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Abstract

We present TuringQ, to the best of our knowl-001
edge, the first effort to evaluate the reasoning002
capabilities of large language models (LLMs)003
in the theory of computation. TuringQ consists004
of 4,006 question-answer pairs spanning under-005
graduate and graduate-level problems collected006
from a diverse set of universities. It covers007
three difficulty levels and six main concepts,008
including a valuable subset of axioms and es-009
sential theoretical concepts. We evaluated vari-010
ous open-source LLMs and GPT-4 using Chain011
of Thought prompting and human expert as-012
sessment. Additionally, we explored an auto-013
mated LLM-Judge, demonstrating its potential014
to compete with human precision. We show015
that fine-tuning an LLaMA-3B model on Tur-016
ingQ improves its reasoning ability. TuringQ017
serves as both a benchmark and a fine-tuning018
resource for enhancing LLM reasoning in this019
complex domain. Our comparative analysis020
reveals insights into LLM performance, con-021
tributing to advancements in AI comprehension022
of theoretical computer science. 1023

1 Introduction024

The reasoning and comprehension capabilities of025

large language models across complex domains are026

crucial due to their recent vast number of applica-027

tions (Guo et al., 2023). As LLMs grow in capa-028

bility, robust benchmarks are needed to accurately029

assess their performance, especially in domains re-030

quiring deep understanding and logical reasoning031

(Brown et al., 2020; Ling et al., 2024). While ef-032

forts like BIG-Bench (Srivastava et al., 2022) have033

introduced multi-task benchmarks across various034

domains, a dedicated dataset to assess LLM per-035

formance on theoretical concepts and problems in036

the theory of computation has been notably absent.037

Assessing comprehension in formal languages is038

1The dataset, code, and fine-tuned model will be made
publicly available upon publication.

particularly important to understand the depth of 039

LLMs’ reasoning abilities. This can be a signifi- 040

cant step toward developing LLMs into effective 041

problem solvers in complex domains (Bender and 042

Koller, 2020). 043

TuringQ provides a robust platform to rigorously 044

assess and compare the reasoning capabilities of 045

different LLMs on complex theoretical domains, 046

driving advancements in enhancing their skills for 047

tackling intricate computational concepts and con- 048

tributing to the development of more capable and 049

reliable AI systems (Radford et al., 2019; Yang 050

et al., 2023). Moreover, a strong grasp of theory 051

of computation principles is crucial for LLMs as 052

these foundational concepts underpin modern com- 053

puting systems. Enhancing LLM comprehension 054

in this domain can unlock their potential for reason- 055

ing about computational problems, analyzing algo- 056

rithms, and potentially contributing to the develop- 057

ment of new computational models and methodolo- 058

gies (Sipser, 2006). Figure 1 presents a complete 059

visual overview of our work. Our contributions are 060

threefold: 061

1. TuringQ Dataset: We introduce a new 062

resource of 4,006 theory of computation 063

question-answer pairs from universities world- 064

wide. This dataset spans undergraduate and 065

graduate-level concepts across three difficulty 066

levels and seven main areas, including a sub- 067

set focused on theoretical essentials. It serves 068

as a comprehensive tool for evaluating and 069

fine-tuning LLMs in this domain. 070

2. LLM-based Evaluation: We explore the fea- 071

sibility of leveraging LLMs themselves as 072

evaluators for TuringQ (Zheng et al., 2024). 073

By defining an Autograde-TuringQ prompt us- 074

ing Llama-3-8b, we investigate the potential 075

for automating the evaluation process, thereby 076

reducing the time and cost associated with 077

manual grading. 078
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Figure 1: TuringQ Dataset and its Evaluation Framework. This diagram presents the TuringQ dataset, a
comprehensive resource for theory of computation, and illustrates the automated assessment of LLMs using Llama3-
8b. It showcases sample questions, LLM responses, and their evaluation by the AI evaluator. The fine-tuned
Llama3-8b-ft-TuringQ model demonstrates improved performance, yet encounters certain challenges in addressing
TuringQ questions.

3. Llama3-8b-ft-TuringQ Model: We fine-079

tuned a large language model on the Tur-080

ingQ dataset, creating Llama3-8b-ft-TuringQ,081

a model specialized for theory of computation082

reasoning. Through comprehensive evalua-083

tion using custom metrics, we provide a com-084

parative analysis of LLM performance across085

different TuringQ categories, shedding light086

on their ability to tackle complex queries rela-087

tive to human performance.088

2 Related Works089

Evaluating Reasoning Capabilities of LLMs090

Large Language Models have shown remarkable091

progress, but evaluating their mathematical and092

computer science reasoning capabilities is still an093

evolving field (Frieder et al., 2023; Li et al., 2024;094

Ahn et al., 2024). While various datasets have been095

introduced to assess mathematical reasoning abili-096

ties (Ahn et al., 2024), and approaches like graph-097

based verification have been proposed to enhance098

reasoning (Cao, 2024), the theory of computation099

domain awaits similar advancements.100

Automated LLM Evaluation Automated evalu-101

ation of large language models is an active area102

of research. Various techniques, such as self- 103

consistency, truth-checking against external data, 104

and adversarial probing, have been proposed to en- 105

able LLMs to evaluate their own outputs (Huang 106

et al., 2024). Parallel studies have explored using 107

LLMs to calibrate and augment human raters for 108

evaluating text generation outputs (Zhang et al., 109

2024). The combination of LLM evaluations with 110

human grading for written assessments has also 111

been investigated, providing a novel perspective on 112

human-AI collaboration (Ren et al., 2024). How- 113

ever, the trustworthiness of LLMs for evaluation 114

has been questioned, leading to proposals for scal- 115

able meta-evaluation of LLMs as evaluators via 116

agent debate (Chern et al., 2024). Additionally, re- 117

search has focused on aligning LLM-assisted eval- 118

uation of LLM outputs with human preferences 119

(Shankar et al., 2024). These works contribute to 120

the understanding and enhancement of automated 121

LLM evaluators. 122

3 The TuringQ Dataset 123

TuringQ is a comprehensive dataset comprising 124

4,006 question-answer pairs covering undergradu- 125

ate and graduate-level theory of computation prob- 126
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Figure 2: Category and Difficulty level Distribution of TuringQ

lems. The questions are categorized into three diffi-127

culty levels and seven main conceptual areas: Regu-128

lar Languages, Theoretical Concepts, Context-Free129

Languages, Computability Theory, Countability130

Concepts, Complexity Theory, and Fundamental131

Concepts, as detailed in Table 9. The difficulty lev-132

els were determined by domain experts, ensuring133

an even distribution across categories and a clear134

distinction between difficulty levels and conceptual135

categories. The distribution of the dataset based136

on category and difficulty level is illustrated in Fig-137

ure 2. Examples of dataset entries are provided in138

Table 8.139

3.1 Data Collection140

We curated a collection of questions from publicly141

available exam sets and homework solutions from142

29 top-tier universities to ensure a high-quality143

dataset in the Theory of Computation domain. The144

primary dataset consists of 2,155 carefully selected145

university exam and homework questions, ensuring146

fair distribution across various categories. Addi-147

tionally, 61 question-answer pairs from reputable148

non-university resources were incorporated. To149

complement the academic questions, we developed150

a secondary set focusing on fundamental concepts,151

theorems, lemmas, and essential knowledge. Do-152

main experts identified these topics, and the Claude153

3 Sonnet model (Anthropic, 2024) was utilized to154

generate 1,790 question-answer pairs covering the155

core principles of Theory of Computation.156

4 Experiments157

For further evaluation and analysis, we employ a di-158

verse set of language models: Llama-3-8B-Instruct159

(Meta, 2024), Llama-2-7b-chat-hf (Touvron et al.,160

2023), Mistral-7B (Jiang et al., 2023), Gemma-7b-161

it (Team et al., 2024), and GPT-4-32k (OpenAI,162

2023). To assess these models, we curated a strat-163

ified sample of 500 questions from the TuringQ164

dataset, maintaining the original distribution across 165

difficulty levels and categories. This approach en- 166

sures a representative subset for our comparative 167

analysis. 168

4.1 AI-Driven Assessment 169

We used Llama-3-8b to generate responses using 170

direct and Chain of Thought (CoT) prompts (Wei 171

et al., 2023). To evaluate LLMs as assessors, we 172

developed the ’AutoGrade-TQ’ prompt, guiding 173

models to score answers on a 1-4 scale. Three in- 174

house domain experts provided ground-truth evalu- 175

ations with substantial inter-rater agreement (Fleiss’ 176

Kappa κ = 0.742). Majority votes were derived 177

from their scores. Models evaluated both CoT 178

and simple answers. Analysis suggests LLMs can 179

be effective evaluators, with Llama3-8b achieving 180

77.8% binary accuracy. Key findings include: 181

CoT answers generally received higher scores, 182

improving performance in open-source models. 183

GPT-4 showed the lowest alignment with human 184

evaluators. GPT-4 led in 4-level accuracy (49%), 185

while Llama3-8b led in 2-level accuracy (77.8%). 186

Llama3-8b and human evaluators’ average scores 187

for CoT answers were nearly identical. Full prompt 188

details and statistics are presented in Tables 2 and 189

7. 190

4.2 Model Specialization 191

We fine-tuned the Llama3-8b model, resulting in 192

Llama3-8b-ft-TuringQ, using our extensive dataset 193

of detailed answers to enhance its performance on 194

specific tasks. Our approach combined Quantized 195

Low-Rank Adaptation (QLoRA) (Dettmers et al., 196

2023), a Parameter-efficient Fine-tuning (PEFT) 197

technique (Xu et al., 2023), and Supervised Fine- 198

Tuning (SFT)2. We utilized three datasets derived 199

from TuringQ for fine-tuning: a training set (3,006 200

instances), a validation set (500 instances), and a 201

2https://huggingface.co/docs/trl/en/sft_trainer
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test set (500 instances), generated using stratified202

sampling based on difficulty level and category for203

balanced representation. Our fine-tuning process204

incorporated advanced techniques like quantization205

and low-rank adaptation to optimize performance206

within computational constraints. Despite limita-207

tions, we achieved high-quality results, and further208

fine-tuning could yield better performance. Setup209

and hyperparameters are detailed in Appendix A.1.210

5 Results211

5.1 Performance Evaluation212

We evaluated seven LLMs, including our fine-tuned213

model “Llama3-8b-ft-TuringQ”, using the TuringQ214

test set. Assessment utilized a Chain-of-Thought215

prompt and an AutoGrader prompt for automatic216

evaluation. We measured performance using score217

and binary accuracy metrics. The score metric218

quantifies response quality, while binary accuracy219

classifies answers as valid or invalid based on the220

score, providing a more comprehensive assess-221

ment of answer correctness. As shown in Table222

1, Llama3-8b-ft-TuringQ increased binary accu-223

racy by 2.2%, a significant improvement given the224

computational resources used. This enhancement225

primarily resulted from an increase in responses226

with a score of 3. While performances across mod-227

els were similar, GPT-4 only slightly outperformed228

others despite its superior capabilities, highlight-229

ing the challenges LLMs face with TuringQ ques-230

tions. Figure 4 shows the score distribution for231

each model.232

5.2 Category-Specific Performance Analysis233

Analysis of the seven categories in the TuringQ234

dataset revealed consistent model performance235

across categories without drastic differences. Con-236

trary to expectations, the “theoretical concepts”237

category did not yield the highest scores, poten-238

tially due to its more descriptive manner compared239

to other categories. The best performance was240

observed in the context-free languages category.241

GPT-4 exhibited exceptional performance in the242

“Countability” concepts category, achieving 90.9%243

accuracy—23.2% higher than the average binary244

accuracy of open-source models (Table 5). The245

fine-tuned model outperformed Llama3-8b in ev-246

ery category except theoretical concepts, where it247

showed a 5% decrease. In context-free languages,248

it demonstrated a substantial 22% increase com-249

pared to Llama3-8b (Figure 3).250

Model Mean Score Binary Accuracy

GPT-4 3.276 82.40%
Llama3-8b-ft-
TuringQ

2.984 76.00%

Llama3-8b 3.030 73.80%
Gemma-7B 3.022 72.20%
LLaMA-2-7B 3.020 70.80%
Mistral-7B 2.986 70.40%
Gemma-2B 2.872 65.20%

Table 1: Comparative Performance Metrics of Language
Models on the TuringQ Test Set

5.3 Impact of Difficulty Levels on Model 251

Performance 252

The TuringQ dataset’s difficulty levels were vali- 253

dated by domain experts, acknowledging the inher- 254

ent subjectivity of difficulty assessments. Interest- 255

ingly, our findings contradict conventional human 256

expectations regarding question difficulty. Ques- 257

tions labeled as Level 3 and Level 2 achieved higher 258

average scores (3.17) than Level 1 questions (2.95) 259

and Axiom-level questions (2.90). Binary accuracy 260

metrics further corroborate these findings, with the 261

highest accuracies observed in Level 3 and Level 262

2 questions (Tables 4 and 6). This unexpected per- 263

formance pattern across difficulty levels suggests a 264

potential misalignment between human-perceived 265

difficulty and the capabilities of language models 266

in this domain. 267

6 Conclusion 268

We presented TuringQ to evaluate the reasoning 269

capabilities of large language models (LLMs) in 270

the theory of computation covering three difficulty 271

levels and six main concepts, including key ax- 272

ioms and theoretical concepts. We evaluated vari- 273

ous open-source LLMs and GPT-4 using Chain of 274

Thought prompting and human expert assessment, 275

and explored an automated LLM-Judge, demon- 276

strating its potential to compete with human pre- 277

cision. Fine-tuning an LLaMA-3B model on Tur- 278

ingQ improved its reasoning ability. This effort pro- 279

vides a valuable benchmark for evaluating LLM 280

understanding and could also be used as an ed- 281

ucational resource. Assessing comprehension in 282

formal languages was crucial for understanding the 283

depth of LLMs’ reasoning abilities, representing 284

a significant step toward developing LLMs into 285

effective problem solvers in complex domains. 286
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7 Ethics Statement287

The TuringQ dataset comprises publicly available288

exams and homework questions from renowned289

universities worldwide, obtained from the internet.290

Each source is duly labeled in the dataset’s meta-291

data, and no question has been extracted without292

mentioning the original source. After data collec-293

tion, we reviewed and enhanced some answers to294

maintain the dataset’s high quality and ensure its295

value as a resource. This enhancement process did296

not involve any bias or alteration of the original297

content or answers.298

For the theoretical concepts, we utilized the299

Claude 3 sonnet model to generate answers for300

the specified theorems and lemmas. We believe301

this approach could benefit the TuringQ dataset.302

Subsequently, we checked and edited the model-303

generated answers to ensure the absence of bias,304

hallucinations, or errors in our work.305

Regarding non-university sources, we made ef-306

forts to gather solutions from diverse, reliable307

sources, including computer science portals and308

books. As the theory of computation and theoreti-309

cal computer science is an advancing and complex310

field, we have included answers that are accurate311

based on our current knowledge, particularly con-312

cerning P and NP, and open problems. We ac-313

knowledge that as our understanding progresses,314

some open questions in our dataset may require315

updates to their answers. However, to the best of316

our present knowledge, this dataset is up-to-date.317

8 Limitations318

The present study encountered several limitations319

that future research should address. Firstly, com-320

putational resource constraints hindered our ability321

to utilize larger language models with 70 billion or322

more parameters. Instead, we focused on smaller323

yet powerful models that were more feasible for324

our research scope. These resource constraints325

also impacted the fine-tuning process, limiting the326

Llama3-8b-ft-TuringQ model to only three epochs327

of fine-tuning, which may have curtailed its po-328

tential performance. Consequently, future studies329

should explore extended training periods and alter-330

native fine-tuning approaches using the TuringQ331

dataset to fully leverage its capabilities.332

Evaluating descriptive questions posed a signif-333

icant challenge. While we developed two metrics334

for evaluating descriptive questions, incorporating335

more extensive human evaluation would be bene-336

ficial. Although this approach is more resource- 337

intensive and time-consuming, it could provide 338

valuable insights into model performance. Ad- 339

ditionally, the development and implementation 340

of new, more comprehensive evaluation metrics 341

would be beneficial for assessing model capabili- 342

ties. 343

Our dataset effectively captures the essential 344

categories and fundamentals of theory of compu- 345

tation. However, it lacks coverage of more ap- 346

plied tasks, such as code generation. Future re- 347

search could investigate how fine-tuned, special- 348

ized models impact performance in related domains 349

like code generation, reasoning, and mathematical 350

problem-solving. It would be particularly interest- 351

ing to explore the extent to which domain-specific 352

fine-tuning may affect a model’s general capabil- 353

ities. Further study into the broader implications 354

and potential trade-offs of such fine-tuning on large 355

language models is encouraged. 356
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A Appendix476

A.1 Fine-tuning Setup and Hyperparameters477

Our fine-tuning approach for the Llama3-8b478

model combined Quantized Low-Rank Adapta-479

tion (QLoRA), a Parameter-efficient Fine-tuning480

(PEFT) method, with Supervised Fine-Tuning481

(SFT) using the SFTTrainer from HuggingFace’s482

trl library3. QLoRA, as a PEFT technique, al-483

lows for task-specific tuning without modifying484

all model parameters, while SFT provides a frame-485

work for supervised learning on our specific task.486

LoRA (Low-Rank Adaptation) freezes the LLM’s487

weights and injects trainable rank-decomposition488

matrices (Hu et al., 2021). QLoRA extends this489

by incorporating quantization techniques, further490

reducing memory usage while maintaining or im-491

proving model performance. We configured the492

PEFT settings with the following hyperparameters:493

• Alpha: 64494

• Dropout rate: 0.05495

• Optimizer: ’paged_adamw_8bit’496

• Learning rate: 5e-6497

• Learning rate scheduler: Linear498

• Number of epochs: 3 (due to computational499

limitations)500

• Batch size: 4 (for both training and evalua-501

tion)502

• Gradient accumulation steps: 2503

Evaluation was performed at every step, with re-504

sults logged for detailed performance tracking.505

We employed quantization via the BitsAndBytes506

method4, setting the compute data type to bfloat16507

and loading the model in 4-bit with a quantization508

type of "nf4". This configuration enabled double509

quantization, potentially improving the efficiency510

of our model training. Our approach, combining511

QLoRA, SFT, and quantization techniques, allowed512

us to achieve high-quality results despite computa-513

tional constraints.514

3https://huggingface.co/docs/trl/en/index
4https://huggingface.co/docs/bitsandbytes/main/en/index

Figure 3: Bar chart showing the difference in binary
accuracy (%) between Llama3-8b-ft-TuringQ and the
Llama3-8b across various TuringQ categories. Cate-
gories C1 (Countability Concepts), C2 (Computability
Theory), C3 (Context-Free Languages), C4 (Fundamen-
tal Concepts), and C5 (Complexity Theory) demonstrate
positive accuracy gains for Llama3-8b-ft-TuringQ com-
pared to Llama3-8b, indicating performance improve-
ments after fine-tuning. C6 (Regular Languages) ex-
hibits no change in accuracy and C7 (Theoretical Con-
cepts) has a minor decrease in performance.

Figure 4: Score Distribution Across Models on the Test
Split of the TuringQ Dataset
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Average MSE Variance Correlation 2-Class Acc 4-Class Acc

Llama-2-7b 3.494 1.758 1.4979 0.1169 0.6800 0.3440

Llama-2-7b-CoT 3.456 1.656 1.4928 0.0478 0.7040 0.3520

Llama-3-8b 2.858 1.746 1.7301 0.1772 0.6400 0.3180

Llama-3-8b-CoT 3.032 1.268 1.2676 0.3408 0.7780 0.3520

Gemma-2b 3.2969 2.068 1.9737 0.1400 0.6784 0.3753

Gemma-2b-CoT 3.4854 2.006 1.8295 0.1463 0.7050 0.4121

Gemma-7b 3.1674 1.678 1.6520 0.0479 0.6801 0.2733

Gemma-7b-CoT 3.3162 1.524 1.4479 0.0355 0.7084 0.3203

Mistral-7b 3.454 1.538 1.3171 0.3474 0.7260 0.4520

Mistral-7b-CoT 3.374 1.686 1.5823 0.2632 0.7120 0.4620

GPT-4 2.69 1.390 1.3036 0.5103 0.7000 0.4880

GPT-4-CoT 2.366 2.106 1.6354 0.3906 0.6080 0.3980

Human 2.984

Human-CoT 3.052

Table 2: Statistical Measures of LLM Performance as Evaluators on the TuringQ Test Set

Category llama3-8b Llama3-8b-ft-TuringQ Gemma-2b Gemma-7b llama2-7b Mistral-7b GPT4
Complexity Theory 3.1 3.1 3.0 3.2 3.1 3.2 3.4

Computability Theory 3.1 3.3 3.1 3.3 3.2 3.3 3.4
Context-Free Languages 2.8 3.3 3.2 3.3 3.4 3.1 3.4
Countability Concepts 2.9 3.2 2.8 2.9 3.2 2.8 3.6
Fundamental Concepts 3.1 3.1 3.0 3.1 3.3 2.9 3.2

Regular Languages 3.1 3.0 3.0 3.2 3.2 3.1 3.4
Theoretical Concepts 3.0 2.8 2.7 2.9 2.8 2.9 3.2

Table 3: Comparative Analysis of Mean Scores Across Models by Category

Difficulty llama3-8b Llama3-8b-ft-TuringQ Gemma-2b Gemma-7b llama2-7b Mistral-7b GPT4
Axiomatic 3.0 2.8 2.7 2.9 2.8 2.9 3.2

Level 1 2.9 3.0 2.9 2.9 3.2 2.8 3.0
Level 2 3.1 3.2 3.0 3.2 3.2 3.1 3.4
Level 3 3.0 3.2 3.1 3.2 3.1 3.1 3.5

Table 4: Comparative Analysis of Mean Scores Across Models by Difficulty Level

Category llama3-8b Llama3-8b-ft-TuringQ Gemma-2b Gemma-7b llama2-7b Mistral-7b GPT4
Complexity Theory 81.2% 83.3% 75.0% 83.3% 81.2% 81.2% 85.4%

Computability Theory 74.5% 88.2% 76.5% 78.4% 76.5% 80.4% 84.3%
Context-Free Languages 66.7% 88.9% 74.1% 74.1% 81.5% 74.1% 77.8%
Countability Concepts 66.7% 78.8% 60.6% 63.6% 75.8% 60.6% 90.9%
Fundamental Concepts 72.1% 78.7% 68.9% 73.8% 82.0% 65.6% 77.0%

Regular Languages 75.4% 75.4% 73.7% 71.9% 75.4% 70.2% 84.2%
Theoretical Concepts 74.0% 69.1% 57.0% 69.1% 61.0% 68.2% 81.6%

Table 5: Comparative Analysis of Mean Binary Accuracy Across Models by Category
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Difficulty llama3-8b Llama3-8b-ft-TuringQ Gemma-2b Gemma-7b llama2-7b Mistral-7b GPT4
Axiomatic 74.0% 69.1% 57.0% 69.1% 61.0% 68.2% 81.6%

Level 1 65.9% 68.3% 68.3% 68.3% 78.0% 61.0% 68.3%
Level 2 78.2% 84.0% 71.2% 75.6% 79.5% 73.7% 85.3%
Level 3 68.8% 83.8% 75.0% 76.2% 77.5% 75.0% 86.2%

Table 6: Comparative Analysis of Mean Binary Accuracy Across Models by Difficulty Level

Chain of Thought

You are a knowledgeable AI assistant specialized in Theory of Computation and Complexity.

You will be answering questions related to this domain.

To provide a clear and structured response, you will follow the Chain of Thoughts approach:

Chain of Thoughts:

1. Analyze the question and identify core concepts, algorithms or problems.

2. Build a step-by-step solution approach, stating assumptions, defining

variables/notations, and listing intermediate steps.

3. For proofs or complex calculations, show work explicitly, using relevant theorems, lemmas, or properties.

4. For true/false statements, provide clear justification or counterexample.

5. Review your Chain of Thoughts for logical soundness and completeness.

Use clear and concise language, avoiding unnecessary jargon.

AutoGrade-TQ

You are an automated grading system for evaluating s in the field of theory of computation and complexity.

Your task is to assign a score (1, 2, 3, or 4) to a given answer based on its correctness

and alignment with the provided solution,

following the ccs outlined below.

Rubrics:

Level 4 (Excellent):

- Answer is completely correct and aligns perfectly with the provided solution.

- Proofs, descriptions, true/false justifications, and calculations match the solution with no errors or omissions.

- Demonstrates a comprehensive understanding of the concepts.

Level 3 (Good):

- Answer is mostly correct, with only minor deviations or omissions compared to the provided solution.

- Proofs, descriptions, justifications, and calculations are largely accurate but may have a few minor flaws

- Shows a strong grasp of the key concepts.

Level 2 (Flawed):

- Answer has some significant differences or incorrect elements compared to the provided solution.

- Proofs, descriptions, justifications, and calculations contain several errors or omissions,

but the core approach is partially valid.

- Demonstrates a basic understanding of the concepts but lacks depth.

Level 1 (Poor):

- Answer deviates substantially from the provided solution.

- Proofs, descriptions, justifications, and calculations are mostly incorrect or entirely missing crucial components.

- Exhibits a lack of understanding of the fundamental concepts.

Please note that the length of the answer should not be a factor in determining the score.

The focus should be solely on the correctness and alignment with the provided solution.

Given Answer: Answer

Solution: Solution

Based on the rubrics and the provided solution, assign a score (1, 2, 3, or 4) to the given answer.

Table 7: Prompts Employed for Automated Grading and Answer Generation via Chain of Thought Reasoning
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Question Answer

Show that the following is not regular.
L = {ww : w ∈ {a, b}∗}

Difficulty: Level 2
Category: Regular Expression
Source: The University of Texas at Austin

L = {ww : w ∈ {a, b}∗}. We’ll use the pumping lemma.
Don’t get confused by the use of the variable w both to define L
and as the name for the string we will choose to pump on.
As is always the case, the only real work we have
to do is to choose an appropriate string w.
We need one that is long enough (i.e., |w| ≥ N).
And we need one with firm boundaries between regions.
So let’s choose w = aˆNbaˆNb. Since |xy| ≤ N,
we know that y must occur in the first a region.
Clearly if we pump in any additional a’s, the two halves of w
will no longer be equal.Therefore L is not regular.

Give context-free grammars that
generate the following language.
{w ∈ {0, 1}∗,
the length of w is odd and the middle symbol is 0}

Difficulty: Level 2
Category: Context-Free Languages
Source: New Jersey Institute of Technology

G = (V,Σ,R,S) with set of variables V = {S}, where S is the start variable;
set of terminals Σ = {0,1}; and rules S → 0S0 | 0S1 | 1S0 | 1S1 | 0

Consider the language L = {wwR}.
Describe a two tape Turing machine to accept L.

Difficulty: Level 3
Category: Computability Theory
Source: The University of Texas at Austin

The two tape machine works as follows: If the input is ϵ, accept.
If not, copy the input to the second tape and record in the state
that you have processed an even number of characters so far.
Now, start the first tape at the left end and the second tape at the right end.
Check that the symbols on the two tapes are the same.
If not, reject. If so, move the first tape head to the right
and the second tape head to the left.
Also record that you have processed an odd number and continue,
each time using the state to keep track of whether
you’ve seen an even or odd number of characters so far.
When you reach the end of the input tape,
accept if you’ve seen an even number of characters.
Reject if you’ve seen an odd number.
(The even/odd counter is necessary to make sure
that you reject strings such as aba.)

Let A be the set {x, y, z} and B be the set {x, y}.
What is A × B?

Difficulty: Level 1
Category: Fundamental Concepts
Source: Sipser Book

A x B = {(a, b) : a ∈ A and b ∈ B} = {(x, x), (x, y), (y, x), (y, y), (z, x), (z, y)}

What is the pumping lemma for regular languages?

Difficulty: Axiomatic
Category: Theoretical Concepts
Source: Claude3 + human

The pumping lemma for regular languages states that if A is a regular language,
then there exists a number p such that for any string s in A
with length greater than or equal to p, there exist strings x, y, and z where s can
be written as xyz, satisfying the following conditions:
(1) xyiz belongs to A for each i greater than or equal to 0,
(2) y is not an empty string, and
(3) the length of xy is less than or equal to p.

Table 8: Sample Instances from the TuringQ Dataset
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Category Discription

Regular

Languages

Regular languages are a class of formal languages that can be defined by regular expressions

or recognized by finite automata with a finite number of states.

Key topics in this category include determining whether a given language is regular or not,

often employing techniques like the pumping lemma for regular languages

or constructing regular expressions. Additionally, concepts like deterministic finite automata (DFAs)

and nondeterministic finite automata (NFAs) are fundamental,

addressing the recognition of strings in regular languages

through state transitions based on an input alphabet.

Context-Free

Languages

A context-free language is a formal language that can be precisely defined by a context-free grammar,

consisting of a set of production rules that specify how strings of symbols can be derived or generated,

regardless of the context in which the symbols appear. Key concepts in the study

of context-free languages include context-free grammars themselves,

the processes of derivation and parse trees for visualizing derivations,

as well as techniques for proving whether a given language is context-free or not.

Computability

Theory

Computability Theory is a branch of theoretical computer science

that deals with the limitations and capabilities of computational models,

particularly in determining which problems are computationally solvable and which are not.

Core concepts include Turing machines, decidability,

Turing recognizable languages, Church-Turing thesis, undecidability.

Complexity

Theory

Complexity Theory is a branch of computer science that classifies computational problems

based on their inherent difficulty and resource requirements.

It analyzes time and space complexity using notations like Big O,

and categorizes problems into complexity classes such as P, NP, NP-Complete, and PSPACE.

Key concepts include polynomial time solvability, NP-Completeness for hardest problems in NP,

and reducibility for relating problem complexities.

Countability

Concepts

Countability concepts revolve around distinguishing between countable and uncountable sets,

as well as characterizing the sizes of infinite sets. Key ideas include

countable vs. uncountable sets, cardinal numbers and

infinite cardinals, bijections and enumeration techniques, diagonalization methods

for proving uncountability, the notion of cardinality as a measure of set size,

and combinatorial principles like combinations and permutations.

These concepts from set theory, combinatorics,

and measure theory are crucial for understanding the nature of infinity.

Fundamental

Concepts

Fundamental Concepts are the essential and introductory topics,

including Set Theory, Propositional and Predicate Logic, and Relations.

Set Theory covers sets, operations, and relations.

Logic encompasses logical operators, truth tables, well-formed formulas, and quantifiers.

Relations involve properties like reflexivity, symmetry, transitivity, equivalence relations, and partitions.

Theoretical

Concepts

Theoretical Concepts in the theory of computation comprise the principles, theorems,

rigorous proofs, lemmas, and auxiliary results that constitute the backbone of the field.

These concepts lay the groundwork, illuminate pivotal results through meticulous derivations,

and foster a profound understanding by elucidating connections and delineating boundary conditions.

Mastering these Theoretical Concepts equips one with a robust theoretical foundation.

Table 9: Detailed Analysis and Interpretation of the TuringQ Dataset Categories
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