the capabilities of LLM parameters, researchers 151

2

have identified regions within the model parame-152

ters that are highly task-relevant (Zhang et al., 2024;153

Chen et al., 2024b). This insight motivates us to in-154

vestigate similar regions within the LoRA modules.155

We adopt a commonly used method from previous156

work (Molchanov et al., 2019; Zhang et al., 2022)157

on parameter sensitivity analysis to apply to the158

LoRA modules.159

The assumption in these studies is that remov-160

ing a parameter (by setting its value to zero) and161

evaluating its impact on the model’s loss function162

can reveal its importance. Specifically, given a163

dataset D and a set of model parameters θ =164

[θ1, θ2, . . . , θd] ∈ Rd, with θj representing the j-165

th parameter. During training, the objective is to166

minimize the loss function L, which depends on167

both the dataset D and the model parameters θ.168

The importance of the j-th parameter θj is denoted169

as Ij(θ). The importance of a parameter can be170

quantified by the error introduced when that param-171

eter is removed, which, under the i.i.d. assumption,172

can be approximated by calculating the squared173

difference in loss before and after removing the174

parameter:175

Ij(θ) = |L(D, L(θ))− L(D, θ|θj = 0)| . (1)176

However, calculating this importance by remov-177

ing each parameter and measuring the change178

in loss is computationally expensive, particularly179

when the model has a large number of parameters.180

Therefore, following prior work (Molchanov et al.,181

2019; Zhang et al., 2022), we can use the Taylor182

expansion formula for L at θj = 0:183

L(D, θ) = L(D, θ|θj = 0)+

∂L
∂θj

(θj − 0) +
1

2!

∂2L
∂θ2j

(θj − 0)2 + · · ·
(2)184

After performing the Taylor expansion, calculat-185

ing the higher-order terms still remains a resource-186

intensive task. Therefore, we approximate the im-187

portance scores using only the first-order term of188

the Taylor expansion:189

Ij(θ) ≈
∣∣∣∣ ∂L∂θj · θj

∣∣∣∣ (3)190

2.2 Observation of LoRA Modules191

To investigate the properties of the LoRA mod-192

ule parameters, we trained LoRA using datasets193

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Im
po

rt
an

ce
 S

co
re

 V
ar

ia
nc

e

(10 4)

up_proj_rank
down_proj_rank
q_proj_rank

k_proj_rank
v_proj_rank
rank_avg

up_proj_d
down_proj_d
q_proj_d

k_proj_d
v_proj_d
d_or_k_avg

Figure 2: Average variance of the importance of LoRA
module parameters across different dimensions. Here,
rank_avg and d_or_k_avg represent the average vari-
ance calculated in the rank dimension and the input or
output dimensions of the LoRA module, respectively.

from multiple commonsense reasoning and math- 194

ematical tasks. For the commonsense tasks, we 195

select 75k samples from the commonsense task 196

training set of Hu et al. (2023), which includes 197

eight datasets: BoolQ (Clark et al., 2019), PIQA 198

(Bisk et al., 2020), SIQA (Sap et al., 2019), Hel- 199

laSwag (Zellers et al., 2019), WinoGrande (Sak- 200

aguchi et al., 2021), ARC-c, ARC-e (Clark et al., 201

2018), and OBQA (Mihaylov et al., 2018). For 202

the mathematical tasks, we curated 75k samples 203

from the OrcaMath (Mitra et al., 2024) to form 204

our math task dataset. We add the LoRA module 205

to different components of the model, including 206

the q_proj, k_proj, v_proj of attention modules, 207

as well as the up_proj and down_proj of FFN 208

modules. The LoRA modules are then trained us- 209

ing the constructed training set. After training the 210

LoRA modules, we employ the method described 211

in Section 2.2 to compute the parameter importance 212

scores on the validation set for different tasks, ul- 213

timately obtaining importance scores for each pa- 214

rameter in relation to the tasks. 215

Based on the importance scores obtained from 216

the aforementioned experiments, we can draw the 217

following conclusions: 218

Distribution patterns of task-relevant parame- 219

ters. We computed the average variance of the 220

parameters of the LoRA module at different posi- 221

tions, considering both the rank dimension and the 222

input or output dimensions of the LoRA module. 223

The statistical results are illustrated in the Figure 2. 224

we observe that the variance along the rank dimen- 225

sion is larger compared to the variance along the 226

input or output dimensions. Compared to the in- 227

put or output dimensions, the distribution of LoRA 228

3

parameters in the rank dimension is more uneven.229

This indicates that parameter importance tends to230

be more concentrated along the rank dimension231

rather than distributed along the input or output di-232

mensions of the LoRA module. This phenomenon233

provides insights for the subsequent design of more234

effective utilization methods for LoRA parameters235

in Section 3.236

Task-specific parameter activation patterns.237

We analyze the importance score patterns of pa-238

rameters across different tasks based on the impor-239

tance scores. From the parameter importance score240

correlation heatmaps across tasks in Figure 3, we241

observe significant positive and negative correla-242

tions in parameter importance between different243

tasks. For instance, in the BoolQ task, the distinct244

answer patterns compared to other question types245

lead to a notable divergence in parameter impor-246

tance patterns relative to other commonsense tasks.247

Similarly, for math-related tasks, the activation pat-248

terns tend to show more negative correlations with249

commonsense tasks, owing to the differences in250

task nature. For other commonsense tasks with251

similar answer patterns, the parameter importance252

patterns exhibit a high degree of correlation, indi-253

cating that the model employs similar parameter254

utilization patterns when performing these tasks.255

Correlation of parameter importance across256

ranks. We analyzed the correlation of parameter257

importance score in different LoRA ranks across258

all tasks. This analysis aims to illustrate the cor-259

relation in importance score patterns of different260

parameters within the LoRA module as influenced261

by varying inputs. As shown in the Figure 3, the262

parameter importance across different ranks ex-263

hibits either positive or negative correlations when264

performing different tasks. This observation sug-265

gests that parameters at different rank levels may266

have either synergistic or conflicting relationships.267

The original LoRA method, which does not apply268

weightings to parameters, may lead to suboptimal269

utilization of parameters.270

Based on these observations, which reveal a task-271

specific concentration of parameter importance at272

the rank level, we can assume that the LoRA mod-273

ule naturally learns a rank-level importance distri-274

bution during training. This phenomenon suggests275

a certain "specialized" correspondence between dif-276

ferent tasks and the parameters within the LoRA277

module. Therefore, given the inherent sensitivity278

or “expertise” exhibited by the LoRA module’s pa-279

rameters, the conventional approach of manually 280

dividing the LoRA parameters into expert groups 281

at the rank level needs to be reconsidered. 282

2.3 Limitations of Partition-based LoRAMoE 283

Given a LoRA module consists of matrices B ∈ 284

Rd×r and A ∈ Rr×k, partition-based LoRAMoE 285

methods will divide B and A into N sets of param- 286

eters. Therefore we acquire the result of matrices, 287

{Bi}Ni=1 and {Ai}Ni=1. Expert Ei composes of a 288

pair of Bi ∈ Rd×r/N and Ai ∈ Rr/N×k matrices. 289

Ei(x) = BiAix (4) 290

And with the pre-trained weight matrix W0 ∈ 291

Rd×k, N partition-based LoraMoE experts, de- 292

noted as {Ei}Ni=1 and a gating function g(x), the 293

output y of conventional partition-based methods 294

typically follow this approach: 295

y = W0x+
N∑
i=1

g(x)iEi(x) (5) 296

Under our observations and assumptions, this 297

method presents two significant drawbacks: (1) By 298

forcibly binding rank parameters to form experts, 299

the granularity of utilization controling across pa- 300

rameters during the learning process is reduced. (2) 301

The definition of experts in previous work is lim- 302

ited. Since experts are constructed based on rank 303

partitioning, the routing and weighted output of 304

these experts leverage only the parameters within 305

the ranks they control, without considering the rela- 306

tionships between the parameters they control and 307

those in other ranks. This constrains the flexibility 308

and effectiveness of the expert models. 309

3 LoRA Compositional Experts 310

3.1 Rank Wise Parameter Paritioning 311

Based on the observations from the LoRA mod- 312

ules trained on multiple tasks in Section 2.2, we 313

aim to develop a new expert design paradigm. 314

First, following the approach in (He, 2024), which 315

decomposes the FFN layer of Transformer mod- 316

els into vectors of dimension 1, we decompose 317

the A and B matrices of the LoRA module into 318

{Ai ∈ R1×k}ri=1 and {Bi ∈ Rd×1}ri=1. The fine- 319

grained partition of LoRA parameters enables us to 320

effectively control the model’s capabilities with 321

the finest granularity possible. Meanwhile this 322

finer-grained, non-binding partitioning allows us to 323

avoid the need for capability recovery, as required 324

4

BoolQ
OBQA

ARC-E
ARC-C

HellaPIQ
A

SiQ
A

Wino

Orca
Math

BoolQ

OBQA

ARC-E

ARC-C

Hella

PIQA

SiQA

Wino

OrcaMath

up_proj_5_LoRA_B

BoolQ
OBQA

ARC-E
ARC-C

HellaPIQ
A

SiQ
A

Wino

Orca
Math

BoolQ

OBQA

ARC-E

ARC-C

Hella

PIQA

SiQA

Wino

OrcaMath

k_proj_15_LoRA_B

BoolQ
OBQA

ARC-E
ARC-C

HellaPIQ
A

SiQ
A

Wino

Orca
Math

BoolQ

OBQA

ARC-E

ARC-C

Hella

PIQA

SiQA

Wino

OrcaMath

down_proj_25_LoRA_A

0 1 2 3 4 5 6 7 8 910 1112131415

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

up_proj_5_LoRA_B

0 1 2 3 4 5 6 7 8 910 1112131415

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

k_proj_15_LoRA_B

0 1 2 3 4 5 6 7 8 910 1112131415

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

down_proj_25_LoRA_A

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 3: Importance score correlation heatmaps of LoRA parameters for three modules w.r.t. different tasks (top)
and w.r.t. different ranks (bottom).

in upcycling-based MoE models (Zhu et al., 2024).325

Instead, we can achieve further optimization based326

on an well-initialized LoRA parameters.327

3.2 Composition-Based Expert Construction328

According to Section 2.2, LoRA parameters ex-329

hibit varying importance patterns across different330

tasks, and there exists a correlation in importance331

between different rank parameters. Consequently,332

in previous partition-based LoRAMoE algorithms,333

experts could only account for the importance334

of local parameters, failing to accurately capture335

the correlations among global parameters. Thus,336

by incorporating rank-level parameter partitioning,337

we propose LoRACoE, a design pattern based on338

combination-based experts. In LoRACoE, for a339

given partitioned LoRA matrices {Ai ∈ R1×k}ri=1340

and {Bi ∈ Rd×1}ri=1, each expert outputs a lin-341

ear combination Gi based on the input x. For E342

experts, we obtain E sets of linear combinations.343

To implement this expert mechanism, we de-344

sign a corresponding routing module Wroute ∈345

Rd×E×r. For the input to expert Ei, the corre-346

sponding parameter group Wroutei ∈ Rd×r from347

the routing module is used to obtain the weights348

Gi as follows:349

Gi(x) = Softmax(Wrouteix)350

Based on the parameter set {Ai ∈ R1×k}ri=1351

and {Bi ∈ Rd×1}ri=1 of the LoRA module and the352

composition weights of rank-level parameters G353

from different experts, the LoRACoE module will 354

output as follows: 355

LoRACoE(x) = W0x+
1

N

N∑
i=1

r∑
j=1

GijBjAjx 356

Here, x represents the input to the LoRACoE layer, 357

Bj and Aj represent the j-th vectors in the decom- 358

posed LoRA B and A matrices, Gij is the weight 359

of the i-th expert for the j-th rank, and W0 refers to 360

the pre-trained weights. The output of the weighted 361

LoRA module is then merged with the output of 362

the pre-trained weight as the final output of the 363

LoRACoE layer. 364

3.3 Training Procedure of LoRACoE 365

To ensure effective initialization of the LoRA mod- 366

ule and a stable training process for LoRACoE, we 367

followed a two-phase training procedure: LoRA 368

warm-up and joint training. First, for LoRA warm- 369

up, we perform a training of a standard LoRA mod- 370

ule, which serves as the starting point for the LoRA 371

module within LoRACoE. This step helps achieve 372

stable and efficient convergence in the final model 373

(Dua et al., 2021). Next, we conduct joint train- 374

ing of both the LoRA parameters and the routing 375

module. 376

5

Model Method Commonsense Math Insturction Following Avg.

Llama2-7b
FT 65.07 85.69 49.52 66.76

LoRA 63.26 75.42 55.75 64.81
LoRAMoE 74.01 82.94 57.79 71.58
LoRACoE 80.83 86.49 56.47 74.60

Llama2-13b
FT 74.49 83.63 61.03 73.05

LoRA 68.17 82.36 61.27 70.60
LoRAMoE 79.18 87.10 62.23 76.17
LoRACoE 81.53 90.50 65.22 79.08

Llama3-8b
FT 65.08 85.78 56.95 69.27

LoRA 68.11 82.69 65.34 72.05
LoRAMoE 78.89 88.98 67.38 78.42
LoRACoE 81.09 92.28 64.62 79.33

Qwen2-0.5b
FT 53.98 76.13 37.29 55.80

LoRA 55.15 69.57 35.61 53.44
LoRAMoE 57.50 72.35 31.89 53.91
LoRACoE 64.24 74.40 35.97 58.20

Qwen2-1.5b
FT 65.15 82.79 41.72 63.22

LoRA 73.17 85.03 48.08 68.76
LoRAMoE 73.81 85.98 46.64 68.81
LoRACoE 74.91 86.18 48.68 69.92

Qwen2-7b
FT 86.15 93.71 61.63 80.50

LoRA 84.78 93.88 62.95 80.54
LoRAMoE 85.18 94.36 62.11 80.55
LoRACoE 85.97 94.71 64.26 81.65

Table 1: Evaluating results of different methods on commonsense, math and Instruction following tasks. The best
results are in bold.Our method is marked in blue .

4 Experiments377

4.1 Experimental Setup378

Dataset. We construct a multi-task dataset based379

on commonsense and mathematical reasoning380

tasks. For commonsense tasks, we randomly select381

75k examples from the commonsense dataset in382

Hu et al. (2023) as the training set for common383

sense tasks. For mathematical tasks, we randomly384

sample a 75k subset from Mitra et al. (2024) as385

the training set for mathematical tasks. To evaluate386

the effectiveness of the method, we select the test387

set corresponding to the training set as the bench-388

mark for commonsense tasks.While for mathemati-389

cal tasks, we chose GSM8K (Cobbe et al., 2021),390

SVAMP (Patel et al., 2021), AddSub (Hosseini391

et al., 2014), MultiArith (Roy and Roth, 2016),392

SingleEq (Koncel-Kedziorski et al., 2015). Addi-393

tionally, to better test the generalization capabil-394

ity of our method, we also trained our approach395

on instruction-following tasks using datasets from396

prior work (Dong et al., 2024).We selected IFEval397

(Zhou et al., 2023) as the test set for instruction-398

following tasks.399

Models. As for the base models, we select 400

LLaMA2-7B, LLaMA2-13B (Touvron et al., 2023), 401

LLaMA3-8B (Dubey et al., 2024), Qwen2-0.5B, 402

Qwen2-1.5B and Qwen2-7B (Yang et al., 2024) to 403

validate the effectiveness of the method on base 404

model training at different parameter scales. 405

Baselines. For comparison methods in the peft 406

framework, we select LoRA (Hu et al., 2021) and 407

the partition-base LoRAMoE describe in Section 408

2.2. We also perform fine-tuning of all parameters 409

in models for comparison. 410

Implement details. In our experiments, we set 411

the rank for LoRA, LoRAMoE, and LoRACoE to 412

16, with α set to 32. For LoRAMoE, we configured 413

the number of experts to 4, while for LoRACoE, we 414

set it to 2. For the LLaMA series models, we used 415

a batch size of 16, and for the Qwen2 series mod- 416

els, we set the batch size to 32.To ensure fairness 417

in training, we set the number of training epochs 418

for all PEFT methods to 4. For the LoRACoE 419

method requiring two-stage training, we conduct 420

two epochs of initialization training followed by 421

two epochs of joint training. Detailed hyperparam- 422

eters can be found in Appendix A.To achieve better 423

6

Experts # LoRA Rank CS Avg. Math Avg.

2 8 79.93 84.87
2 16 80.46 86.78
2 32 79.02 87.36

2 16 80.46 86.78
4 16 80.22 86.69
8 16 80.31 86.93

2(inference w/o router) 16 80.02 86.11

Table 2: The ablation of experts and rank on Common-
sense (CS) and Math tasks.

inference and training efficiency for LoRACoE, we424

performed computation optimizations tailored to425

the architectural characteristics of LoRACoE and426

the FFN layers. The detailed optimization meth-427

ods and the resulting efficiency improvements are428

thoroughly analyzed in the Appendix C.429

4.2 Experimental Results and Discussion430

Main results. The results of our main experi-431

ments are in Table 1. Generally, we can observe432

that in terms of the overall performance across433

the three tasks, the methods with MoE architec-434

ture consistently outperform the standard LoRA435

approaches across different models, demonstrat-436

ing the promise of the sparse architecture. Sec-437

ondly, our composition-based LoRACoE achieves438

significant performance improvements over the439

partition-based LoRAMoE. Specifically, it outper-440

forms LoRAMoE by 3.02%, 2.91%, and 0.91% on441

the Llama2-7b, Llama2-13b, and Llama3-8b mod-442

els, respectively; on Qwen2 serie of models, Lo-443

RACoE outperforms LoRAMoE by 4.29%, 1.11%,444

and 1.01% on the Qwen2-0.5b, Qwen2-1.5b, and445

Qwen2-7b models, respectively. This highlights446

the advantages of this dynamic and flexible expert447

construction approach across all base model sizes,448

demonstrating the robustness and scalability of our449

method..450

Ablation on rank number. We conduct an ab-451

lation study on LoRA rank using the Llama2 7B452

model on commonsense and mathematical reason-453

ing tasks. The results are presented in Table 2. We454

find that for mathematical tasks, performance im-455

proves as the rank increases, but this trend does456

not hold for commonsense tasks. Considering that457

higher ranks result in greater computational over-458

head, we set the rank to 16 in our main experiments.459

Influence of parameter initialization in LoRA460

module and routing module. To achieve a bal-461

ance between performance and training efficiency462

in LoRACoE, we only train the LoRA module for463

initialization while leaving other modules randomly464

Method CS Avg. Math Avg.

LoRA 63.25 75.42
LoRAMoE 74.01 82.94

LoRACoE
with LoRA & Router warmup 80.82 86.49
with LoRA warmup 80.46 86.78
without warmup - -

Table 3: Ablation on initialization of LoRA module and
router module on commonsense(CS) and mathematical
reasoning tasks.

initialized. Here, we conduct two ablation experi- 465

ments: (1) applying warm-up initialization to the 466

LoRA module and the routing module; (2) skip- 467

ping warm-up initialization for both the LoRA and 468

routing modules. The results are shown in Table 3. 469

Note that we did not conduct experiments with only 470

the routing module warmed up because the rout- 471

ing module cannot provide meaningful weighted 472

information to an untrained LoRA module. 473

The results show that without warm-up initial- 474

ization for both the LoRA and routing modules, the 475

training becomes unstable, and the final training 476

loss fails to converge, so we do not report the perfor- 477

mance. In contrast, when only the LoRA module is 478

warmed up, the performance remains stable, high- 479

lighting the importance of warm-up initialization 480

for the LoRA module. 481

Parameter importance characteristics of differ- 482

ent methods. To investigate the dynamic charac- 483

teristics of rank-level parameter importance across 484

different methods after training, we analyzed pa- 485

rameter importance for LoRA, LoRAMoE, and 486

LoRACoE on HellaSwag (Zellers et al., 2019) and 487

BoolQ (Clark et al., 2019). The analysis results are 488

shown in the Figure 4. 489

First, both LoRAMoE and LoRACoE, allow pa- 490

rameters from different regions to exhibit varying 491

importance to different tasks. This means they can 492

utilize distinct parameters based on the task con- 493

fronted. In contrast, the original LoRA model does 494

not show a clear distinction in important parameter 495

regions between two different tasks. 496

Additionally, concerning the number of signifi- 497

cantly important ranks, it is evident from the graph 498

that LoRACoE can flexibly adjust the quantity 499

of important parameters compared to LoRAMoE 500

methods. Specifically, on the better-performing 501

HellaSwag task, LoRACoE achieves superior per- 502

formance using fewer important parameters, while 503

on the poorer-performing BoolQ task, LoRACoE 504

utilize more important ranks to hold significant im- 505

7

portance when learning this task, which results in506

better performance. However, LoRAMoE does not507

show any significant rank utilization ratio differ-508

ence between the two tasks. The above observa-509

tions may interpret the significant performance gap510

we observed in our experiments.511

Figure 4: Parameter importance comparison across
LoRA, LoRAMoE, and LoRACoE on HellaSwag and
BoolQ datasets. We sort the importance to provide a
more intuitive visual representation. This figure demon-
strates LoRACoE dynamically adjusts significant param-
eters, optimizing HellaSwag performance with fewer
important ranks and adapting more for BoolQ to boost
learning.

5 Related Work512

5.1 Mixture of Experts for LLMs513

The Mixture of Experts (MoE) architecture was514

first introduced in Jacobs et al. (1991), aiming to515

reduce interference between different types of sam-516

ples by employing multiple expert networks, with517

a gating network controlling their learning. The518

sparse-activated MoE design paradigm (Shazeer519

et al., 2017; Lepikhin et al., 2020; Fedus et al.,520

2022; Jiang et al., 2024) has significantly reduced521

computational costs by limiting the number of ac-522

tivated model parameters, thereby enabling better523

scalability. To make more effective use of pre-524

trained large language models (LLMs) as initializa-525

tion points, a series of upcycle methods have been 526

proposed (Cai et al., 2024; Wei et al., 2024; Zhu 527

et al., 2024). By leveraging pretrained models for 528

initialization, these methods not only achieve better 529

convergence and training stability but also reduce 530

the computational resources required. In our work, 531

we adopt a similar upcycle approach. By optimiz- 532

ing the expert design and preserving the properties 533

of initialized LoRA modules, we effectively utilize 534

these initialization points. 535

5.2 PEFT-based MoE 536

Recent work on PEFT-based MoE combines the 537

effectiveness of Mixture of Experts (MoE) in multi- 538

task scenarios with the efficiency of PEFT, show- 539

casing superior performance. Due to the expert 540

nature of MoE, some studies (Huang et al., 2023; 541

Wu et al., 2024; Feng et al., 2024a) have devel- 542

oped optimization algorithms that combine LoRA 543

modules trained on different tasks, enhancing the 544

generalization capability of multiple single-task 545

trained LoRA modules in multi-task settings. An- 546

other line of work trains LoRAMoE from scratch 547

on mixed-task datasets (Zhu et al., 2023; Dou et al., 548

2024; Ning et al., 2024). However, the expert de- 549

sign paradigms in the aforementioned works rely 550

on explicit partitioning of LoRA parameters, lead- 551

ing to a trade-off between the granularity of control 552

and the difficulty of training the routing module. In 553

our work, we fully exploit the advantages of pre- 554

trained LoRA modules and finer-grained parameter 555

control. 556

6 Conclusion 557

In this paper, we introduce LoRACoE, an effi- 558

cient fine-tuning method for Mixture of Experts 559

(MoE). We begin by analyzing the parameter im- 560

portance patterns within LoRA modules, identify- 561

ing task-relevant parameters that concentrate along 562

the rank dimension. Building on this insight, we 563

redesign the expert construction and propose Lo- 564

RACoE, a method that dynamically builds experts 565

through rank-level parameter composition. Exper- 566

iments demonstrate that LoRACoE achieves sig- 567

nificantly better performance compared to conven- 568

tional LoRA and LoRAMoE methods, without a 569

notable increase in computational resources. These 570

results highlight the effectiveness of our approach 571

and offer a new, dynamic, and flexible framework 572

for constructing MoE models. 573

8

Limitations574

In this paper, we achieve improved performance575

over LoRA and partition-based LoRAMoE by em-576

ploying a finer-grained model partitioning and a577

composition-based expert design. However, our578

approach has two notable limitations. First, the in-579

troduction of a composition-based routing module580

increases the number of trainable parameters due to581

the larger output dimension compared to traditional582

LoRAMoE methods. This increase in parameters583

has led to diminished returns from adding more584

experts in our experiments, highlighting a need585

for more parameter-efficient routing methods that586

maintain performance. Second, our LoRA module587

initialization relies on a training-based approach,588

which requires much computational resources. Ex-589

ploring more effective, training-free initialization590

methods for the LoRA modules could further im-591

prove the usability of LoRACoE.592

References593

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,594
et al. 2020. Piqa: Reasoning about physical com-595
monsense in natural language. In Proceedings of the596
AAAI conference on artificial intelligence, volume 34,597
pages 7432–7439.598

Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang,599
Sunghun Kim, and Jiayi Huang. 2024. A survey on600
mixture of experts. arXiv preprint arXiv:2407.06204.601

Guanjie Chen, Xinyu Zhao, Tianlong Chen, and602
Yu Cheng. 2024a. Moe-rbench: Towards building603
reliable language models with sparse mixture-of-604
experts. In Forty-first International Conference on605
Machine Learning, ICML 2024, Vienna, Austria, July606
21-27, 2024. OpenReview.net.607

Lihu Chen, Adam Dejl, and Francesca Toni. 2024b.608
Analyzing key neurons in large language models.609
arXiv preprint arXiv:2406.10868.610

Christopher Clark, Kenton Lee, Ming-Wei Chang,611
Tom Kwiatkowski, Michael Collins, and Kristina612
Toutanova. 2019. Boolq: Exploring the surprising613
difficulty of natural yes/no questions. arXiv preprint614
arXiv:1905.10044.615

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,616
Ashish Sabharwal, Carissa Schoenick, and Oyvind617
Tafjord. 2018. Think you have solved question an-618
swering? try arc, the ai2 reasoning challenge. arXiv619
preprint arXiv:1803.05457.620

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,621
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias622
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro623
Nakano, et al. 2021. Training verifiers to solve math624
word problems. arXiv preprint arXiv:2110.14168.625

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and 626
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning 627
of quantized llms. In Advances in Neural Information 628
Processing Systems 36: Annual Conference on Neu- 629
ral Information Processing Systems 2023, NeurIPS 630
2023, New Orleans, LA, USA, December 10 - 16, 631
2023. 632

Guanting Dong, Keming Lu, Chengpeng Li, Tingyu 633
Xia, Bowen Yu, Chang Zhou, and Jingren Zhou. 634
2024. Self-play with execution feedback: Improving 635
instruction-following capabilities of large language 636
models. CoRR, abs/2406.13542. 637

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Wei 638
Shen, Limao Xiong, Yuhao Zhou, Xiao Wang, Zhi- 639
heng Xi, Xiaoran Fan, et al. 2024. Loramoe: Allevi- 640
ating world knowledge forgetting in large language 641
models via moe-style plugin. In Proceedings of the 642
62nd Annual Meeting of the Association for Compu- 643
tational Linguistics (Volume 1: Long Papers), pages 644
1932–1945. 645

Dheeru Dua, Shruti Bhosale, Vedanuj Goswami, James 646
Cross, Mike Lewis, and Angela Fan. 2021. Tricks 647
for training sparse translation models. arXiv preprint 648
arXiv:2110.08246. 649

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 650
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 651
Akhil Mathur, Alan Schelten, Amy Yang, Angela 652
Fan, et al. 2024. The llama 3 herd of models. arXiv 653
preprint arXiv:2407.21783. 654

William Fedus, Barret Zoph, and Noam Shazeer. 2022. 655
Switch transformers: Scaling to trillion parameter 656
models with simple and efficient sparsity. Journal of 657
Machine Learning Research, 23(120):1–39. 658

Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Yu Han, 659
and Hao Wang. 2024a. Mixture-of-loras: An efficient 660
multitask tuning for large language models. arXiv 661
preprint arXiv:2403.03432. 662

Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Yu Han, 663
and Hao Wang. 2024b. Mixture-of-loras: An 664
efficient multitask tuning method for large lan- 665
guage models. In Proceedings of the 2024 666
Joint International Conference on Computational 667
Linguistics, Language Resources and Evaluation, 668
LREC/COLING 2024, 20-25 May, 2024, Torino, Italy, 669
pages 11371–11380. ELRA and ICCL. 670

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. 2024. The 671
impact of initialization on lora finetuning dynamics. 672
CoRR, abs/2406.08447. 673

Xu Owen He. 2024. Mixture of a million experts. arXiv 674
preprint arXiv:2407.04153. 675

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren 676
Etzioni, and Nate Kushman. 2014. Learning to solve 677
arithmetic word problems with verb categorization. 678
In Proceedings of the 2014 Conference on Empirical 679
Methods in Natural Language Processing (EMNLP), 680
pages 523–533. 681

9

https://openreview.net/forum?id=LyJ85kgHFe
https://openreview.net/forum?id=LyJ85kgHFe
https://openreview.net/forum?id=LyJ85kgHFe
https://openreview.net/forum?id=LyJ85kgHFe
https://openreview.net/forum?id=LyJ85kgHFe
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2406.13542
https://doi.org/10.48550/ARXIV.2406.13542
https://doi.org/10.48550/ARXIV.2406.13542
https://doi.org/10.48550/ARXIV.2406.13542
https://doi.org/10.48550/ARXIV.2406.13542
https://aclanthology.org/2024.lrec-main.994
https://aclanthology.org/2024.lrec-main.994
https://aclanthology.org/2024.lrec-main.994
https://aclanthology.org/2024.lrec-main.994
https://aclanthology.org/2024.lrec-main.994
https://doi.org/10.48550/ARXIV.2406.08447
https://doi.org/10.48550/ARXIV.2406.08447
https://doi.org/10.48550/ARXIV.2406.08447

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan682
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,683
and Weizhu Chen. 2021. Lora: Low-rank adap-684
tation of large language models. arXiv preprint685
arXiv:2106.09685.686

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-687
Peng Lim, Lidong Bing, Xing Xu, Soujanya Po-688
ria, and Roy Ka-Wei Lee. 2023. Llm-adapters:689
An adapter family for parameter-efficient fine-690
tuning of large language models. arXiv preprint691
arXiv:2304.01933.692

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu693
Pang, Chao Du, and Min Lin. 2023. Lorahub: Effi-694
cient cross-task generalization via dynamic lora com-695
position. arXiv preprint arXiv:2307.13269.696

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,697
and Geoffrey E Hinton. 1991. Adaptive mixtures of698
local experts. Neural computation, 3(1):79–87.699

Albert Q Jiang, Alexandre Sablayrolles, Antoine700
Roux, Arthur Mensch, Blanche Savary, Chris Bam-701
ford, Devendra Singh Chaplot, Diego de las Casas,702
Emma Bou Hanna, Florian Bressand, et al. 2024.703
Mixtral of experts. arXiv preprint arXiv:2401.04088.704

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish705
Sabharwal, Oren Etzioni, and Siena Dumas Ang.706
2015. Parsing algebraic word problems into equa-707
tions. Transactions of the Association for Computa-708
tional Linguistics, 3:585–597.709

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,710
Dehao Chen, Orhan Firat, Yanping Huang, Maxim711
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.712
Gshard: Scaling giant models with conditional com-713
putation and automatic sharding. arXiv preprint714
arXiv:2006.16668.715

Dengchun Li, Yingzi Ma, Naizheng Wang, Zhiyuan716
Cheng, Lei Duan, Jie Zuo, Cal Yang, and Mingjie717
Tang. 2024. Mixlora: Enhancing large language718
models fine-tuning with lora based mixture of experts.719
CoRR, abs/2404.15159.720

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang,721
Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong722
Ruan, Damai Dai, Daya Guo, et al. 2024.723
Deepseek-v2: A strong, economical, and efficient724
mixture-of-experts language model. arXiv preprint725
arXiv:2405.04434.726

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish727
Sabharwal. 2018. Can a suit of armor conduct elec-728
tricity? a new dataset for open book question answer-729
ing. arXiv preprint arXiv:1809.02789.730

Arindam Mitra, Hamed Khanpour, Corby Rosset, and731
Ahmed Awadallah. 2024. Orca-math: Unlocking732
the potential of slms in grade school math. arXiv733
preprint arXiv:2402.14830.734

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri 735
Frosio, and Jan Kautz. 2019. Importance estima- 736
tion for neural network pruning. In Proceedings of 737
the IEEE/CVF conference on computer vision and 738
pattern recognition, pages 11264–11272. 739

Lin Ning, Harsh Lara, Meiqi Guo, and Abhinav Rastogi. 740
2024. Mode: Effective multi-task parameter efficient 741
fine-tuning with a mixture of dyadic experts. arXiv 742
preprint arXiv:2408.01505. 743

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. 744
2021. Are nlp models really able to solve 745
simple math word problems? arXiv preprint 746
arXiv:2103.07191. 747

Maciej Pióro, Kamil Ciebiera, Krystian Król, Jan 748
Ludziejewski, and Sebastian Jaszczur. 2024. Moe- 749
mamba: Efficient selective state space models with 750
mixture of experts. CoRR, abs/2401.04081. 751

Subhro Roy and Dan Roth. 2016. Solving gen- 752
eral arithmetic word problems. arXiv preprint 753
arXiv:1608.01413. 754

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat- 755
ula, and Yejin Choi. 2021. Winogrande: An adver- 756
sarial winograd schema challenge at scale. Commu- 757
nications of the ACM, 64(9):99–106. 758

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan 759
LeBras, and Yejin Choi. 2019. Socialiqa: Com- 760
monsense reasoning about social interactions. arXiv 761
preprint arXiv:1904.09728. 762

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, 763
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff 764
Dean. 2017. Outrageously large neural networks: 765
The sparsely-gated mixture-of-experts layer. arXiv 766
preprint arXiv:1701.06538. 767

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 768
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 769
and Tatsunori B Hashimoto. 2023. Stanford alpaca: 770
An instruction-following llama model. 771

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 772
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 773
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 774
Bhosale, et al. 2023. Llama 2: Open founda- 775
tion and fine-tuned chat models. arXiv preprint 776
arXiv:2307.09288. 777

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin 778
Guu, Adams Wei Yu, Brian Lester, Nan Du, An- 779
drew M Dai, and Quoc V Le. 2021. Finetuned lan- 780
guage models are zero-shot learners. arXiv preprint 781
arXiv:2109.01652. 782

Tianwen Wei, Bo Zhu, Liang Zhao, Cheng Cheng, Biye 783
Li, Weiwei Lü, Peng Cheng, Jianhao Zhang, Xi- 784
aoyu Zhang, Liang Zeng, et al. 2024. Skywork- 785
moe: A deep dive into training techniques for 786
mixture-of-experts language models. arXiv preprint 787
arXiv:2406.06563. 788

10

https://doi.org/10.48550/ARXIV.2404.15159
https://doi.org/10.48550/ARXIV.2404.15159
https://doi.org/10.48550/ARXIV.2404.15159
https://doi.org/10.48550/ARXIV.2401.04081
https://doi.org/10.48550/ARXIV.2401.04081
https://doi.org/10.48550/ARXIV.2401.04081
https://doi.org/10.48550/ARXIV.2401.04081
https://doi.org/10.48550/ARXIV.2401.04081

Xun Wu, Shaohan Huang, and Furu Wei. 2024. Mixture789
of lora experts. arXiv preprint arXiv:2404.13628.790

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng791
Chang, Hengheng Zhang, Zhengsu Chen, Xiaopeng792
Zhang, and Qi Tian. 2024. Qa-lora: Quantization-793
aware low-rank adaptation of large language models.794
In The Twelfth International Conference on Learning795
Representations, ICLR 2024, Vienna, Austria, May796
7-11, 2024. OpenReview.net.797

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,798
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan799
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2800
technical report. arXiv preprint arXiv:2407.10671.801

Jiazuo Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong802
Wang, Huchuan Lu, and You He. 2024. Boosting803
continual learning of vision-language models via804
mixture-of-experts adapters. In IEEE/CVF Confer-805
ence on Computer Vision and Pattern Recognition,806
CVPR 2024, Seattle, WA, USA, June 16-22, 2024,807
pages 23219–23230. IEEE.808

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali809
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a810
machine really finish your sentence? arXiv preprint811
arXiv:1905.07830.812

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander813
Bukharin, Pengcheng He, Weizhu Chen, and Tuo814
Zhao. 2022. Platon: Pruning large transformer mod-815
els with upper confidence bound of weight impor-816
tance. In International conference on machine learn-817
ing, pages 26809–26823. PMLR.818

Zhihao Zhang, Jun Zhao, Qi Zhang, Tao Gui, and819
Xuanjing Huang. 2024. Unveiling linguistic re-820
gions in large language models. arXiv preprint821
arXiv:2402.14700.822

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha823
Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and824
Le Hou. 2023. Instruction-following evaluation for825
large language models. CoRR, abs/2311.07911.826

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan,827
Jingqi Tong, Conghui He, and Yu Cheng. 2024.828
Llama-moe: Building mixture-of-experts from829
llama with continual pre-training. arXiv preprint830
arXiv:2406.16554.831

Yun Zhu, Nevan Wichers, Chu-Cheng Lin, Xinyi832
Wang, Tianlong Chen, Lei Shu, Han Lu, Canoee833
Liu, Liangchen Luo, Jindong Chen, et al. 2023.834
Sira: Sparse mixture of low rank adaptation. arXiv835
preprint arXiv:2311.09179.836

A More Implementation Details837

We conducted our experiments on eight A100838

GPUs. In our setup, the rank for LoRA, LoRAMoE,839

and LoRACoE is set to 16, with α set to 32. The840

number of experts for LoRAMoE is set to 4, and841

for LoRACoE, it is set to 2. For the LLaMA se- 842

ries models, we use a batch size of 16, and for the 843

Qwen2 series models, we use a batch size of 32. 844

For LoRA and LoRAMoE training experiments, 845

we set the learning rate to 3e-4 and trained for 4 846

epochs. For LoRACoE training, we apply a staged 847

learning rate schedule: during the LoRA warmup, 848

the learning rate is set to 2e-4 for 2 epochs; for 849

the joint training stage, we set the learning rate 850

to 5e-5 over 2 epochs. For full fine-tuning, we 851

set a learning rate of 1e-5 for llama2-7b, llama2- 852

13b, llama3-8b, and Qwen2-7b. For Qwen2-1.5b 853

and Qwen2-0.5b, we set the learning rate to 5e-5. 854

All full-parameter fine-tuning is conducted over 2 855

epochs. 856

B Ablation on expert number. 857

As shown in Table 2, we evaluate the impact of 858

varying the number of experts on model perfor- 859

mance and we also removed the routing module 860

during inference to test the role of the routing mod- 861

ule in the inference process. We find that the perfor- 862

mance on commonsense and mathematical reason- 863

ing tasks does not increase significantly with more 864

experts. Considering that increasing the number 865

of experts further leads to an increase in the pa- 866

rameters of the routing module, we select 2 as the 867

expert number in main experiments.When the rout- 868

ing mechanism is used during training but removed 869

during inference, the model also experiences a de- 870

crease in performance. However, this decline is 871

smaller compared to removing the routing mecha- 872

nism during training(original LoRA method).This 873

phenomenon can be explained by the observations 874

in Figure 44. Specifically, after introducing the 875

routing mechanism during training, our method en- 876

ables better alignment between the parameters in 877

the LoRA module and the tasks, compared to the 878

original LoRA method. This helps mitigate poten- 879

tial conflicts in parameter updates during multi-task 880

training. 881

C Computation optimization for 882

LoRACoE 883

First, to optimize the computational efficiency of 884

LoRACoE, we conducted a theoretical analysis of 885

the computational consumption of the LoRACoE 886

method. 887

11

https://openreview.net/forum?id=WvFoJccpo8
https://openreview.net/forum?id=WvFoJccpo8
https://openreview.net/forum?id=WvFoJccpo8
https://doi.org/10.1109/CVPR52733.2024.02191
https://doi.org/10.1109/CVPR52733.2024.02191
https://doi.org/10.1109/CVPR52733.2024.02191
https://doi.org/10.1109/CVPR52733.2024.02191
https://doi.org/10.1109/CVPR52733.2024.02191
https://doi.org/10.48550/ARXIV.2311.07911
https://doi.org/10.48550/ARXIV.2311.07911
https://doi.org/10.48550/ARXIV.2311.07911

Method Memory util(GB) Relative ratio
Full Param Finetune 23.55 100%
LoRA 6.07 25.80%
LoRAMoE and Averaging 6.12 25.99%
LoRACoE 6.28 26.67%

Table 4: Memory usage of different methods based on
Qwen2-1.5B after model and optimizer initialization.

C.1 Parameter Analysis888

For the original LoRA method, its parameters con-889

sist of LoRA_A and LoRA_B, with a total parameter890

count of r(d+ k). For the LoRACoE method, the891

parameter count of the LoRA part is r(d+ k). For892

the Router module, with E composite experts, each893

expert consists of a d × r matrix. Hence, the pa-894

rameter count for the Router module is r · d · E.895

Therefore, the total parameter count in LoRACoE896

is r(d+ k + dE).897

C.2 Computation Cost Analysis898

For computation costs, under the same rank r,899

the computation cost of the LoRA module in Lo-900

RACoE is identical to that in the original LoRA901

method. The additional computation cost arises902

in the Router module, which mainly includes two903

parts:904

C.2.1 Vector-Matrix Multiplication905

The input vector multiplies with E d×r matrices to906

produce a tensor of shape (r, E). This step is equiv-907

alent to performing vector-matrix multiplication908

with E LoRA_A modules.In the main experimental909

setting, E = 2, r = 16, and considering r ≪ d,910

the first step introduces computational costs compa-911

rable to the LoRA module itself. In our optimized912

implementation, the E d× r matrices in the Router913

and the d×r LoRA_A module are concatenated into914

a d×r(E+1) two dimension matrix for matrix mul-915

tiplication.The output is then split in-place to obtain916

the outputs of LoRA_A module and the Router mod-917

ule. This approach fully utilizes GPU vector-matrix918

multiplication units (similar to the optimization919

used in vLLM for Attention).This implementation920

avoids introducing extra high-dimensional tensor921

operations or iterative computations, effectively922

controlling additional computational resource us-923

age.924

C.2.2 Softmax and Averaging925

The output tensor of shape (r, E) undergoes a soft-926

max operation along the 0th dimension (dimension927

r) without reduction, followed by an averaging928

operation along the 1st dimension (dimension E).929

Method Time(ms) Proportion
LoRA A 62.79 16.56%
LoRA B 46.96 17.19%
Outer product 49.60 19.52%
Router 39.84 20.61%
Softmax and Averaging 41.35 26.10%
Total time 240.57 100%

Table 5: Profiling for LoRACoE without computation
optimization.

Since r ≪ d and E ≪ d in both the LoRA matrix 930

and experimental settings, this step introduces only 931

minimal computational cost. 932

C.3 Performance Profiling 933

Based on the theoretical analysis above, we profile 934

the forward computation time of different modules 935

in LoRACoE, and the results obtained are shown 936

in the Table 5. It can be observed from the above 937

figure that the computations of the outer product 938

and Router modules account for 40% of the total 939

computation time. The computational optimiza- 940

tions mentioned earlier eliminate high-dimensional 941

outer product operations while effectively reducing 942

forward computation time by merging the Router 943

module with LoRA_A computations. The optimized 944

profiling results are shown at Table 6 below. Af-

Method Time(ms) Proportion
LoRA A + Router 98.38 53.70%
LoRA B 44.99 24.56%
Softmax and Averaging 39.80 21.73%
Total time 183.19 100%

Table 6: Profiling for LoRACoE with computation opti-
mization.

945
ter optimization, the forward computation time of 946

the LoRACoE module decreased from 240.57 ms 947

to 183.19 ms, representing a reduction of 23.8% 948

in computation time. We conducted further per- 949

formance comparisons during the training phase 950

under the same training setting, and the results 951

are shown in the Table 7. According to the re-

Method Training Epoch Total Training Time

LoRA 4 10,336.59 s
LoRAMoE 4 11,888.02 s
LoRACoE 4 10,828.51 s
LoRACoE w/o optim 4 32,398.48 s

Table 7: Training Time Consumption
952

sults, after optimization, our algorithm achieves 953

training times comparable to those of the baseline 954

LoRA method despite increase in the number of 955

parameters. Overall, by integrating computational 956

12

Model Method Lora Rank(r) Expert Number(E) Parameter Complexity Trainable parameter ratio* Math avg CS avg

llama2-7b

LoRA 16 0 r(d+k) 0.467% 75.42 63.26
LoRAMoE 16 4 r(d+k+d/E) 0.583% 82.94 74.01
LoRACoE 8 2 r(d+k+dE) 0.467% 85.97 79.16
LoRACoE 16 2 r(d+k+dE) 0.933% 86.49 80.83

Table 8: Model Performance Comparison.*Trainable parameter ratio refers to the proportion of newly added
trainable parameters relative to the pre-trained parameters.

optimizations with the LoRACoE algorithm, Lo-957

RACoE not only achieves superior performance but958

also becomes more cost-effective for deployment959

in real-world scenarios.960

D Analysis of Additional Parameters and961

Performance962

As shown in the table, under the setting where the963

LoRA rank is r, input dimension is d, output di-964

mension is k, and the number of experts is E, using965

the same LoRA rank, our method achieves better966

performance compared to the LoRA and partition-967

based LoRAMoE methods. However, the higher968

parameter complexity of our method leads to an969

inconsistency in the proportion of trainable param-970

eters.971

To address this, we reduce the rank number to972

maintain a consistent ratio of trainable parameters,973

and under this adjustment, our method still demon-974

strates better performance.975

13

	Introduction
	Preliminaries and Observations
	Preliminaries
	Observation of LoRA Modules
	Limitations of Partition-based LoRAMoE

	LoRA Compositional Experts
	Rank Wise Parameter Paritioning
	Composition-Based Expert Construction
	Training Procedure of LoRACoE

	Experiments
	Experimental Setup
	Experimental Results and Discussion

	Related Work
	Mixture of Experts for LLMs
	PEFT-based MoE

	Conclusion
	More Implementation Details
	Ablation on expert number.
	Computation optimization for LoRACoE
	Parameter Analysis
	Computation Cost Analysis
	Vector-Matrix Multiplication
	Softmax and Averaging

	Performance Profiling

	Analysis of Additional Parameters and Performance

