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Abstract

Speech language models have significantly advanced in generating realistic speech,
with neural codec language models standing out. However, the integration of
preference optimization to align speech outputs to human preferences is often
neglected. This paper addresses this gap by first analyzing the distribution gap
in codec language models, highlighting how it leads to discrepancies between
the training and inference phases, which negatively affects performance. Then
we explore leveraging preference optimization to bridge the distribution gap. We
introduce SpeechAlign, an iterative self-improvement strategy that aligns speech
language models to human preferences. SpeechAlign involves constructing a
preference codec dataset contrasting golden codec tokens against synthetic to-
kens, followed by preference optimization to improve the codec language model.
This cycle of improvement is carried out iteratively to steadily convert weak mod-
els to strong ones. Through both subjective and objective evaluations, we show
that SpeechAlign can bridge the distribution gap and facilitating continuous self-
improvement of the speech language model. Moreover, SpeechAlign exhibits ro-
bust generalization capabilities and works for smaller models. Demos are available
at https://0nutation.github.io/SpeechAlign.github.io/.

1 Introduction

Large language models (LLMs) have showcased their potent abilities through techniques such as
pretraining, supervised fine-tuning (SFT), and Reinforcement Learning from Human Feedback
(RLHF) (OpenAI, 2023; Touvron et al., 2023). The field of speech language modeling has seen
significant progress (Wang et al., 2023; Borsos et al., 2022; Zhang et al., 2023a), particularly with
the adoption of discrete speech representations (Hsu et al., 2021; Zhang et al., 2023b) like audio
codecs (Défossez et al., 2022; Zeghidour et al., 2021; Zhang et al., 2023d). However, current speech
language models primarily focus on the SFT stage associated with empowering the LLM’s instruction-
following capabilities, neglecting the integration of human feedback to align speech outputs to
human preferences regarding quality, naturalness, and expressiveness. Fortunately, preference
optimization has emerged as a powerful solution for aligning LLM output distribution with human
expectation (Stiennon et al., 2022; Bai et al., 2022; Ouyang et al., 2022). The most successful
approach, RLHF, achieves this by integrating rewarding modeling and a reinforcement learning phase.
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Additionally, some computationally efficient alternatives have proven to be effective in aligning LLM
behavior without the need for explicit reward modeling (Rafailov et al., 2023; Zhang et al., 2023c;
Wang et al., 2024).

The key to the success of speech language models (Wang et al., 2023; Borsos et al., 2022; Zhang et al.,
2023a) that build on LLMs is utilizing audio codecs that discretize the speech representations. Neural
Codec Language Models, leveraging audio codecs, have demonstrated their effectiveness in speech
generation tasks (Yang et al., 2023; Wang et al., 2023). It primarily utilizes a hierarchical approach
that consists of a pipeline of autoregressive (AR) and non-autoregressive (NAR) models, as illustrated
in Figure 2 (a). AR model generates semantic tokens (Borsos et al., 2022) or the first layer of codec
tokens (Wang et al., 2023), referred to as AR tokens. These AR tokens serve as input for NAR model
to generate acoustic tokens (Borsos et al., 2022) or subsequent layers of codec tokens (Wang et al.,
2023), termed as NAR tokens. However, this pipeline system introduces a discrepancy between the
training and inference phases for the codec language model. In training, NAR model is fed with
golden AR tokens derived from real speech, but the model receives synthetic AR tokens generated
by the AR model during inference. As demonstrated in Section 2.3, there is a distribution gap between
these two types of AR tokens, which adversely impacts the performance of the NAR model.

Can we calibrate the output of codec language models to the authentic codec distribution by
preference optimization? Collecting a large, high-quality preference dataset for codec language
models is challenging. First, codec tokens are often represented in numerical form, which is not
directly understandable by humans, making it impossible to collect human preferences for these
tokens directly. Furthermore, collecting human preferences on speech to gather feedback on codec
tokens poses multiple challenges, including inconsistency across various human annotators and the
difficulty of scaling up the dataset size.

We propose SpeechAlign, an iterative self-improving strategy that aligns speech language models to
human preferences. To avoid the need for additional human-annotated data, we construct the pairwise
preference codec dataset by considering golden AR tokens as preferred data and synthetic AR
tokens as dis-preferred data. Human verification is conducted to ensure its consistency with human
preferences. After obtaining the preference dataset, we explore different preference optimization
strategies to improve codec language models. Following a complete cycle, we iteratively perform
preference dataset collection and preference-aware optimization to convert weak codec language
models to stronger ones continually. Experimental results show that SpeechAlign can continually
improve the speech generation performance of speech language models. Our contributions are
summarized below: 1) We propose SpeechAlign, the first to align speech language models by
preference optimization. 2) We propose an iterative self-improving strategy to convert weak codec
language models to stronger ones without additional human-annotated data. 3) We analyze the issue
of distribution gaps in codec language models and explore various strategies to bridge the gap.

2 Preliminary Analysis on Distribution Gap

In this section, we perform preliminary experiments to analysis the distribution gap between golden
and synthetic codec tokens and demonstrate that this gap can degrade the performance of the codec
language models.

2.1 Background

We build a codec language model, referred to as SpeechAlign-sft, serving as the baseline system
to analysis the distribution gap. Similar to (Zhang et al., 2024; Budzianowski et al., 2024), we
rely on SpeechTokenizer (Zhang et al., 2023d) to extract speech codec tokens. SpeechTokenizer
is a Residual Vector Quantization (RVQ)-based speech tokenization method and hierarchically
disentangles different aspects of speech information across different RVQ layers. The output of
SpeechTokenizer comprises Q = 8 hierarchical RVQ tokens (q1, . . . , qQ). SpeechAlign-sft consists
of a SpeechGPT (Zhang et al., 2023a)-based autoregressive (AR) model and a SoundStorm (Borsos
et al., 2023)-based non-autoregressive (NAR) model. The AR model learns the mapping from input
golden text to the first layer of codec tokens q1. We continue finetuning the pretrained SpeechGPT
model in (Zhan et al., 2024) on LibriSpeech dataset to get the AR model. Details about training
process as described in Section 4.1. The NAR model adopts the training and inference procedure
of SoundStorm (Borsos et al., 2023) and learns to generate subsequent layers of SpeechTokenizer
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Figure 1: T-SNE visualization of representations of different AR tokens. Left: Golden AR tokens
and synthetic AR tokens. Right: Golden AR tokens and aligned synthetic AR tokens.

tokens conditioning on the first layer tokens and prompt speech. We use the pretrained SoundStorm
model in (Zhan et al., 2024). At inference time, the AR model converts input text to AR tokens and
the NAR model uses these tokens along with prompt speech as conditions to generate NAR tokens.
These tokens are then concatenated and converted into speech by the SpeechTokenizer decoder.

2.2 Visualization of Distribution Gap

To analysis the distribution gap, we randomly select 1000 speech-text pairs from LibriSpeech dataset
and construct a test corpus composed of triplets Dvis = {(t,yg,ys)} following the procedure in
Section 3.1. Here t is the input text, yg is the golden AR tokens and ys is the synthetic AR tokens
generated by SpeechAlign-sft. The input text t is concatenated with the golden AR tokens yg and fed
into the SpeechAlign-sft model. This process yields the hidden states of the last layer for each AR
token in the sequence. By applying mean pooling across the temporal dimension, these hidden states
are aggregated to produce a single vector representation Repg for the golden AR tokens. Similarly,
we acquire Reps for the synthetic AR tokens using the same procedure. The vectors are visualized in
a 2D space using t-SNE, as shown in Figure 1 (a). We can observe that the representations of golden
AR tokens and synthetic AR tokens are so dissimilar that they naturally form two distinct clusters,
indicating that significant distributional gap exists between them.

2.3 Distribution Gap Degrades Performance

Input WER(↓) SIM(↑)

Groundtruth 3.4 -

Golden AR tokens 5.9 0.93
Synthetic AR tokens 7.2 0.87

Table 1: Results of NAR model’s speech recon-
struction performance with different AR tokens as
input.

The NAR model is trained using golden AR
tokens as input, but during inference, the input
switches to synthetic AR tokens. This results
in a discrepancy between the training and in-
ference processes due to the existing distribu-
tion gap, potentially affecting performance. To
delve into this issue, we conduct a speech re-
construction experiment with NAR model. We
construct a dataset composed of triplet data
Dtest = {(z,yg,ys)}, with yg and ys de-
scribed in Section 2.2 and z represents 3-second
prompt speech from the same speaker but distinct from the speech used for yg and ys. The NAR
model performs speech reconstruction by taking prompt speech combined with either golden AR
tokens or synthetic AR tokens as input, to generate speech for each type of tokens respectively. The
quality of the generated speech is evaluated based on the word error rate (WER) and speaker similarity
(SIM) metrics, compared against the ground truth. As shown in Tabel 1, speech generated from
golden AR tokens exhibits superior WER and Speaker Similarity scores compared to that generated
from synthetic AR tokens. This finding proves that the distribution gap adversely affects the NAR
model’s performance.
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Figure 2: AR LM refers to autoregressive models and NAR LM refers to non-autoregressive models.
Left: Illustration of inference process of codec language models. Right: Illustration of SpeechAlign
method.

3 SpeechAlign

We take SpeechAlign-sft detailed in Section 2.1 as the baseline system, referred to as pθ0 . Within this
framework, the AR model is represented as parθ0 , and the NAR model as pnarθ0

. As shown in Figure 2
(b), the first step of SpeechAlign is to construct perference dataset that contrasts golden codec tokens
with synthetic codec tokens. Utilizing this dataset, we implement various preference optimization
strategies to align the baseline model. This process is iteratively executed, enabling the continuous
self-improvement of codec language models.

3.1 Preference Data Collection

Golden Win Tie Golden Lose

71% 21% 8%

Table 2: Comparison between reconstructed
speech from golden AR tokens versus synthetic
AR tokens.

A standard method for collecting preference
dataset involves prompting the model to produce
two distinct responses to a query, after which
annotators are asked to select the one they pre-
fer. However, collecting human preferences for
codec data is impractical and unscalable. In-
stead, we construct the preference codec dataset
by contrasting the golden codec tokens against
synthetic codec tokens. Concretely, we randomly sample N speech-text pairs P = {(s,x)}Ni=1 from
LibriSpeech dataset, where s = (s1, ..., s|s|) is the speech and x = (x1, ..., x|x|) is the corresponding
transcript and N is 50000. For each speech s, we adopt pretrained SpeechTokenizer to extract
discrete representations and denote the tokens of first RVQ layer as golden AR tokens yg. For the
corresponding transcript x, the AR model parθ0 takes it as input to generate synthetic AR tokens ys.
Following these steps, we can get the preference codec dataset Dpf = {(x,yg,ys)}Ni=1.

Human Verification To validate the quality of constructed preference codec dataset, we perform
human verification by randomly sampling 100 entries from Dpf and employing the same procedure
outlined in section 2.3 to convert yg and ys back into speech. This allows humans to compare
them side by side and choose the better speech in terms of both speech quality and voice similarity.
From results in Table 2, we can conclude that humans prefer speech reconstructed from golden AR
tokens over that from synthetic AR tokens, indicating that the constructed preference codec dataset
effectively aligns with human preferences.

3.2 Preference Optimization

In this section, we introduce how we conduct preference optimization to align codec language models
using preference codec dataset, including Chain-of-Hindsight (Liu et al., 2023), Direct Preference
Optimization (Rafailov et al., 2023), RLHF-PPO (Ouyang et al., 2022) and Best-of-N Sampling.

Chain-of-Hindsight (CoH) By converting various forms of feedback into sentences and integrating
these with the respective responses, CoH enables models to learn from both positive and negative
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feedback, allowing the identification and correction of negative attributes or errors. At inference time,
the model is guided to generate the desired outputs according to the feedback type in prompt. In
our case, we first convert feedback signals into a descriptive template and construct training data by
combining responses with corresponding feedback template as follows:
Tg = "[Human]: Read this text and give me a high-quality speech response: {x} <eoh>
[SpeechGPT]: {yg} <eoa>."
Ts = "[Human]: Read this text and give me a low-quality speech response: {x} <eoh> [SpeechGPT]:
{ys} <eoa>."
The AR model is optimized via the negative log-likelihood loss on preference corpus Dpf as follows:

LCOH = −E(x,yg,ys)∼Dpf
[ log parθ0 (yg|x, Tg) + log parθ0 (ys|x, Ts)]

During inference phrase, we prompt the model with positive feedback in the form of ‘high-quality’ to
guide the model in generating favorable outputs.

Direct Preference Optimization (DPO) Without using explicit reward modeling or reinforcement
learning, DPO can fine-tune the model to align with human preferences. DPO considers the likelihood
of preferred response over dispreffered response and optimizes the LLM model towards that objective.
The prompt template for DPO training is as follows:
T = "[Human]: Read this text and give me a speech response: {x} <eoh> [SpeechGPT]: {y}
<eoa>. "
In our case, the DPO loss can be formated as follows:

LDPO = −E(x,yg,ys)∼Dpf
[logσ(log

parθ (yg|x, T )
parref (yg|x, T )

− log
parθ (ys|x, T )
parref (ys|x, T )

)]

where parref is the reference model and initialize with parθ .

RLHF-PPO RLHF methods involve training a reward model on a dataset reflecting human prefer-
ences. RL algorithms are then applied to adjust a language model’s policy to favor responses that
are highly rewarded, while ensuring minimal deviation from the original model’s behavior. With
preference dataset Dpf , we can parameterize a reward model rϕ(x, y) and estimate the parameters
via maximum likelihood. By treating the task as a binary classification, we utilize the negative
log-likelihood loss:

Lrm = E(x,yg,ys)∼Dpf
[log σ(rϕ(x, yg)− rϕ(x, ys)]

where σ is the logistic function. The reward model rϕ(x, y) is initialized from AR model parθ with
a linear layer atop the last Transformer layer to yield a single scalar prediction as the reward value.
During the RL stage, we optimize the AR model against the reward model using PPO algorithm.
Specially, we refine the AR model parθ0 as the following optimization problem:

max
par
θ0

Ex∼Dpf ,y∼par
θ0

(y|x)[rϕ(x, y)]− β Dkl[ p
ar
θ0 (y|x)||p

ar
ref (y|x) ]

where β represents a coefficient regulating the extent of the KL penalty and parref is the reference
model and initialize with parθ .

Best-of-N Sampling (BoN) With the reward model trained on the preference data, we implement
a Best-of-N approach to enhance the quality of output codec tokens. Concretely, we sample N
responses using the AR model. These responses are then evaluated by the reward model, and the one
receiving the highest reward score is chosen as the final response to serve as input for NAR model.

3.3 Iterative Self-Improvement

Following the aforementioned steps results in an updated AR model, denoted as parθ1 . Using this
updated model, we can create a new preference codec dataset, Dpf . This dataset then serves as
the basis for further improvement of the AR model through preference optimization. The iterative
self-improvement process of the AR model, as detailed in algorithm 1, enables continuous calibration
of the output distribution towards the authentic codec token distribution.
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Algorithm 1 SpeechAlign

Input: {(si, xi)}Ni=0: Speech-Text Dataset, mϕ: pretrained SpeechTokenizer model with parameter
ϕ, parθ0 : AR model with parameter θ0, T : Number of iterations.
for t = 0, . . . , T − 1 do

for i = 1, . . . , N do
Generate golden AR token yri ∼ mϕ(·|si)
Generate synthetic AR token ysi ∼ parθt (·|xi)

end for
Update θt+1 by performing preference-aware optimization on θt with Dpfi = {(xi, yri , ysi)}Ni=1

end for
Output: θT .

4 Experiments

4.1 Setups

Data For the continue finetuning stage in Section 2.1, we use the LibriSpeech dataset. To construct
the preference codec dataset, we randomly sample 50k speech-text pairs from LibriSpeech training
set. During the iterative process of SpeechAlign, we utilize the synthetic data generated in the most
recent iteration and combine it with the newly produced synthetic data. As a result, the size of the
synthetic dataset increases across iterations: starting at 50k in iteration 0, and expanding to 100k in
iterations 1, 2, and 3.

Model For the AR model, we further finetune the pretrained SpeechGPT model in (Zhan et al., 2024)
on LibriSpeech dataset. For the NAR model, we use the pretrained SoundStorm model in (Zhan et al.,
2024).

Training For the continue finetuning stage in Section 2.1, the batch size is set to 256, with a learning
rate of 1e-5 and train for 3500 steps on 8 A100 80G GPUs. For CoH finetuning, the batch size is
set to 32, with a learning rate of 1e-5 and train for 12000 steps on 8 A100 80G GPUs. For DPO
finetuning, the batch size is set to 128, with a learning rate of 5e-7 and train for 2000 steps on 8
A100 80G GPUs. For reward model training, the batch size is set to 32, with a learning rate of 1e-5
and train for 1000 steps on 8 A100 80G GPUs. For PPO training, the batch size is set to 16, with a
learning rate of 1e-5 and train for 1000 steps on 8 A100 80G GPUs.

4.2 Evaluation and Metrics

We conduct zero-shot TTS evaluation on LibriSpeech test-clean set and VCTK dataset. For each
speaker, we randomly selected a 3s utterance as the prompts while the textual content of a different
utterance is used as the input text. To reduce the randomness in the evaluation process, we evaluate
each model ten times and then calculate the average to obtain the final result. The metrics we adopt
are as follows:

Word Error Rate (WER) is utilized to assess the content accuracy of synthesized speech by
calculating the distance between the synthesized speech’s transcription and the input text. We use
Whisper medium-en model Radford et al. (2022) to transcribe the synthesized speech.

Speaker Similarity (SIM) evaluates the consistency of timbre between the synthesized and the
prompt speech. This is measured by the similarity between the speaker embedding of generated
speech and that of the speech prompt. The similarity calculation involves the following steps: 1)
employing a speaker embedding extractor 3 to derive the speaker embeddings for both the generated
and prompt speech, and 2) computing the cosine similarity between these normalized embeddings.

Human Evaluation We conduct comparative testing of various models’ outputs against the baseline
system’s speech. The evaluators are provided with prompt speech, the baseline system’s speech,
and our model’s speech. Human evaluators are tasked with determining which utterance sounded
more natural and closer to the prompt speech. Evaluators have the option to choose either of the
two utterances or indicate that they perceive them as equally natural. We also evaluate the QMOS

3https://huggingface.co/microsoft/wavlm-base-plus-sv.
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LibriSpeech VCTK
Model WER (↓) SIM (↑) QMOS (↑) SMOS (↑) WER (↓) SIM (↑) QMOS (↑) SMOS (↑)

Groundtruth 4.0 - 4.40 4.06 2.4 - 4.33 4.60

Baselines
SpeechAlign-sft 7.2 0.87 3.20 3.20 8.8 0.79 3.27 3.13
Continue SFT 8.0 0.88 3.07 3.13 9.8 0.80 3.20 3.20

SpeechAlign-CoH 7.3 0.89 3.33 3.47 10.2 0.81 3.53 3.73
SpeechAlign-BoN 8.0 0.88 3.40 3.70 7.5 0.79 3.50 3.40
SpeechAlign-RLHF-PPO 7.1 0.89 3.60 3.87 8.5 0.80 3.53 3.80
SpeechAlign-DPO-Iter1 6.7 0.88 3.20 3.33 8.5 0.82 3.33 3.07
SpeechAlign-DPO-Iter2 6.2 0.89 3.67 3.40 8.0 0.83 3.33 3.33
SpeechAlign-DPO-Iter3 6.0 0.90 3.73 3.93 7.9 0.83 3.47 3.60

Table 3: Evaluation Results of zero-shot text-to-speech on LibriSpeech and VCTK. Each result is
calculated as the average of ten separate evaluations.

Figure 3: Qualitative side-by-side comparsion results of preference optimized models versus the
baseline SFT model on zero-shot text-to-speech performance.

and SMOS score. MOS reflects the quality and naturalness of speech. SMOS reflects the timbre
similarity between speech prompts and generated speech. They both span from 1 to 5, with higher
values signifying better results. Each evaluation receives 6 ratings from 6 different human evaluators.

4.3 Main Results

Preference Optimization Boosts Speech Generation For objective evaluation, Table 3 shows that
the WERs of SpeechAlign-RLHF-PPO and SpeechAlign-DPO series models are lower than that of
SpeechAlign-sft. This suggests that preference optimization can enhance the accuracy of content
modeling. Furthermore, these models also achieved superior performance in Speaker Similarity,
indicating that preference optimization can also improve the effectiveness of timbre modeling. For
subjective evaluation, our preference-optimized models all achieve higher QMOS and SMOS scores
than SpeechAlign-sft. Figure 3 reveals that our preference-optimized models, SpeechAlign-BoN,
SpeechAlign-RLHF-PPO and SpeechAlign-DPO-Iter1, significantly outperform the baseline model
in win rates. These findings underscore the effectiveness of SpeechAlign in significantly improving
the capabilities of codec language models across content, timbre, and audio quality dimensions.

Speech Language Model Can Self-Improve Iteratively The quantitative results in Table 3 show
that from Iteration 1, DPO contributes to enhancements in speech generation. Iteration 2 further
amplifies these improvements, with a notably significant impact on the WER. And the trend of
gradual enhancement is maintained in subsequent iterations. By Iteration 3, there is a reduction
in WER by 0.8 compared to the Baseline, and Speaker Similarity has increased to 0.9. The same
trend can be observed in QMOS and SMOS metrics. Figure 3 shows that SpeechAlign-DPO-Iter3
achieves a higher win rate compared to SpeechAlign-DPO-Iter1, indicating superior performance
in qualitative evaluation. This confirms that iterative DPO can consistently enhance the quality of
the speech generated by the model. It demonstrates that SpeechAlign is an effective method for the
speech language model to undergo continuous and efficient self-improvement.
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Figure 4: Zero-shot TTS performance of DPO-optimized models at different iterations on LibriSpeech
test-clean.

Generalization to Unseen Speakers We also evaluate whether SpeechAlign would bring better
speech generation when encountering unseen speaker in the preference data. We evaluate different
models’ performances on VCTK dataset, which have no speaker overlap with the training dataset.
As shown in Table 3, SpeechAlign-RLHF-PPO, SpeechAlign-BoN, and SpeechAlign-DPO can still
improves the generated speech across all metrics. We also observe similar improvements in subjective
evaluation in Figure 3. And iterative optimization can bring continuous improvement, suggesting that
SpeechAlign can be generalized to unseen speakers. We can observe that SpeechAlign-RLHF-PPO
outperforms the SpeechAlign-DPO series in both QMOS and SMOS metrics, suggesting that models
optimized by RLHF generalize to other domains more effectively than those optimized with DPO.

5 Analysis

5.1 Iterative Self-Improvement has a Upperbound

To investigate whether there is a limiting point for iterative self-improvement, we conduct the
fourth iteration DPO optimization based on SpeechAlign-DPO-Iter3. As shown in Figure 4, we can
observe that iterative DPO optimization can bring continuous improvement until the third iteration.
Additionally, the improvements observed in the second and third iterations are significantly greater
than those in the first iteration. This might be because the negative samples (synthetic AR tokens)
in the first iteration are of lower quality and have a larger gap compared to the positive samples,
resulting in less effective preference optimization. As the model’s performance improve, the gap
between negative and positive samples decreases, making preference optimization more effective.
However, in the fourth iteration, the model’s performance decreases, possibly because the negative
samples are of too high quality and too similar to the positive samples, increasing the difficulty of
implicit reward modeling and preference optimization and even reducing the model’s performance.

5.2 Ablation Studies

Preference Data Size We examine the effect of different training data sizes on the performance of
SpeechAlign. We set the preference data size to be 0, 50k and 250k and generate the data accordingly.
We make sure that the larger dataset includes the smaller ones. After one epoch of DPO fine-tuning
for each of these training sizes, we assess their performance in zero-shot TTS. From Figure 5 (a),
we can observe notable improvement across all metrics with increasing training sizes from 0 to
50k, indicating that an increase in preference data can enhance the effectiveness of SpeechAlign.
However, employing 250k preference data through DPO does not result in larger performance gains,
suggesting that there is a threshold beyond which additional data does not translate into better learning
outcomes. This effect suggests that while increasing the size of preference data can initially lead to
more effective feedback learning, there comes a point where the quality of data or the model’s ability
to utilize this data effectively becomes more critical than sheer volume.

Comparison With Continue SFT The chosen samples in the preference dataset originate from
ground truth AR tokens, therefore, during the preference optimization process, the model undergoes
retraining on the data. To investigate whether the improvements from preference optimization
or simply from continued training on ground truth data, we conduct experiments on continuing
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Figure 5: Left: Performance of SpeechAlign across different preference data sizes. Right: Perfor-
mance of SpeechAlign on small models. Results are evaluated from on LibriSpeech test-clean.

Supervised Fine-Tuning (SFT) from SpeechAlign-sft for comparison. We utilize the same ground truth
AR tokens as those in the preference dataset, with training settings consistent with the DPO training
described in Section 4.1. The findings presented in Table 3 and Figure 3 reveal that continuing SFT
does not enhance the quality of generated speech; rather, it may actually degrade performance. This
indicates that the capability improvements gained from SpeechAlign are attributable to preference-
aware learning.

5.3 SpeechAlign Works With Small Models

Current codec language models primarily rely on smaller AR models with fewer than 1 billion
parameters (Wang et al., 2023; Borsos et al., 2022). So we investigate whether SpeechAlign can
bring improvements for smaller AR models. We utilize an AR model with 130 million parameters
that features a 12-layer transformer decoder-only architecture with embedding dimension 768 and
16 heads. We train the AR model on Multilingual LibriSpeech dataset for 500000 steps with batch
size 1152 and learning rate 1e-5. We adopt the NAR model in Section 2.1. For DPO training, the
preference data size is 50k and we following the training setting in Section 4.1. We evaluate the
zero-shot TTS performance on LibriSpeech test-clean dataset. Figure 5 (b) shows that in the first
iteration, DPO decreases the WER from 11.4 to 9.3 and boosts Speaker Similarity from 0.87 to 0.88.
This indicates that SpeechAlign can notably improve speech generation in smaller models. As the
process advances, it’s evident that the effectiveness of DPO isn’t just limited to initial gains. With
subsequent iterations, we observe a consistent upward trend in WER though no more improvement in
speaker similarity.

5.4 Preference Optimization Bridges the Distribution Gap

As depicted in Figure 1 (b), after alignment, the representations of golden AR tokens and synthetic
AR tokens merge into a single cluster without significant distribution differences. This demonstrates
that the distribution gap can be bridged by preference optimization. Along with the results in Table 3
and Figure 3, we observe that as the distribution gap diminishes, the model’s capability in speech
generation improves. This proves the effectiveness of preference optimization in calibrating model’s
output distribution. By reducing the inconsistencies between the training and inference phases, the
model can more accurately capture the features of the target distribution, resulting in more natural
and accurate speech generation.

6 Related Work

Neural Codec Language Models AudioLM (Borsos et al., 2022) is the pioneering model in
introducing codec codes for language modeling, adopting a hierarchical strategy that combines
semantic and acoustic modeling. VALL-E (Wang et al., 2023), another innovative neural codec
language model, is trained to produce discrete codes based on EnCodec (Défossez et al., 2022),
enabling the generation of high-quality, personalized speech from just a 3-second sample of an unseen
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speaker’s speech. However, all existing codec language models have been trained through supervised
methods. SpeechAlign is the first work enable codec language models to learn from human feedback.

Learning From Human Feedback Learning from human feedback recently became a critical
step in the LLM training such as ChatGPT (OpenAI, 2023) and LLaMA (Touvron et al., 2023).
Existing human preference alignment methods for LLM include RLHF (Ouyang et al., 2022; Bai
et al., 2022), contrastive learning (Rafailov et al., 2023) and Chain-of-Hindsight (Liu et al., 2023).
MusicRL (Cideron et al., 2024) aligns music generation to human preferences by reinforcement
learning, Baton (Liao et al., 2024) improves audio generation by learning from human feedback and
(Lee et al., 2023) aligns text-to-image models using human feedback. (Liu et al., 2021) proposes to
improve emotional text-to-speech via reinforcement learning. However, our work explores using
human feedback to align codec language models for speech generation with human preference.

Self-Improvement SPIN Chen et al. (2024) enables the LLM to self-improve without additional
human data or feedback from stronger LLMs by generating its own training data from its previous
iterations and refining its policy by discerning these self-generated responses from those obtained
from human-annotated data. SPIN-Diffusion Yuan et al. (2024) makes the diffusion model engage
in competition with its earlier versions, facilitating an iterative self-improvement process. (Xu
et al., 2024) adopts RLHF to improve LLM translation quality by optimizing reward models by
distinguishing between human and machine translations. Similarly, our work converts weak speech
language models stronger learners through self-improvement iteratively.

7 Conclusion

This paper first analyzes the distribution gap existing in current neural codec language models and
propose to solve it by preference optimization. To avoid the need for additional human-annotated
preference data, construct a preference codec dataset contrasting golden codec tokens against synthetic
tokens. Then we conduct preference optimization to align codec language models to human preference.
Subjective and objective evaluation results prove the effectiveness of SpeechAlign to continuously
converting weak codec language models to stronger ones.

8 Limitations and Related Work

Fine-grained Reward Signals from Real-World Human Preferences Current preference datasets
capture overall preferences, while speech preferences can be multi-faceted, including aspects like
sound quality, rhythm, and timbre. Considering human preferences from these various dimensions
can enhance speech generation capabilities in a more detailed manner. Additionally, gathering high-
quality, real human preference data could be more effective than the current methods of preference
dataset collection, as it allows for a nuanced understanding of user preferences that can lead to more
targeted and efficient improvements in speech generation technologies.

Preference Optimization of the NAR Models In current practices, preference optimization is
employed to enhance the capabilities of AR models. Nonetheless, the codec decoder also grapples
with inconsistency problems during training and inference, stemming from distribution gaps between
golden NAR tokens and synthetic NAR tokens. Therefore, applying preference optimization to
calibrate the output distribution of NAR models is worth exploration.
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