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ABSTRACT

Despite recent successes of reinforcement learning (RL), it remains a challenge for
agents to transfer learned skills to related environments. To facilitate research ad-
dressing this problem, we propose CausalWorld, a benchmark for causal structure
and transfer learning in a robotic manipulation environment. The environment is
a simulation of an open-source robotic platform, hence offering the possibility of
sim-to-real transfer. Tasks consist of constructing 3D shapes from a set of blocks
- inspired by how children learn to build complex structures. The key strength of
CausalWorld is that it provides a combinatorial family of such tasks with common
causal structure and underlying factors (including, e.g., robot and object masses,
colors, sizes). The user (or the agent) may intervene on all causal variables, which
allows for fine-grained control over how similar different tasks (or task distri-
butions) are. One can thus easily define training and evaluation distributions of
a desired difficulty level, targeting a specific form of generalization (e.g., only
changes in appearance or object mass). Further, this common parametrization fa-
cilitates defining curricula by interpolating between an initial and a target task.
While users may define their own task distributions, we present eight meaningful
distributions as concrete benchmarks, ranging from simple to very challenging, all
of which require long-horizon planning as well as precise low-level motor control.
Finally, we provide baseline results for a subset of these tasks on distinct training
curricula and corresponding evaluation protocols, verifying the feasibility of the
tasks in this benchmark.1

1 INTRODUCTION

  do(floor_color=’white’, 
      block_size=0.065, 
      …etc) 

Figure 1: Example of do-
interventions on exposed variables
in CausalWorld.

Benchmarks have played a crucial role in advancing entire
research fields, for instance computer vision with the intro-
duction of CIFAR-10 and ImageNet (Krizhevsky et al., 2009;
2012). When it comes to the field of reinforcement learning
(RL), similar breakthroughs have been achieved in domains
such as game playing (Mnih et al., 2013; Silver et al., 2017),
learning motor control for high-dimensional simulated robots
(Akkaya et al., 2019), multi-agent settings (Baker et al., 2019;
Berner et al., 2019) and for studying transfer in the context of
meta-learning (Yu et al., 2019). Nevertheless, trained agents
often fail to transfer the knowledge about the learned skills
from a training environment to a different but related environ-
ment sharing part of the underlying structure. This can be at-
tributed to the fact that it is quite common to evaluate an agent
on the training environments themselves, which leads to over-
fitting on these narrowly defined environments (Whiteson et al., 2011), or that algorithms are com-
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(a) Pushing (b) Picking (c) Pick and Place (d) Stacking2

(e) Stacked Blocks (f) General (g) CreativeStackedBlocks (h) Towers

Figure 2: Example tasks from the task generators provided in the benchmark. The goal shape is
visualized in opaque red and the blocks in blue.

pared using highly engineered and biased reward functions which may result in learning suboptimal
policies with respect to the desired behaviour; this is particularly evident in robotics.

In existing benchmarks (Yu et al., 2019; Goyal et al., 2019a; Cobbe et al., 2018; Bellemare et al.,
2013; James et al., 2020) the amount of shared causal structure between the different environments
is mostly unknown. For instance, in the Atari Arcade Learning environments, it is unclear how to
quantify the underlying similarities between different Atari games and we generally do not know to
which degree an agent can be expected to generalize.

To overcome these limitations, we introduce a novel benchmark in a robotic manipulation envi-
ronment that we call CausalWorld. It features a diverse set of environments that, in contrast to
previous designs, share a large set of parameters and parts of the causal structure. Being able to inter-
vene on these parameters (individually or collectively) permits the experimenter to evaluate agents’
generalization abilities with respect to different types and magnitudes of changes in the environment.
These parameters can be varied gradually, which yields a continuum of similar environments. This
allows for fine-grained control of training and test distributions and the design of learning curricula.

A remarkable skill that humans learn to master early on in their life is building complex struc-
tures using spatial-reasoning and dexterous manipulation abilities (Casey et al., 2008; Caldera et al.,
1999; Kamii et al., 2004). Playing with toy blocks constitutes a natural environment for children to
develop important visual-spatial skills, helping them ‘generalize’ in building complex composition
designs from presented or imagined goal structures (Verdine et al., 2017; Nath & Szücs, 2014; De-
war, 2018; Richardson et al., 2014). Inspired by this, CausalWorld is designed to aid in learning
and investigating these skills in a simulated robotic manipulation environment corresponding to the
open-source TriFinger robot platform from Wüthrich et al. (2020), which can be built in the real
world. Tasks are formulated as building 3D goal shapes using a set of available blocks by manipu-
lating them - as seen in Fig. 1. This yields a diverse familiy of tasks, ranging from relatively simple
(e.g. pushing a single object) to extremely hard (e.g. building a complex structure from a large
number of objects).

CausalWorld improves upon previous benchmarks by exposing a large set of parameters in the
causal generative model of the environments, such as weight, shape and appearance of the building
blocks and the robot itself. The possibility of intervening on any of these properties at any point
in time allows one to set up training curricula or to evaluate an agent’s generalization capability
with respect to different parameters. Furthermore, in contrast to previous benchmarks (Chevalier-
Boisvert et al., 2018; Cobbe et al., 2018), researchers may build their own real-world platform of
this simulator at low cost, as detailed in Wüthrich et al. (2020), and transfer their trained policies to
the real world.
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RLBench 7 7 7 7 7 3 7 3 7 7

MetaWorld 7 7 7 7 7 3 7 3 7 7

IKEA 7 7 7 7 7 3 7 3 3 3

MuJoBan 7 7 7 3 7 3 7 3 3 3

BabyAI 7 3 7 7 7 7 7 7 3 3

CoinRun 7 3 7 7 7 7 7 7 7 3

AtariArcade 7 7 7 7 7 7 7 7 3/7 3

CausalWorld 3 3 3 3 3 3 3 3 3 3

Table 1: Comparison of Causal World with RLBench (James et al., 2020), MetaWorld (Yu et al.,
2019), IKEA (Lee et al., 2019), BabyAI (Chevalier-Boisvert et al., 2018), CoinRun (Cobbe et al.,
2018), AtariArcade (Bellemare et al., 2013), MuJoBan etc. (Mirza et al., 2020),

Finally, by releasing this benchmark we hope to facilitate research in causal structure learning, i.e.
learning the causal graph (or certain aspects of it) as we operate in a complex real-world environment
whose dynamics follow the laws of physics, which induce causal relations between the variables.
Changes to the variables we expose can be considered do-interventions on the underlying structural
causal model (SCM). Consequently, we believe that this benchmark offers an exciting opportunity
to investigate causality and its connection to RL and robotics.

Our main contributions can be summarized as follows:

• We propose CausalWorld, a new benchmark comprising a parametrized family of
robotic manipulation environments for advancing out-of-distribution generalization and
causal structure learning in RL.

• We provide a systematic way of defining curricula and disentangling generalization abilities
of RL agents with respect to different changes in the environment, since we allow for do-
interventions to be performed on different environment variables (parameters and states)
individually.

• We establish baseline results for some of the available tasks under different learning algo-
rithms, thus verifying the feasibility of the tasks.

• We show how different learning curricula affect generalization across different axes by
reporting some of the in-distribution and out-of-distribution generalization capabilities of
the trained agents.

2 CAUSALWORLD BENCHMARK

Here we make the desiderata outlined in the introduction more precise:

1. The set of environments should be sufficiently diverse to allow for the design of challenging
transfer tasks.

2. We need to be able to intervene on different properties (e.g. masses, colors) individually,
such that we can investigate different types of generalization.

3. It should be possible to convert any environment to any other environment by gradually
changing its properties through interventions; this requirement is important for evaluating
different levels of transfer and for defining curricula.

4. The environments should share some causal structure to allow algorithms to transfer the
learned causal knowledge from one environment to another.

5. There should be a unified measure of success, such that an objective comparison can be
made between different learning algorithms.

6. The benchmark should make it easy for users to define meaningful distributions of envi-
ronments for training and evaluation. In particular, it should facilitate evaluation of in-
distribution and out-of-distribution performance.

7. The simulated benchmark should have a real-world counterpart to allow for sim2real.
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In light of these desiderata, we propose a setup in which a robot must build goal shapes using a set
of available objects. It is worth noting that similar setups were proposed previously in a less realistic
setting, e.g. in (Janner et al., 2018; Bapst et al., 2019; McCarthy et al.; Akkaya et al., 2019; Fahlman,
1974; Winston, 1970; Winograd, 1972). Specifically, a task is formulated as follows: given a set of
available objects, the agent needs to build a specific goal structure, see Fig. 1 for an example. The
vast amount of possible target shapes and environment properties (e.g. mass, shape and appearance
of objects and the robot itself) makes this a diverse and challenging setting to evaluate different
generalization aspects. CausalWorld is a simulated version (using the Bullet physics engine
(Coumans et al., 2013)) of the open-source TriFinger robot platform from Wüthrich et al. (2020).
Each environment is defined by a set of variables such, as gravity, floor friction, stage color, floor
color, joint positions, various block parameters (e.g. size, color, mass, position, orientation), link
colors, link masses and the goal shape. See Table 3 in the Appendix for a more extensive list of
these variables.

Desideratum 1 is satisfied since different environment properties and goal shapes give rise to very
different tasks, ranging from relatively easy (e.g. re-positioning a single cube) to extremely hard
(e.g. building a complex structure). Desideratum 2 is satisfied because we allow for arbitrary inter-
ventions on these properties, hence users or agents may change parameters individually or jointly.
Desideratum 3 is satisfied because the parameters can be changed gradually. Desideratum 4 is sat-
isfied because all the environments share the causal structure of the robot, and one may also use
subsets of environments which share even more causal structure. We satisfy desideratum 5 by defin-
ing the measure of success for all environments as the volumetric overlap of the goal shape with
available objects. Further, by splitting the set of parameters into a set A, intended for training and
in-distribution evaluation, and a set B, intended for out-of-distribution evaluation, we satisfy desider-
atum 6. Finally, since the TriFinger robot (Wüthrich et al., 2020) can be built in the real-world, we
satisfy desideratum 7. Desideratum 7 and 2 are in partial conflict since sim2real is only possible for
the tasks which are constrained to the variables on which the robot can physically act upon.

Task generators: To generate meaningful families of similar goal shapes, CausalWorld allows
for defining task generators which can generate a variety of different goal shapes in an environment.
For instance, one task generator may generate pushing tasks, while another one may generate tower-
building tasks (see Fig. 2). Each task generator is initialized with a default goal shape from its
corresponding family and comes with a sampler to sample new goal shapes from the same family.
Additionally, upon construction, one can specify the environments’ initial state and initial goal shape
structure when deviating from the default. The maximum episode time to build a given shape is
number of blocks×10 seconds. CausalWorld comes with eight pre-defined task generators
(see Fig. 2).

• Three generators create goal shapes with a single block: Pushing with the goal shape on
the floor, Picking having the goal shape defined above the floor and Pick and Place where
a fixed obstacle is placed between the initial block and goal pose.

• Stacking2 involves a goal shape of two stacked blocks, which can also be considered one
instance of the Towers generator.

• The remaining generators use a variable number of blocks to generate much more complex
and challenging target shapes, as detailed in the appendix: Towers, Stacked Blocks, Creative
Stacked Blocks and General.

Given that building new environments using current physics simulators is often tedious, we provide
a simple API for users who wish to create task generators for new challenging shape families, which
may be added to CausalWorld’s task generators repository.

Action and Observation Spaces: The robot can be chosen to operate in either joint position con-
trol mode, joint torque control mode, end-effector position control mode, or the delta of each. In
any of these cases, the action is 9-dimensional (one per joint). We provide two observation modes:
structured and pixel. In the structured mode, the observation vector is constructed using a rule for
the ordering of the relevant variables, such as joint positions, joint velocities, block positions, etc.
Thus, the size of the observation space depends on the number of blocks, which could potentially
change with every new goal sampled, e.g. in Towers, (Creative) Stacked Blocks and General. In
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contrast, in the pixel mode, the agent receives six RGB images (hence the dimension of the observa-
tion is 6×3×128×128), the first three images are rendered from the three cameras mounted around
the TriFinger robot, and the last three images specify the goal image of the target shape rendered
from the same cameras. Additionally, CausalWorld allows users to set up a fully customized
observation space.

Rewards: The reward function r is defined as the fractional volumetric overlap of the blocks with
the goal shape, which ranges between 0 (no overlap) and 1 (complete overlap). Since this reward
function is shared across all tasks, an agent that learned r from some training tasks could in principle
use it to solve unseen goal structures. There is also the possibility of modifying the reward function
to 1) sparsify the reward further by returning a binary reward signal instead, or 2) add a dense
reward function in order to introduce inductive biases via domain knowledge and solution guidance.
We hope that the considerable complexity and diversity of goal shapes motivate and accelerate the
development of algorithms that are not dependent on hand-tuned reward functions.
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Figure 3: Key components for generic training and evaluation of RL agents. Left: A learning
curriculum which is composed of various intervention actors that decide which variables to intervene
on (for a valid intervention, values need to be in the allowed training space (ATS)). Right: Evaluation
protocols are shown which may intervene on variables at episode resets or within episodes (for a
valid intervention, values need to be in the evaluation space (ES)). Middle: we represent the ATS
and ES, where each intervention results in one point in the spaces. As shown ATS and ES may
intersect, eg. if the protocols are meant to evaluate in-distribution generalization.

Training and evaluation spaces: In this benchmark, a learning setting consists of an allowed
training space (ATS) and an evaluation space (ES), both of which are subspaces of the full parameter
space. During training, in the simplest setting, parameters are sampled iid from the ATS. However,
unlike existing benchmarks, CausalWorld allows in addition for curricula within the ATS as well
as settings where the agent itself intervenes on the parameters within an episode (see Fig. 3). Sim-
ilarly, during evaluation, parameters may be sampled iid from the evaluation space at each episode
reset, or there can be interventions within an episode. Moreover, in order to retrieve the setting con-
sidered in most RL benchmarks, we could set the ATS and the ES to be identical and intervene only
on object and robot states (and keep other environment properties constant) at each episode reset.
However, to evaluate out-of-distribution generalization, one should set the two spaces (ATS and ES)
to be different; possibly even disjoint. Additionally, to evaluate robustness with respect to a specific
parameter (e.g. object mass), one may define the training and evaluation spaces which only differ in
that particular parameter. In order to facilitate the definition of appropriate training and evaluation
settings, we pre-define two disjoint sets, Ai and Bi, for each parameter i. Through this, one can for
instance define the training space to be A1 ×A2 × ... and the evaluation space to be B1 ×B2 × ...
to assess generalization with respect to all parameters simultaneously. Alternatively, the evaluation
space could be defined as A1 ×A2 × ...×Bi ×Ai+1 × ... to assess generalization with respect to
parameter i only. Lastly, users may also define their own spaces which could then be integrated into
the benchmark to give rise to new learning settings.

Intervention actors: To provide a convenient way of specifying learning curricula, we introduce
intervention actors. At each time step, such an actor takes all the exposed variables of the environ-
ment as inputs and may intervene on them. To encourage modularity, one may combine multiple
actors in a learning curriculum. This actor is defined by the episode number to start intervening,
the episode number to stop intervening, the timestep within the episode it should intervene and the
episode periodicity of interventions. We provide a set of predefined intervention actors, including
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an actor which samples parameters randomly at each episode reset, which corresponds to domain-
randomization. It is also easy to define custom intervention actors, we hope that this facilitates
investigation into optimal learning curricula (see Fig. 3).

Probing the Causal Structure in RL: The problem setting in RL is usually formulated using
the language of Markov Decision Processes (MDPs) or Partially Observable Markov Decision Pro-
cesses (POMDPs) (Sutton & Barto, 1999), but can be also represented by Structural Causal Models
(SCMs), as shown in (Buesing et al., 2018), refer to section E in the Appendix for a detailed ex-
planation. This is achieved by formulating all conditional probability distributions as deterministic
functions that take independent noise variables as inputs. These independent noise variables can
specify different scenarios while the deterministic functions reflect the causal mechanisms of the
system (Schölkopf et al., 2021). Changes in the environment can stem from two different sources:

1. The agent may alter the state of the environment (e.g. the position of a block) indirectly,
through its actions (e.g. pushing the block by applying appropriate torques at the motors).

2. During the execution of a learning curriculum or an evaluation protocol, we may directly
intervene on any variable of the SCM, including all the latent variables of the causal model
that are not accessible to the RL agent (such as gravity, object mass or color).

(1) is the default type of admissible interventions in RL benchmarks, whereas CausalWorld allows
for interventions of type (2) in addition. The idea is that interventions on these latent variables, e.g.
during a learning curriculum, will allow the agent to distinguish between spurious correlations that
are only present in a particular setting and true causal relations that will hold across all settings (i.e.
interventions). If the agent is able to learn such a representation of the underlying SCM structure,
we would expect it to perform well even in out-of-distribution scenarios (Schölkopf et al., 2021;
Dittadi et al., 2021) because the causal structure remains the same, even when the functional form
of certain relations may vary (e.g. when transferring to the real robot). Moreover, we hope that
by having access to a broad range of interventions in CausalWorld it will aid the inference of the
underlying SCM structure through the different causal discovery methods (see Figure 4 for a subset
of the expected SCM to be learned), which in turn addresses the lack of causal discovery benchmarks
for real world challenges.
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Figure 4: A subset of an SCM represented as a DAG for an environment in CausalWorld with one
block on the floor. Here, we only show a subset of the causal variables affecting the block position
at time t+1.

3 RELATED WORK

Previous benchmarks for RL mostly focused on the single task learning setting such as OpenAI Gym
and DM control suite (Tassa et al., 2018; Brockman et al., 2016). In contrast, a recent line of work,
e.g. Meta-World and RLBench (Yu et al., 2019; James et al., 2020), aims at studying multi-task
learning as well as meta-learning. Such benchmarks mostly provide non-parametric, hand-designed
task variations, it is hence unclear how much structure is shared between them. For instance, it is not
clear how different it is to “open a door” compared to “opening a drawer”. To address the ambiguity
in the shared structure between the tasks, CausalWorld was designed to allow interventions to
be performed on many environment variables giving rise to a large space of tasks with well-defined
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relations between them, which we believe is a missing key component to address generalization in
RL. A detailed comparison between CausalWorld and similar benchmarks is shown in Table 1.

Similar parametric formulations of different environments were used in the generalization-for-RL
literature, which has played an important role in advancing the field (Packer et al., 2018; Rajeswaran
et al., 2017; Pinto et al., 2017; Yu et al., 2017; Henderson et al., 2017a; Dulac-Arnold et al., 2020;
Chevalier-Boisvert et al., 2018). In these previous works, variables were mostly changed randomly,
as opposed to the full control over the variables provided by CausalWorld.

Another important open problem for the RL community is the standardization of the reported learn-
ing curves and results. RL methods have been shown to be sensitive to a range of different factors
(Henderson et al., 2017b). Thus it is crucial to devise a set of metrics that measure reliability of
RL algorithms and ensure their reproducibility. Chan et al. (2019) distinguishes between several
evaluation modes like ”evaluation during training” and ”evaluation after learning”. Osband et al.
(2019) recently proposed a benchmarking suite that disentangles the ability of an algorithm to deal
with different types of challenges. Its main components are: enforcing a specific methodology for
an agent’s evaluation beyond the environment definition and isolating core capabilities with targeted
’unit tests’ rather than integrating the general learning ability.

Moreover, causality has been historically studied from the perspective of probabilistic and causal
reasoning (Pearl, 2009), cognitive psychology (Griffiths & Tenenbaum, 2005), and more recently in
the context of machine learning (Goyal et al., 2019b; Schölkopf et al., 2021; Baradel et al., 2019;
Bakhtin et al., 2019). On the contrary, we believe its link to robotics is not yet drawn systematically.
To bridge this gap, one of the main motivations of CausalWorld was to facilitate research in
causal learning for robotics, such as observational discovery of causal effects in physical reality,
counterfactual reasoning, and causal structure learning.

4 EXPERIMENTS

To illustrate the usage of this benchmark and to verify the feasibility of some basic tasks, we eval-
uate current state-of-the-art model-free (MF-RL) algorithms on a subset of the goal shape families
described in Section 2 and depicted in Fig. 2: (a) Pushing, (b) Picking, (c) Pick and Place, and (d)
Stacking2. These goal shapes reflect basic skills that are required to solve more complex construc-
tion tasks.

Setup: The idea here is to investigate how well an agent will perform on different evaluation
distributions, depending on the curriculum it has been trained with. We train each method under the
following curricula:

• Curriculum 0: no environment changes; each episode is initialized from the default task
lying in space A - note that here the initial state never changes (i.e. no interventions).

• Curriculum 1: goal shape randomization; at the beginning of each episode a new goal shape
is sampled from space A (i.e. interventions on goal position and orientation).

• Curriculum 2: full randomization w.r.t. the task variables5; every episode a simultaneous
intervention on all variables is sampled from space A (i.e. can be seen as equivalent to
extreme domain randomization in one space).

The curriculum will, as expected, affect the generalization capabilities of the trained agents. With
CausalWorld’s formulation, these generalization capabilities can easily be disentangled and
benchmarked quantitatively, as explained in Section 2. For each of the goal shape families (a, b,
c, d from Fig. 2), we train agents under the three described curricula using the following MF-RL
algorithms: The original Proximal Policy Optimization (PPO) from Schulman et al. (2017), Soft
Actor-Critic (SAC) from Haarnoja et al. (2018) and the Twin Delayed DDPG (TD3) from Fujimoto
et al. (2018). We provided these methods with a hand-designed dense reward function as we did not
observe any success with the sparse reward only. Each of the mentioned setups is trained for five
different random seeds, resulting in 180 trained agents.

1 5 Note that each task generator can suppress interventions that would yield goal shapes outside its family.
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Figure 5: Fractional success curves averaged over five random seeds for the tasks and learning
algorithms specified above, under three different training curricula: (0) no curriculum, (1) goal
position and orientation randomization in space A every episode and (2) a curriculum where we
intervene on all variables in space A simultaneously every episode.

Training model-free RL methods: We report the training curves averaged over the random seeds
in Fig. 5. As can be seen from these fractional success training curves, MF-RL methods are capable
of solving the single block goal shapes (pushing, picking, pick and place) seen during training time
given enough experience. However, we observe that none of the methods studied here managed to
solve stacking two blocks. The score below 0.5 indicates that it only learns to push the lower cube
into the goal shape. This shows that multi-object target shapes can become nontrivial quickly and
that there is a need for methods making use of the modular structure of object-based environments.
To no surprise, the training curriculum has a major effect on learning. For example, methods rarely
manage to pick up any significant success signal under extreme domain randomization as in cur-
riculum 2, even after 100 million timesteps. Note that these curves represent the scores under the
conditions of the training environments. Next, we will discuss shared evaluation protocols that allow
to benchmark and compare agents trained under different conditions.

Benchmarking generalization capabilities along various axes: For each of the four goal shape
families, we define a set of 12 evaluation protocols that we consider meaningful and representative
for benchmarking the different algorithms. In the protocols presented here, we sample the values
from a protocol-specific set of variables at the start of each episode while keeping all other variables
fixed to their default values. We evaluate each agent on 200 episodes by computing the fractional
success score at the last time step of each episode and reporting the mean. These evaluation protocols
allow to disentangle generalization abilities, as they show robustness with respect to different types
of interventions, see Fig. 6. The following are some of the observations we made for pushing:

• Agents that were trained on the default pushing task environment (curriculum 0) do well
(as expected) on the default task (P0). Interestingly, we likewise see a generalization ca-
pability to initial poses from variable space A (P4). This can be explained by a substantial
exploration of the block positions via manipulation during training. In contrast, we see
that the agents exhibit weaknesses regarding goal poses (P5), they seem to overfit to their
training settings in this case.
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Figure 6: Evaluation scores for pushing baselines. Each protocol was evaluated for 200 episodes and
each bar is averaged over five models with different random seeds. The variables listed under each
protocol are sampled from the specified space at the start of every episode while all other variables
remain fixed [bp block pose, bm block mass, bs block size, gp goal pose, ff floor friction].

• For agents trained with goal pose randomization (curriculum 1) we see similar results as
with curriculum 0, with the difference that agents under this curriculum generalize robustly
to different goal poses (P5), as one would expect.

• Finally, agents that experience extreme domain randomization (curriculum 2) at training
time, fail to learn any relevant skill as shown by the flat training curve in Fig. 5. An
explanation for this behavior could be that the agent might need more data and optimization
steps to handle this much more challenging setting. Another possibility is that it may simply
not be possible to find a strategy which simultaneously works for all parameters (note that
the agent does not have access to the randomized parameters and hence must be robust to
them). This poses an interesting question for future work.

As expected, we observe that an agent’s generalization capabilities are related to the experience
gathered under its training curriculum. CausalWorld allows us to explore this relationship in a
differentiated manner, assessing which curricula lead to which generalization abilities. This will not
only help uncover an agent’s shortcomings but may also aid in investigating novel learning curricula
and approaches for robustness in RL. Lastly, we note that this benchmark comprises extremely
challenging tasks that appear to be out of reach of current model free methods without any additional
inductive bias.

5 CONCLUSION

We have introduced a new benchmark - CausalWorld - to facilitate research in causal structure
and transfer learning using a simulated environment of an open-source robot, where learned skills
could potentially be transferred to the real world. We showed how allowing for interventions on
the environment’s properties yields a diverse familiy of tasks with a natural way of defining learn-
ing curricula and evaluation protocols that can disentangle different generalization capabilities. A
natural extension of our work is to develop new RL algorithms that focuses on out of distribution
generalization (whether its a different subspace of the state space or a completely different task).We
hope that the flexibility and modularity of CausalWorldwill allow researchers to easily define ap-
propriate benchmarks of increasing difficulty as the field progresses, thereby coordinating research
efforts towards ever new goals.
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7 APPENDIX

A OBSERVATIONS

Observations in CausalWorld has two modes, ”structured” and ”pixel”. When using ”pixel”
mode, 6 images are returned consisting of the current images rendered from 3 different views on top
of the TriFinger platform, showing the current state of the environment, as well as the 3 equivalent
goal images rendered from the same points of view, showing the goal shape that the robot have to
build by the end of the episode.

(a) Current View60 (b) Goal View60

(c) Current View120 (d) Goal View120

(e) Current View300 (f) Goal View300

Figure 7: Example ”pixel” mode observations returned at each step of the environment.
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Figure 8: Structured observation description. For the scene features, all the blocks feature vector
are concatenated first. Following that the partial goals feature vector are concatenated in the same
order. Lastly, if there is any obstacles/ fixed blocks, their feature vectors are concatenated at the end
following the same description as the partial goal features.

B TRIFINGER PLATFORM

The robot from (Wüthrich et al., 2020) shown in figure 9 is open-sourced and can be reproduced and
built in any research lab; since its inexpensive (about $5000), speeding up sim2real research.

Figure 9: The TriFinger platform.

C TASK GENERATORS

1. Pushing: task where the goal is to push one block towards a goal position with a specific
orientation; restricted to goals on the floor level.

2. Picking: task where the goal is to pick one block towards a goal height above the center of
the arena; restricted to goals above the floor level.
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3. Pick And Place: task where the arena is divided by a fixed long block and the goal is to
pick one block from one side of the arena to a goal position with a variable orientation on
the other side of the fixed block.

4. Stacking2: task where the goal is to stack two blocks above each other in a specific goal
position and orientation.

5. Towers: task where the goal is to stack multiple n blocks above each other in a specific goal
position and orientation - exactly above each other creating a tower of blocks.

6. Stacked Blocks: task where the goal is to stack multiple n blocks above each other in an
arbitrary way to create a stable structure. The blocks don’t have to be exactly above each
other; making it more challenging than the ordinary towers task since the its harder to come
up with a stable structure that covers the goal shape volume.

7. Creative Stacked Blocks: exactly the same as the Stacked Blocks task except that the first
and last levels of the goal are the only levels shown or ”imposed” and the rest of the struc-
ture is not explicitly specified, leaving the rest of the goal shape to the imagination of the
agent itself; this is considered the most challenging since its it needs the agent to under-
stand how to build stable structures and imagine what can be filled in the middle to connect
the two levels in a stable way.

8. General: the goal shape is an arbitrary shape created by initially dropping an arbitrary
number of blocks from above the ground and waiting till all blocks come to a rest position
where this becomes the goal shape that the agent needs to fill up afterwards.

Variable Sub Variable Space A Space B
gravity[z] - [−10,−7] [−7,−4]
floor friction - [0.3, 0.6] [0.6, 0.8]
stage friction - [0.3, 0.6] [0.6, 0.8]
stage color [rgb] - [0.0, 0.5]3 [0.5, 1]3

floor color [rgb] - [0.0, 0.5]3 [0.5, 1]3

joint positions - [[−1.57,−1.2,−3.0]3,
[−0.69, 0, 0]3]

[[−0.69, 0, 0]3,
[1.0, 1.57, 3.0]3]

block size [0.055, 0.075]3 [0.075, 0.095]3

block color [0.0, 0.5]3 [0.5, 1]3

block mass [0.015, 0.045] [0.045, 0.1]
block position (cylindrical) [[0,−π, h/2],

[0.11, π, 0.15]]
[[0.11,−π, h/2],
[0.15, π, 0.3]]

goal cuboid size [0.055, 0.075]3 [0.075, 0.095]3

goal cuboid color [0.0, 0.5]3 [0.5, 1]3

link color [0.0, 0.5]3 [0.5, 1]3

link mass [0.015, 0.045] [0.045, 0.1]

Table 2: Description of a subset of the high level variables, exposed in CausalWorld, and their
corresponding spaces, h refers to the height of the block.

Task Generator Variable Space A Space B
Picking goal height [0.08, 0.20] [0.20, 0.25]
Towers tower dims [[0.08, 0.08, 0.08],

[0.12, 0.12, 0.12]]
[[0.12, 0.12, 0.12],
[0.20, 0.20, 0.20]]

Table 3: Example of task generators’ specific high level variables, exposed in CausalWorld, and
their corresponding spaces. For a full list of each task generators’ variables and their corresponding
spaces, please refer to the documentation at (https://sites.google.com/view/causal-world/home).
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Task generators Dense reward
Pushing −750∆t(o1, e)− 250∆t(o1, g1)
Picking −750∆t(o1, e)−250∆t(o1,z, g1,z)−125∆t(o1,x,y, g1,x,y)−0.005||vt−

vt−1||
Pick and Place −750∆t(o1, e)− 50∆t(o1,x,y, g1,x,y)− 250(|ot1,z − t| − |ot−11,z − t|)−

0.005||vt − vt−1||
Stacking 1dt(o1,e)>0.02(−750∆t(o1, e) − 250∆t(o1, g1)) +

1dt(o1,e)<0.02(−750∆t(o2, e) − 250(|ot2,z − gt2,z| − |ot−11,z − gt2,z|) −
1ot2,z−gt2,z>0125∆t(o2,x,y, g2,x,y))− 0.005||vt − vt−1||

Table 4: Description of the dense rewards applied in our experiments. The following notation was
applied: vt ∈ R3 joint velocities, eti ∈ R3 i-th end-effector positions, oti ∈ R3 i-th block position,
gti ∈ R3 i-th goal block position, dt(o, e) =

∑
i ||eti−ot|| the distance between end-effectors and the

block, ∆t
o,e = dt(o, e) − dt−1(o, e) the distance difference w.r.t. the previous timestep. The target

height parameter t for pick and place is 0.15 if block and goal are of different height. Otherwise, t
is half the goal height.
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D TRAINING DETAILS

The experiments were carried out using the stable baselines implementation of PPO, SAC
and TD3. We used a 2 layer MLP Policy [256,256] for all the policies. PPO was trained on 20
workers up to 100 million timesteps in parallel and SAC as well as TD3 were trained serially for 10
million timesteps.

PPO
discount 0.99

batch size 120000
learning rate 2.5e-4
entropy coef. 0.01

value function coef. 0.5
gradient clipping (max) 0.5

n minibatches per update 40
n training epochs 4

SAC
discount 0.95

entropy coeff 1e-3
batch size 256

learning rate 1e-4
target entropy auto

buffer size 1000000
tau 0.001

TD3
discount 0.96

batch size 128
learning rate 1e-4
buffer size 500000

tau 0.02

Table 5: Learning algorithms hyper parameters used in the baselines experiments.

Figure 10: An example of model selection in CausalWorld by evaluating generalization across
the various axes using the previously mentioned protocols. Here we compare two agents trained on
different curricula using PPO.
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Figure 11: Evaluation scores, for pushing, picking, pick and place and stacking2 baselines, from top
to bottom respectively. Each protocol was evaluated for 200 episodes and each bar is averaged over
five models with different random seeds [bp block pose, bm block mass, bs block size, gp goal pose,
ff floor friction].
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E CAUSALITY IN REINFORCEMENT LEARNING

Definition 1: A partially observable Markov decision processes (POMDP) is defined by the tuple
(S,A, T,R,Ω, O, γ, ρ0, H) with states s ∈ S, actions a ∈ A and observations o ∈ Ω determined
by the state and action of the environment O(o|s, a). T (st+1|st, at) is the transition probability
distribution function, R(st, at) is the reward function, γ is the discount factor, ρ0(s) is the initial
state distribution at the beginning of each episode, and H is the time horizon per episode. The
objective of RL algorithms is to learn a policy π(at|ht) with history Ht = (O1, A1, ..., At−1, Ot)

that maximizes the discounted expected reward J(π) = Eπ
[∑H

t=0 γ
trt

]
.

Definition 2: A structural causal model (SCM) M over X = (X1, ..., XN ) is given by a DAG
G over nodes X , independent noise RVs U = (U1, ..., UN ) with distributions PUi

and functions
f1, ..., fN such that Xi = fi(pai, Ui), where pai ⊂ X are the parents of Xi in G. An SCM entails
a distribution P with density p over (X,U).

Definition 3: An intervention I in an SCM M consists of replacing the RHS fi(pai, Ui) by
f Ii (paIi , Ui) with i ⊆ {1, ..., N} where paIi are the parents in a new DAG GI . The resulting SCM is
denoted with Mdo(I) with distribution P do(I) and density pdo(I).

Representing POMDPs as SCMs: A POMDP can be presented as an SCM M by unrolling
the POMDP through time by expressing all conditional distributions, e.g the transition kernel
PSt+1|St,At

, as deterministic functions (which reflects the causal mechanisms of the system) with
independent noise variables U , such as St+1 = fst(St, At, Ust). This is always possible using auto-
regressive formalization as shown in (Buesing et al., 2018). The distribution Pπ over trajectories T
determined by the SCM, which means running a different policy µ (instead of π) in the environment
is an intervention by itself I(π → µ) resulting in model distribution P do(I(π→µ)). Given the SCM,
one can reason about the alternative outcomes of different actions or even different environment
properties (such as friction) (known as counterfactual inference) which is not possible if we only
model the system as a conditional distribution PO|A,Uc

.

Generalizing agents: An agent should generalize well to changes in the environment if it achieves
an equal performance after an intervention I is performed on the SCM M resulting in Mdo(I). This
can be accomplished for instance as explained in (Schölkopf et al., 2021), by reusing the learned
causal mechanisms. For example, if an intervention was performed on the colour of one of the
available blocks in the environment, it won’t change the underlying causal mechanisms. Thus, this
sort of interventions on a non causal variable shouldn’t affect the resulting actions of the agent.
Nevertheless, this is often not the case with RL agents trained using visual observations. (Alver &
Precup, 2020) showed recently that algorithms which were designed specifically for Meta-RL can
display strong overfitting when they are evaluated on challenging visual tasks. On the other hand, if
an intervention was performed on a causal variable with respect to a policy π, such as the mass of
an object, the resulting action sequence will be expected to change for robust control. Additionally,
if an intervention is performed on some of the goal variables, the reward function might also change
and a robust controller should also be able to react to it accordingly.
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