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Abstract

We present TuringQ, to the best of our knowl-
edge, the first effort to evaluate the reasoning
capabilities of large language models (LLMs)
in the theory of computation. TuringQ consists
of 4,006 question-answer pairs spanning under-
graduate and graduate-level problems collected
from a diverse set of universities. It covers
three difficulty levels and six main concepts,
including a valuable subset of axioms and es-
sential theoretical concepts. We evaluated vari-
ous open-source LLMs and GPT-4 using Chain
of Thought prompting and human expert as-
sessment. Additionally, we explored an auto-
mated LLM-Judge, demonstrating its potential
to compete with human precision. We show
that fine-tuning an LL.aMA-3B model on Tur-
ingQ improves its reasoning ability. TuringQ
serves as both a benchmark and a fine-tuning
resource for enhancing LLM reasoning in this
complex domain. Our comparative analysis
reveals insights into LLM performance, con-
tributing to advancements in Al comprehension
of theoretical computer science. '

1 Introduction

The reasoning and comprehension capabilities of
large language models across complex domains are
crucial due to their recent vast number of applica-
tions (Guo et al., 2023). As LLMs grow in capa-
bility, robust benchmarks are needed to accurately
assess their performance, especially in domains re-
quiring deep understanding and logical reasoning
(Brown et al., 2020; Ling et al., 2024). While ef-
forts like BIG-Bench (Srivastava et al., 2022) have
introduced multi-task benchmarks across various
domains, a dedicated dataset to assess LLM per-
formance on theoretical concepts and problems in
the theory of computation has been notably absent.
Assessing comprehension in formal languages is

The dataset, code, and fine-tuned model will be made
publicly available upon publication.

particularly important to understand the depth of
LLMs’ reasoning abilities. This can be a signifi-
cant step toward developing LLMs into effective
problem solvers in complex domains (Bender and
Koller, 2020).

TuringQ provides a robust platform to rigorously
assess and compare the reasoning capabilities of
different LLMs on complex theoretical domains,
driving advancements in enhancing their skills for
tackling intricate computational concepts and con-
tributing to the development of more capable and
reliable Al systems (Radford et al., 2019; Yang
et al., 2023). Moreover, a strong grasp of theory
of computation principles is crucial for LLMs as
these foundational concepts underpin modern com-
puting systems. Enhancing LLLM comprehension
in this domain can unlock their potential for reason-
ing about computational problems, analyzing algo-
rithms, and potentially contributing to the develop-
ment of new computational models and methodolo-
gies (Sipser, 2006). Figure 1 presents a complete
visual overview of our work. Our contributions are
threefold:

1. TuringQ Dataset: We introduce a new
resource of 4,006 theory of computation
question-answer pairs from universities world-
wide. This dataset spans undergraduate and
graduate-level concepts across three difficulty
levels and seven main areas, including a sub-
set focused on theoretical essentials. It serves
as a comprehensive tool for evaluating and
fine-tuning LLMs in this domain.

2. LLM-based Evaluation: We explore the fea-
sibility of leveraging LLMs themselves as
evaluators for TuringQ (Zheng et al., 2024).
By defining an Autograde-TuringQ prompt us-
ing Llama-3-8b, we investigate the potential
for automating the evaluation process, thereby
reducing the time and cost associated with
manual grading.
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Figure 1: TuringQ Dataset and its Evaluation Framework. This diagram presents the TuringQ dataset, a
comprehensive resource for theory of computation, and illustrates the automated assessment of LLMs using Llama3-
8b. It showcases sample questions, LLM responses, and their evaluation by the Al evaluator. The fine-tuned
Llama3-8b-ft-TuringQ model demonstrates improved performance, yet encounters certain challenges in addressing

TuringQ questions.

3. Llama3-8b-ft-TuringQ Model: We fine-
tuned a large language model on the Tur-
ingQ dataset, creating Llama3-8b-ft-TuringQ,
a model specialized for theory of computation
reasoning. Through comprehensive evalua-
tion using custom metrics, we provide a com-
parative analysis of LLM performance across
different TuringQ categories, shedding light
on their ability to tackle complex queries rela-
tive to human performance.

2 Related Works

Evaluating Reasoning Capabilities of LLMs
Large Language Models have shown remarkable
progress, but evaluating their mathematical and
computer science reasoning capabilities is still an
evolving field (Frieder et al., 2023; Li et al., 2024;
Ahn et al., 2024). While various datasets have been
introduced to assess mathematical reasoning abili-
ties (Ahn et al., 2024), and approaches like graph-
based verification have been proposed to enhance
reasoning (Cao, 2024), the theory of computation
domain awaits similar advancements.

Automated LLM Evaluation Automated evalu-
ation of large language models is an active area

of research. Various techniques, such as self-
consistency, truth-checking against external data,
and adversarial probing, have been proposed to en-
able LLMs to evaluate their own outputs (Huang
et al., 2024). Parallel studies have explored using
LLMs to calibrate and augment human raters for
evaluating text generation outputs (Zhang et al.,
2024). The combination of LLLM evaluations with
human grading for written assessments has also
been investigated, providing a novel perspective on
human-AlI collaboration (Ren et al., 2024). How-
ever, the trustworthiness of LLMs for evaluation
has been questioned, leading to proposals for scal-
able meta-evaluation of LLMs as evaluators via
agent debate (Chern et al., 2024). Additionally, re-
search has focused on aligning LLM-assisted eval-
uation of LLM outputs with human preferences
(Shankar et al., 2024). These works contribute to
the understanding and enhancement of automated
LLM evaluators.

3 The TuringQ Dataset

TuringQ is a comprehensive dataset comprising
4,006 question-answer pairs covering undergradu-
ate and graduate-level theory of computation prob-
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lems. The questions are categorized into three diffi-
culty levels and seven main conceptual areas: Regu-
lar Languages, Theoretical Concepts, Context-Free
Languages, Computability Theory, Countability
Concepts, Complexity Theory, and Fundamental
Concepts, as detailed in Table 9. The difficulty lev-
els were determined by domain experts, ensuring
an even distribution across categories and a clear
distinction between difficulty levels and conceptual
categories. The distribution of the dataset based
on category and difficulty level is illustrated in Fig-
ure 2. Examples of dataset entries are provided in
Table 8.

3.1 Data Collection

We curated a collection of questions from publicly
available exam sets and homework solutions from
29 top-tier universities to ensure a high-quality
dataset in the Theory of Computation domain. The
primary dataset consists of 2,155 carefully selected
university exam and homework questions, ensuring
fair distribution across various categories. Addi-
tionally, 61 question-answer pairs from reputable
non-university resources were incorporated. To
complement the academic questions, we developed
a secondary set focusing on fundamental concepts,
theorems, lemmas, and essential knowledge. Do-
main experts identified these topics, and the Claude
3 Sonnet model (Anthropic, 2024) was utilized to
generate 1,790 question-answer pairs covering the
core principles of Theory of Computation.

4 Experiments

For further evaluation and analysis, we employ a di-
verse set of language models: Llama-3-8B-Instruct
(Meta, 2024), Llama-2-7b-chat-hf (Touvron et al.,
2023), Mistral-7B (Jiang et al., 2023), Gemma-7b-
it (Team et al., 2024), and GPT-4-32k (OpenAl,
2023). To assess these models, we curated a strat-
ified sample of 500 questions from the TuringQ

dataset, maintaining the original distribution across
difficulty levels and categories. This approach en-
sures a representative subset for our comparative
analysis.

4.1 AlI-Driven Assessment

We used Llama-3-8b to generate responses using
direct and Chain of Thought (CoT) prompts (Wei
et al., 2023). To evaluate LLLMs as assessors, we
developed the ’AutoGrade-TQ’ prompt, guiding
models to score answers on a 1-4 scale. Three in-
house domain experts provided ground-truth evalu-
ations with substantial inter-rater agreement (Fleiss’
Kappa k = 0.742). Majority votes were derived
from their scores. Models evaluated both CoT
and simple answers. Analysis suggests LLMs can
be effective evaluators, with Llama3-8b achieving
77.8% binary accuracy. Key findings include:

CoT answers generally received higher scores,
improving performance in open-source models.
GPT-4 showed the lowest alignment with human
evaluators. GPT-4 led in 4-level accuracy (49%),
while Llama3-8b led in 2-level accuracy (77.8%).
Llama3-8b and human evaluators’ average scores
for CoT answers were nearly identical. Full prompt
details and statistics are presented in Tables 2 and
7.

4.2 Model Specialization

We fine-tuned the Llama3-8b model, resulting in
Llama3-8b-ft-TuringQ, using our extensive dataset
of detailed answers to enhance its performance on
specific tasks. Our approach combined Quantized
Low-Rank Adaptation (QLoRA) (Dettmers et al.,
2023), a Parameter-efficient Fine-tuning (PEFT)
technique (Xu et al., 2023), and Supervised Fine-
Tuning (SFT)2. We utilized three datasets derived
from TuringQ for fine-tuning: a training set (3,006
instances), a validation set (500 instances), and a

Zhttps://huggingface.co/docs/trl/en/sft_trainer
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test set (500 instances), generated using stratified
sampling based on difficulty level and category for
balanced representation. Our fine-tuning process
incorporated advanced techniques like quantization
and low-rank adaptation to optimize performance
within computational constraints. Despite limita-
tions, we achieved high-quality results, and further
fine-tuning could yield better performance. Setup
and hyperparameters are detailed in Appendix A.1.

5 Results

5.1 Performance Evaluation

We evaluated seven LLMs, including our fine-tuned
model “Llama3-8b-ft-TuringQ”, using the TuringQ
test set. Assessment utilized a Chain-of-Thought
prompt and an AutoGrader prompt for automatic
evaluation. We measured performance using score
and binary accuracy metrics. The score metric
quantifies response quality, while binary accuracy
classifies answers as valid or invalid based on the
score, providing a more comprehensive assess-
ment of answer correctness. As shown in Table
1, Llama3-8b-ft-TuringQ increased binary accu-
racy by 2.2%, a significant improvement given the
computational resources used. This enhancement
primarily resulted from an increase in responses
with a score of 3. While performances across mod-
els were similar, GPT-4 only slightly outperformed
others despite its superior capabilities, highlight-
ing the challenges LLMs face with TuringQ ques-
tions. Figure 4 shows the score distribution for
each model.

5.2 Category-Specific Performance Analysis

Analysis of the seven categories in the TuringQ
dataset revealed consistent model performance
across categories without drastic differences. Con-
trary to expectations, the “theoretical concepts”
category did not yield the highest scores, poten-
tially due to its more descriptive manner compared
to other categories. The best performance was
observed in the context-free languages category.
GPT-4 exhibited exceptional performance in the
“Countability” concepts category, achieving 90.9%
accuracy—?23.2% higher than the average binary
accuracy of open-source models (Table 5). The
fine-tuned model outperformed Llama3-8b in ev-
ery category except theoretical concepts, where it
showed a 5% decrease. In context-free languages,
it demonstrated a substantial 22% increase com-
pared to Llama3-8b (Figure 3).

Model Mean Score  Binary Accuracy
GPT-4 3.276 82.40%
Llama3-8b-ft- 2.984 76.00%
TuringQ

Llama3-8b 3.030 73.80%
Gemma-7B 3.022 72.20%
LLaMA-2-7B 3.020 70.80%
Mistral-7B 2.986 70.40%
Gemma-2B 2.872 65.20%

Table 1: Comparative Performance Metrics of Language
Models on the TuringQ Test Set

5.3 Impact of Difficulty Levels on Model
Performance

The TuringQ dataset’s difficulty levels were vali-
dated by domain experts, acknowledging the inher-
ent subjectivity of difficulty assessments. Interest-
ingly, our findings contradict conventional human
expectations regarding question difficulty. Ques-
tions labeled as Level 3 and Level 2 achieved higher
average scores (3.17) than Level 1 questions (2.95)
and Axiom-level questions (2.90). Binary accuracy
metrics further corroborate these findings, with the
highest accuracies observed in Level 3 and Level
2 questions (Tables 4 and 6). This unexpected per-
formance pattern across difficulty levels suggests a
potential misalignment between human-perceived
difficulty and the capabilities of language models
in this domain.

6 Conclusion

We presented TuringQ to evaluate the reasoning
capabilities of large language models (LLMs) in
the theory of computation covering three difficulty
levels and six main concepts, including key ax-
ioms and theoretical concepts. We evaluated vari-
ous open-source LLMs and GPT-4 using Chain of
Thought prompting and human expert assessment,
and explored an automated LLM-Judge, demon-
strating its potential to compete with human pre-
cision. Fine-tuning an LLaMA-3B model on Tur-
ingQ improved its reasoning ability. This effort pro-
vides a valuable benchmark for evaluating LLM
understanding and could also be used as an ed-
ucational resource. Assessing comprehension in
formal languages was crucial for understanding the
depth of LLMs’ reasoning abilities, representing
a significant step toward developing LLMs into
effective problem solvers in complex domains.



7 Ethics Statement

The TuringQ dataset comprises publicly available
exams and homework questions from renowned
universities worldwide, obtained from the internet.
Each source is duly labeled in the dataset’s meta-
data, and no question has been extracted without
mentioning the original source. After data collec-
tion, we reviewed and enhanced some answers to
maintain the dataset’s high quality and ensure its
value as a resource. This enhancement process did
not involve any bias or alteration of the original
content or answers.

For the theoretical concepts, we utilized the
Claude 3 sonnet model to generate answers for
the specified theorems and lemmas. We believe
this approach could benefit the TuringQ dataset.
Subsequently, we checked and edited the model-
generated answers to ensure the absence of bias,
hallucinations, or errors in our work.

Regarding non-university sources, we made ef-
forts to gather solutions from diverse, reliable
sources, including computer science portals and
books. As the theory of computation and theoreti-
cal computer science is an advancing and complex
field, we have included answers that are accurate
based on our current knowledge, particularly con-
cerning P and NP, and open problems. We ac-
knowledge that as our understanding progresses,
some open questions in our dataset may require
updates to their answers. However, to the best of
our present knowledge, this dataset is up-to-date.

8 Limitations

The present study encountered several limitations
that future research should address. Firstly, com-
putational resource constraints hindered our ability
to utilize larger language models with 70 billion or
more parameters. Instead, we focused on smaller
yet powerful models that were more feasible for
our research scope. These resource constraints
also impacted the fine-tuning process, limiting the
Llama3-8b-ft-TuringQ model to only three epochs
of fine-tuning, which may have curtailed its po-
tential performance. Consequently, future studies
should explore extended training periods and alter-
native fine-tuning approaches using the TuringQ
dataset to fully leverage its capabilities.
Evaluating descriptive questions posed a signif-
icant challenge. While we developed two metrics
for evaluating descriptive questions, incorporating
more extensive human evaluation would be bene-

ficial. Although this approach is more resource-
intensive and time-consuming, it could provide
valuable insights into model performance. Ad-
ditionally, the development and implementation
of new, more comprehensive evaluation metrics
would be beneficial for assessing model capabili-
ties.

Our dataset effectively captures the essential
categories and fundamentals of theory of compu-
tation. However, it lacks coverage of more ap-
plied tasks, such as code generation. Future re-
search could investigate how fine-tuned, special-
ized models impact performance in related domains
like code generation, reasoning, and mathematical
problem-solving. It would be particularly interest-
ing to explore the extent to which domain-specific
fine-tuning may affect a model’s general capabil-
ities. Further study into the broader implications
and potential trade-offs of such fine-tuning on large
language models is encouraged.
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A Appendix

A.1 Fine-tuning Setup and Hyperparameters

Our fine-tuning approach for the Llama3-8b
model combined Quantized Low-Rank Adapta-
tion (QLoRA), a Parameter-efficient Fine-tuning
(PEFT) method, with Supervised Fine-Tuning
(SFT) using the SFTTrainer from HuggingFace’s
trl library>. QLORA, as a PEFT technique, al-
lows for task-specific tuning without modifying
all model parameters, while SFT provides a frame-
work for supervised learning on our specific task.
LoRA (Low-Rank Adaptation) freezes the LLM’s
weights and injects trainable rank-decomposition
matrices (Hu et al., 2021). QLoRA extends this
by incorporating quantization techniques, further
reducing memory usage while maintaining or im-
proving model performance. We configured the
PEFT settings with the following hyperparameters:

e Alpha: 64

* Dropout rate: 0.05

* Optimizer: ’paged_adamw_8bit’
* Learning rate: 5e-6

* Learning rate scheduler: Linear

* Number of epochs: 3 (due to computational
limitations)

* Batch size: 4 (for both training and evalua-
tion)

* Gradient accumulation steps: 2

Evaluation was performed at every step, with re-
sults logged for detailed performance tracking.
We employed quantization via the BitsAndBytes
method?*, setting the compute data type to bfloat16
and loading the model in 4-bit with a quantization
type of "nf4". This configuration enabled double
quantization, potentially improving the efficiency
of our model training. Our approach, combining
QLoRA, SFT, and quantization techniques, allowed
us to achieve high-quality results despite computa-
tional constraints.

*https://huggingface.co/docs/trl/en/index
*https://huggingface.co/docs/bitsandbytes/main/en/index
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Figure 3: Bar chart showing the difference in binary
accuracy (%) between Llama3-8b-ft-TuringQ and the
Llama3-8b across various TuringQ categories. Cate-
gories C1 (Countability Concepts), C2 (Computability
Theory), C3 (Context-Free Languages), C4 (Fundamen-
tal Concepts), and C5 (Complexity Theory) demonstrate
positive accuracy gains for Llama3-8b-ft-TuringQ com-
pared to Llama3-8b, indicating performance improve-
ments after fine-tuning. C6 (Regular Languages) ex-
hibits no change in accuracy and C7 (Theoretical Con-
cepts) has a minor decrease in performance.
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Figure 4: Score Distribution Across Models on the Test
Split of the TuringQ Dataset


https://huggingface.co/docs/trl/en/index
https://huggingface.co/docs/bitsandbytes/main/en/index

Average | MSE | Variance | Correlation | 2-Class Acc | 4-Class Acc
Llama-2-7b 3.494 | 1.758 | 1.4979 0.1169 0.6800 0.3440
Llama-2-7b-CoT | 3.456 | 1.656 | 1.4928 0.0478 0.7040 0.3520
Llama-3-8b 2858 | 1.746 | 1.7301 0.1772 0.6400 0.3180
Llama-3-8b-CoT | 3.032 | 1.268 | 1.2676 0.3408 0.7780 0.3520
Gemma-2b 3.2969 | 2.068 | 1.9737 0.1400 0.6784 0.3753
Gemma-2b-CoT | 3.4854 | 2.006 | 1.8295 0.1463 0.7050 0.4121
Gemma-7b 3.1674 | 1.678 | 1.6520 0.0479 0.6801 0.2733
Gemma-7b-CoT | 33162 | 1.524 | 1.4479 0.0355 0.7084 0.3203
Mistral-7b 3454 | 1.538 | 1.3171 0.3474 0.7260 0.4520
Mistral-7b-CoT 3374 | 1.686 | 1.5823 0.2632 0.7120 0.4620
GPT-4 2.69 1.390 | 1.3036 0.5103 0.7000 0.4880
GPT-4-CoT 2366 | 2.106 | 1.6354 0.3906 0.6080 0.3980
Human 2.984
Human-CoT 3.052

Table 2: Statistical Measures of LLM Performance as Evaluators on the TuringQ Test Set

Category llama3-8b | Llama3-8b-ft-TuringQ | Gemma-2b | Gemma-7b | llama2-7b | Mistral-7b | GPT4
Complexity Theory 31 3.1 3.0 32 3.1 32 34
Computability Theory 3.1 33 3.1 33 32 33 34
Context-Free Languages 2.8 33 3.2 33 34 3.1 34
Countability Concepts 29 32 2.8 29 32 2.8 3.6
Fundamental Concepts 31 3.1 3.0 3.1 33 2.9 3.2
Regular Languages 31 3.0 3.0 32 32 3.1 34
Theoretical Concepts 3.0 2.8 2.7 29 2.8 29 32
Table 3: Comparative Analysis of Mean Scores Across Models by Category
Difficulty | llama3-8b | Llama3-8b-ft-TuringQ | Gemma-2b | Gemma-7b | llama2-7b | Mistral-7b | GPT4
Axiomatic 3.0 2.8 2.7 2.9 2.8 29 32
Level 1 29 3.0 29 29 3.2 2.8 3.0
Level 2 3.1 3.2 3.0 3.2 3.2 31 34
Level 3 3.0 3.2 3.1 3.2 3.1 31 3.5
Table 4: Comparative Analysis of Mean Scores Across Models by Difficulty Level
Category llama3-8b | Llama3-8b-ft-TuringQ | Gemma-2b | Gemma-7b | llama2-7b | Mistral-7b | GPT4
Complexity Theory 81.2% 83.3% 75.0% 83.3% 81.2% 81.2% 85.4%
Computability Theory 74.5% 88.2% 76.5% 78.4% 76.5% 80.4% 84.3%
Context-Free Languages | 66.7% 88.9% 74.1% 74.1% 81.5% 74.1% 77.8%
Countability Concepts 66.7% 78.8% 60.6% 63.6% 75.8% 60.6% 90.9 %
Fundamental Concepts 72.1% 78.7% 68.9% 73.8% 82.0% 65.6% 77.0%
Regular Languages 75.4% 75.4% 73.7% 71.9% 75.4% 70.2% 84.2%
Theoretical Concepts 74.0% 69.1% 57.0% 69.1% 61.0% 68.2% 81.6%

Table 5: Comparative Analysis of Mean Binary Accuracy Across Models by Category




Difficulty | llama3-8b | Llama3-8b-ft-TuringQ | Gemma-2b | Gemma-7b | llama2-7b | Mistral-7b | GPT4
Axiomatic | 74.0% 69.1% 57.0% 69.1% 61.0% 68.2% 81.6%
Level 1 65.9% 68.3% 68.3% 68.3% 78.0% 61.0% 68.3%
Level 2 78.2% 84.0% 71.2% 75.6% 79.5% 73.7% 85.3%
Level 3 68.8% 83.8% 75.0% 76.2% 77.5% 75.0% | 86.2%

Table 6: Comparative Analysis of Mean Binary Accuracy Across Models by Difficulty Level

You are a knowledgeable Al assistant specialized in Theory of Computation and Complexity.

You will be answering questions related to this domain.

To provide a clear and structured response, you will follow the Chain of Thoughts approach:

Chain of Thoughts:

1. Analyze the question and identify core concepts, algorithms or problems.

Chain of Thought | 2. Build a step-by-step solution approach, stating assumptions, defining

variables/notations, and listing intermediate steps.

3. For proofs or complex calculations, show work explicitly, using relevant theorems, lemmas, or properties.
4. For true/false statements, provide clear justification or counterexample.

5. Review your Chain of Thoughts for logical soundness and completeness.

Use clear and concise language, avoiding unnecessary jargon.

You are an automated grading system for evaluating s in the field of theory of computation and complexity.
Your task is to assign a score (1, 2, 3, or 4) to a given answer based on its correctness

and alignment with the provided solution,

following the ccs outlined below.

Rubrics:

Level 4 (Excellent):

- Answer is completely correct and aligns perfectly with the provided solution.

- Proofs, descriptions, true/false justifications, and calculations match the solution with no errors or omissions.
- Demonstrates a comprehensive understanding of the concepts.

Level 3 (Good):

- Answer is mostly correct, with only minor deviations or omissions compared to the provided solution.

- Proofs, descriptions, justifications, and calculations are largely accurate but may have a few minor flaws

- Shows a strong grasp of the key concepts.

AutoGrade-TQ | Level 2 (Flawed):

- Answer has some significant differences or incorrect elements compared to the provided solution.

- Proofs, descriptions, justifications, and calculations contain several errors or omissions,

but the core approach is partially valid.

- Demonstrates a basic understanding of the concepts but lacks depth.

Level 1 (Poor):

- Answer deviates substantially from the provided solution.

- Proofs, descriptions, justifications, and calculations are mostly incorrect or entirely missing crucial components.
- Exhibits a lack of understanding of the fundamental concepts.

Please note that the length of the answer should not be a factor in determining the score.

The focus should be solely on the correctness and alignment with the provided solution.

Given Answer: Answer

Solution: Solution

Based on the rubrics and the provided solution, assign a score (1, 2, 3, or 4) to the given answer.

Table 7: Prompts Employed for Automated Grading and Answer Generation via Chain of Thought Reasoning
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Question

Answer

Show that the following is not regular.
L={ww:w e {a,b}*}

Difficulty: Level 2
Category: Regular Expression
Source: The University of Texas at Austin

L={ww:wé€ {a,b}*}. We’ll use the pumping lemma.
Don’t get confused by the use of the variable w both to define L
and as the name for the string we will choose to pump on.
As is always the case, the only real work we have

to do is to choose an appropriate string w.

We need one that is long enough (i.e., Iwl > N).

And we need one with firm boundaries between regions.

So let’s choose w = a"Nba"Nb. Since Ixyl <N,

we know that y must occur in the first a region.

Clearly if we pump in any additional a’s, the two halves of w
will no longer be equal.Therefore L is not regular.

Give context-free grammars that

generate the following language.

{we {0,1}%,

the length of w is odd and the middle symbol is 0}

Difficulty: Level 2
Category: Context-Free Languages
Source: New Jersey Institute of Technology

G = (V,X,R,S) with set of variables V = {S}, where S is the start variable;
set of terminals > = {0,1}; and rules S — 0SO10S111S011S110

Consider the language L = {ww?}.
Describe a two tape Turing machine to accept L.

Difficulty: Level 3
Category: Computability Theory
Source: The University of Texas at Austin

The two tape machine works as follows: If the input is ¢, accept.
If not, copy the input to the second tape and record in the state
that you have processed an even number of characters so far.
Now, start the first tape at the left end and the second tape at the right end.
Check that the symbols on the two tapes are the same.

If not, reject. If so, move the first tape head to the right

and the second tape head to the left.

Also record that you have processed an odd number and continue,
each time using the state to keep track of whether

you’ve seen an even or odd number of characters so far.

When you reach the end of the input tape,

accept if you’ve seen an even number of characters.

Reject if you’ve seen an odd number.

(The even/odd counter is necessary to make sure

that you reject strings such as aba.)

Let A be the set {x, y, z} and B be the set {x, y}.
What is A x B?

Difficulty: Level 1
Category: Fundamental Concepts
Source: Sipser Book

AxB={(a,b):acAandb € B} ={(x,x), (X, ¥), (¥, X), (¥, ), (. X), (z, )}

What is the pumping lemma for regular languages?

Difficulty: Axiomatic
Category: Theoretical Concepts
Source: Claude3 + human

The pumping lemma for regular languages states that if A is a regular language,

then there exists a number p such that for any string s in A

with length greater than or equal to p, there exist strings x, y, and z where s can

be written as xyz, satisfying the following conditions:

(1) 2’z belongs to A for each i greater than or equal to 0,
(2) y is not an empty string, and

(3) the length of xy is less than or equal to p.

Table 8: Sample Instances from the TuringQ Dataset
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Category

Discription

Regular

Languages

Regular languages are a class of formal languages that can be defined by regular expressions

or recognized by finite automata with a finite number of states.

Key topics in this category include determining whether a given language is regular or not,

often employing techniques like the pumping lemma for regular languages

or constructing regular expressions. Additionally, concepts like deterministic finite automata (DFAs)
and nondeterministic finite automata (NFAs) are fundamental,

addressing the recognition of strings in regular languages

through state transitions based on an input alphabet.

Context-Free

Languages

A context-free language is a formal language that can be precisely defined by a context-free grammar,
consisting of a set of production rules that specify how strings of symbols can be derived or generated,
regardless of the context in which the symbols appear. Key concepts in the study

of context-free languages include context-free grammars themselves,

the processes of derivation and parse trees for visualizing derivations,

as well as techniques for proving whether a given language is context-free or not.

Computability
Theory

Computability Theory is a branch of theoretical computer science

that deals with the limitations and capabilities of computational models,

particularly in determining which problems are computationally solvable and which are not.
Core concepts include Turing machines, decidability,

Turing recognizable languages, Church-Turing thesis, undecidability.

Complexity
Theory

Complexity Theory is a branch of computer science that classifies computational problems
based on their inherent difficulty and resource requirements.

It analyzes time and space complexity using notations like Big O,

and categorizes problems into complexity classes such as P, NP, NP-Complete, and PSPACE.
Key concepts include polynomial time solvability, NP-Completeness for hardest problems in NP,

and reducibility for relating problem complexities.

Countability

Concepts

Countability concepts revolve around distinguishing between countable and uncountable sets,
as well as characterizing the sizes of infinite sets. Key ideas include

countable vs. uncountable sets, cardinal numbers and

infinite cardinals, bijections and enumeration techniques, diagonalization methods

for proving uncountability, the notion of cardinality as a measure of set size,

and combinatorial principles like combinations and permutations.

These concepts from set theory, combinatorics,

and measure theory are crucial for understanding the nature of infinity.

Fundamental

Concepts

Fundamental Concepts are the essential and introductory topics,

including Set Theory, Propositional and Predicate Logic, and Relations.

Set Theory covers sets, operations, and relations.

Logic encompasses logical operators, truth tables, well-formed formulas, and quantifiers.

Relations involve properties like reflexivity, symmetry, transitivity, equivalence relations, and partitions.

Theoretical

Concepts

Theoretical Concepts in the theory of computation comprise the principles, theorems,

rigorous proofs, lemmas, and auxiliary results that constitute the backbone of the field.

These concepts lay the groundwork, illuminate pivotal results through meticulous derivations,

and foster a profound understanding by elucidating connections and delineating boundary conditions.

Mastering these Theoretical Concepts equips one with a robust theoretical foundation.

Table 9: Detailed Analysis and Interpretation of the TuringQ Dataset Categories
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