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ABSTRACT

Ordinal labels are discrete and ordered but lack calibrated spacing, a structure that
most deep networks ignore by treating them as nominal classes or real values. We
introduce trainable staircase activations as a drop-in replacement, which partitions
the output space into learnable, ordered intervals to align predictions with the or-
dinal labels. Direct parameterization reveals a degeneration–saturation dilemma
in which gradients vanish and intervals collapse; we analyze its cause and propose
three remedies: (i) stochastic noise injection to de-saturate plateaus, (ii) a mono-
tonic ascending term to enforce order, and (iii) adaptive piecewise-linear functions
that adjust thresholds end-to-end. Paired with a mutual information regularized
absolute-error loss, our design stabilizes optimization and preserves ordinal struc-
ture. The modules are drop-in replacements for final layers and integrate with
standard architectures without any architectural changes. Across diverse bench-
marks, they consistently outperform softmax/logistic baselines and prior ordinal
methods, demonstrating that staircase activations are an effective and principled
building block for end-to-end learning with ordinal targets.

Figure 1: End-to-end ordinal prediction: inputs (images, unstructured data, text, etc.) are processed
by a chosen model (e.g., MLP, ResNet, BERT, GPT, Transformer). The proposed Staircase Activa-
tion, Noise, Ascending, or Piecewise, maps outputs into ordinal predictions across domains such as
vision, time series, and sentiment.

1 INTRODUCTION

Ordinal labels (e.g., AAA–BB in credit ratings Huang et al. (2004)) denote discrete but ordered
categories and appear across domains Huang et al. (2004); Kyriazopoulou et al. (2021); Bürkner &
Vuorre (2019); Georgoulas et al. (2016). Classical methods, such as regressors, SVMs, trees, proba-
bilistic kernels, and ensembles, often reduce the task to multiple binary classification tasks Gutiérrez
et al. (2015); Cardoso & da Costa (2007). Many deep models still treat ordinal prediction as regres-
sion or nominal classification, lacking order-aware activations Vargas et al. (2023); Zhang et al.
(2023); Cardoso et al. (2025). Label encodings avoid architectural changes and thus remain pop-
ular: NNRank converts one-hot to unary to preserve order Cheng et al. (2008), while BEL codes
transform one-hot into order-aware strings Shah et al. (2022). Beyond encodings, simple baselines
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exist, e.g., GLPDepth scales a sigmoid output to represent levels Kim et al. (2022), and MORF
frames ordinality via tree decisions in medical imaging Lei et al. (2022). Loss-/label-driven ap-
proaches (e.g., CORAL, OLL) enforce order externally Cao et al. (2020); Castagnos et al. (2022)
leaving internal representations largely order-agnostic.

Despite the growing interest in task-specific activations, ordinal-aware functions remain underex-
plored Ramachandran et al. (2018); Gao et al. (2023); Zhu et al. (2023). Staircase-like activations
align naturally with ordered labels by partitioning outputs into ordered intervals but face satura-
tion and non-differentiability, hindering gradient-based learning Tóth & Gosztolya (2004); Koçak
& Şiray (2021). Prior reports show that literal staircase functions fail to converge under back-
propagation, whereas ramp-like or sigmoid activations train successfully Tóth & Gosztolya (2004);
step-like variants (multi-sigmoid Boskovitz & Guterman (2002), MSAF Koçak & Şiray (2021), and
other multilevel designs Piraud et al. (2018); Hu et al. (2019); Konar et al. (2022)) require delicate
threshold/steepness tuning and have seen limited uptake, with no clear gains over ReLU in general-
purpose practice.

We introduce trainable staircase activations that generalize binary steps to multi-level, learnable
intervals for ordinal prediction and explicitly expose a degeneration–saturation dilemma. We then
propose three complementary remedies—(i) stochastic noise injection, (ii) a monotonic ascend-
ing constraint, and (iii) a monotone piecewise-linear parameterization—paired with a Mutual-
Information (MI)–regularized MAE loss, motivated by evidence that recasting regression as classi-
fication can increase mutual information (MI) Gu et al. (2022); Zhang et al. (2023). Only replacing
the output layer in public baselines yields consistent gains while preserving the ordinal structure
end-to-end. Our contributions are:

• Staircase activations. A trainable, multi-level staircase that preserves order and reveals
the degeneration–saturation dilemma.

• Theory and remedies. Analysis plus three fixes—noise, ascending constraint, and
piecewise-linear parameterization—together with an MI-regularized loss that stabilizes op-
timization.

• Experiments. Across diverse applications and strong baselines, our modules deliver con-
sistent gains and enable end-to-end extraction of ordinal structure.

Further related work appears in Appendix C.

2 BACKGROUND AND MOTIVATIONS

This section introduces the staircase functions and the challenges they face within the back-
propagation mechanism. Subsequently, theoretical analyses via gradient and mutual information
are provided.

2.1 BINARY STEP ACTIVATION FUNCTIONS

The Soft-Sigmoid (ss) and Soft-Tanh (st) functions, derived from the Sigmoid and Tanh (Eq. 1)
functions, focus on smooth transitions, while the Hard-Sigmoid (hs) and Hard-Tanh (ht)(Eq. 2)
were specifically proposed to facilitate noise injection Nwankpa et al. (2021).

ϕss(z, T ) =
1

1 + e−Tz
= Sigmoid(z, T ), ϕst(z, T ) =

eTz − e−Tz

eTz + e−Tz
= Tanh(z, T ) (1)

ϕhs(z, T ) = max{min{us(Tz), 1}, 0}, ϕht(z, T ) = max{min{ut(Tz), 1},−1} (2)

Let z denote the latent vector from the preceding layer, and let T be the logistic shape (tempera-
ture) parameter. We write the temperature-scaled logistic as σT (x) := σ(Tx), where increasing T
steepens the curve and decreasing T flattens it Kokkinis et al. (2011). Its influence is illustrated
in Appendix A, Fig. 1. For local linear references around x = 0, we use first-order Taylor expan-
sions: us(x) ≜ 0.25x + 0.5 for sigmoid and ut(x) ≜ x for tanh. Sigmoid and tanh act as smooth
relaxations of the Heaviside step function, replacing the discontinuous jump with a differentiable
transition that is amenable to gradient-based optimization.
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Figure 2: Shaded bands mark saturation (gradient < 10−2). f1 shows two stages (center-shifted
sigmoid); f2 shows three. f3 and f4 target five stages, yet f2 and f3 degenerates, and as f4 ap-
proaches a true five-step staircase, saturation dominates the domain, hindering training. Although
f4 saturates, f2 and f3 avoid saturation yet degenerate, preventing reliable ordinal learning.

2.2 STAIRCASE ACTIVATION FUNCTIONS

Assume inputs x ∈ X carry ordinal structure, and there exists an activation f : X → R that
induces K ordered labels. Then f should satisfy two properties: (i) monotonicity to preserve order,
∀xi < xj : f(xi) ≤ f(xj); and (ii) within-class closeness versus across-class separation: if xi, xj
belong to the same class while xk belongs to a different class, then

|f(xi)− f(xj)| < min
{
|f(xk)− f(xi)|, |f(xk)− f(xj)|

}
.

For example, with xi=2, xj=3 (same class) and xk=10 (different class), if f(xi)=0.2, f(xj)=0.3,
f(xk)=1.0, we have |0.2−0.3|=0.1 < min{0.8, 0.7}.

Extending the Heaviside step (and its soft/hard approximations; Appendix A Fig. 1(a)) from bi-
nary classification to a K-level staircase satisfies these desiderata. In the binary case, Appendix
Fig. 1(a) corresponds to a single threshold at z=0.5. The temperature T controls the transition
steepness—shrinking the central transition band while enlarging the saturation zones away from the
threshold—whereas the thresholds Ξ = {ξ1, . . . , ξK−1} determine the jump locations. Motivated
by these observations, we study K-level staircase activations parameterized by {T,Ξ}.

For K > 2, closed-form staircases can be composed from binary steps (Eqs. 1, 2) Koçak & Şiray
(2021). We generalize them to a learnable family with thresholds Ξ = {ξk}k∈[K−1] and per-level
shape parameters T = {Tk}k∈[K−1] tailored to ordinal outputs.

Definition 1 (Staircase Activation Function). Given thresholds Ξ = {ξ1, . . . , ξK−1} and shape
parameters T = {T1, . . . , TK−1} with ξk < ξk+1, the multi-level staircase activations are

ψss,hsΞ,T (z) =

K−1∑
k=1

ϕss(z − ξk, Tk), ψst,htΞ,T (z) =

K−1∑
k=1

ϕst(z − ξk, Tk) + 1

2
(3)

where ϕss, ϕst are the soft (sigmoid/tanh) bases and ϕhs, ϕht are their hard counterparts.

Sigmoid-only focus. Since tanh(z) = 2σ(2z) − 1, we restrict attention to sigmoid-based stair-
cases; by symmetry we assume Tk > 0 for all k ∈ [K − 1]. Detailed provided in Appendix D.

Parameters and notation. The thresholds Ξ = {ξ1, . . . , ξK−1} and shape (temperature) param-
eters T = {T1, . . . , TK−1} can be fixed or learned (Sec. 3). To ensure the logit range is covered,
introduce dummy bounds ξ0 < ξ1 < · · · < ξK−1 < ξK with z ∈ (ξ0, ξK). For brevity we write
ψss (soft-sigmoid staircase) or ψhs (hard-sigmoid staircase). These are staircase-like (no vertical
corners at Ξ), but we simply call them “staircase” henceforth.
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Challenges with parameterized staircases. Fig. 2 shows four staircase activations under differ-
ent (Ξ, T ) (we provided seven staircase activation version in Appendix E). f1 is the standard binary
(K=2) sigmoid; f2 is a 3-state MSAF Koçak & Şiray (2021). For K=5, f3 degenerate: the shape
fails to realize five distinct levels, revealing a tight coupling between thresholds and shapes. Only f4
realizesK=5, yet—unlike f1 whose saturation lies far from the transition—its saturation bands con-
centrate within the main z-range (Shaded bands intervals). This underscores the need for principled
parameterization/learning to avoid degeneration and in-band saturation.

2.3 DEGENERATION-SATURATION DILEMMA

This subsection elucidates the aforementioned phenomena observed in the context of parameterized
staircase functions. The term degeneration of a staircase-like function refers to a scenario in which
the number of states presented by its function plot is lower than the number of categories corre-
sponding to its configuration in ordinal classification task. The saturation of sigmoid and softmax
functions Gulcehre et al. (2016); Chen et al. (2017) highlights that ineffective training occurs due
to the gradient approaching zero as z → ±∞. This concept can be directly extended to parameter-
ized staircase-like functions. Empirical observations suggest that insufficiently large values of Tk
can lead to various forms of degeneration. Following the Taylor approximation, as an example to
mitigate the risk of severe degeneration, it is advisable to set Tk satisfying

Tk > 10×max{(ξk − ξk−1)
−1, (ξk+1 − ξk)

−1, 1} (4)

for each pair of thresholds.
Definition 2. (Degeneration-Saturation Dilemma)
For the function ψss,hsΞ,T (z) with given {Ξ, T}, if ∀k ∈ [K − 1], Eq.(4) holds, then ψss,hsΞ,T (z) can
circumvent degeneration but may encounter saturation. On the other hand, if ∃k ∈ [K − 1] s.t.
Eq.(4) does not hold, then degeneration occurs for ψss,hsΞ,T (z), but saturation is likely to be avoided
for the corresponding z ∈ (ξk−1, ξk+1).

Observe that degeneration and saturation can occur in a function with a bad setting of {Ξ, T}, such
as f2 and f3 in Fig. 2. To perform a detailed analysis of saturated behavior, we shift our attention to
the domain of the activation function.
Definition 3. ( 1ϵ -Near Saturation domain)
For a given Staircase activation function ψ : R → R and a small number 0 < ϵ ≪ 1, the 1

ϵ

near saturation domain is SDψ,ϵ ≜
{
z ∈ R : |dψ(z)dz | ≤ ϵ

}
. If ϵ → 0 then SDψ,0 is the perfect

(infinitely-near) saturation domain.

We call the thresholds and shape parameter set {Ξ, T} a uniform set if ∀k ∈ [K], ξk+1 − ξk =
ξk − ξk−1, and Tk = Tk−1. Two activation functions, say ψi(z) and ψj(z), are equivalent in the
backpropagation mechanism if there exist positive constants c1, c2 such that c1 d

dzψi ≤ d
dzψj ≤

c2
d
dzψi. The following proposition suggests that the non-uniform setting of thresholds, similar to

the discussion in Zhu et al. (2023), and that of shape, are crucial characteristics for the staircase
function to demonstrate an advantage over ReLU or hard-sigmoid.
Proposition 1. If the staircase-like function ψ has uniformly set parameters and is without the
102-near saturation domain for z ∈ (ξ1, ξK), then it is equivalent to the hard-sigmoid Eq.(2).
Furthermore, if the activation function has no 102-near saturation domain in the open interval
(ξ1,∞), then it is equivalent to ReLU.

The proof of this proposition is straightforward by definition and it explains why the third-order
staircase-like function proposed in previous works Koçak & Şiray (2021), as f2 as shown in Fig 2,
has not received widespread attention. At the same time, it also implies that adaptive or non-
uniformly set parameters are necessary.
Lemma 1. Consider the Staircase activation function ψ serving as the output layer of a given deep
learning model FΘ and having a non-zero length 1

ϵ2 -near saturation domain. Let γ denote the
learning rate. For a training sample (x, y) that ŷ=FΘ(x) = ψss(z), and |ŷ − y| ≥ 1,where y is
the ordinal label, the training process based on gradient descent requires (at least) Ω((γϵ)−1) steps
of updating the trainable weights Θ such that ŷ = y if z(x) falls in the 1

ϵ2 -near saturation domain
SDψ,ϵ2 .
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Figure 3: Mitigating saturation (i.e., derivative or gradient less than 1e-4) in Staircase activations.
Shown with SoftSigmoid but applicable to all variants: (a) Additive—inject a stochastic term (see
Appendix. G); (b) Additive—add an ascending term sµ(z); (c) Subtraction—shrink or remove satu-
rated regions via adaptive piecewise linearization.

We defer the complete proof to Appendices E, F, and I. To mitigate the resulting degenera-
tion–saturation dilemma, we can undertake two ‘approaches: (1) employ data-driven methods to
guide the model in learning appropriate parameter settings, and (2) implement remedial actions
when Tk is large.

3 METHODS

This section revisits noise injection—a classic fix for saturation in binary activations (e.g., sigmoid).
In multi-level staircase activations, saturation and degeneration worsen, motivating three designs:
(i) Noisy Staircase, which injects training-time noise to sustain gradients; (ii) Ascending Staircase,
which adds a monotone slope to guide outputs; and (iii) Piecewise-Linear Staircase, which removes
flat bands via monotone piecewise interpolation. We study these via gradient dynamics (App. G)
and mutual-information preservation (App. L). Each breaks flat, non-differentiable regions to restore
backpropagation. Noise and ascending operate only during training and are disabled at test time.

3.1 (ADDITIVE STRATEGY) NOISY STAIRCASE ACTIVATION

The saturation phenomenon in activation functions can significantly hinder gradient-based optimiza-
tion by causing gradients to vanish. Previous works have shown that injecting noise into activations
can alleviate this issue in binary scenarios Gulcehre et al. (2016).

Inspired by this, we extend noise injection to multi-level staircase activations, aiming to perturb
saturated regions and maintain effective gradient flow during training as follows.

ψNO;ss,hs
Ξ,T (z) =

K−1∑
k=1

ϕnoisy△,α,β,p;Tk
(z − ξk) (5)

More details can be found in Appendix G, and depicted in Fig. 3(a).

3.2 (ADDITIVE STRATEGY) ASCENDING STAIRCASE ACTIVATION

We replace stochastic noise with a deterministic, gently monotone bias by adding a learnable as-
cending term sµ(z) to the staircase activation. This guarantees a nonzero gradient and smoothly
guides predictions across ordered levels. As shown in Fig. 3(b), the term reduces saturated flats and
stabilizes training, akin to the linear-gradient idea in WGAN Arjovsky et al. (2017). The parameter
µ in Eq. 6 is learned, with |zL| ≪ µ to keep sµ(z) approximately linear over the operating range.

We denote this variant by AS. Specifically, the ascending term sµ(z) ≜ sin−1
(
z
µ

)
, hence

ψAS;ss,hsΞ,T (z) = sµ(z) +

K−1∑
k=1

ϕss,hs(z, ξk, T ) (6)

5
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Based on |zL| ≪ µ and d
dzL

sin−1( z
L

µ ) = 1√
µ2−(zL)2

≈ 1
µ , we can derive from the Taylor expan-

sion that sµ(zL) ≈ zL/µ if zL ≪ µ, indicating it can provide stable progressive gradients.

3.3 (SUBTRACTION STRATEGY) PIECEWISE LINEAR ACTIVATION

Unlike additive methods that locally perturb activations, we reshape the activation function to re-
move saturation. Our piecewise linear reformulation of the staircase activation replaces flat regions
with continuous linear segments, ensuring strictly nonzero gradients across the full range and pre-
venting vanishing or degenerate gradients. WLOG, a Piecewise Linear Staircase activation can be
defined on [0, 1] (i.e., normalized domain) as follows (full version provided in Appendix B):

ψPWΞ,T (z) =

(
z − ξk+1+ξk

2

)
ξk+1 − ξk

+ k, if z ∈ (ξk, ξk+1], k ∈ {1, ...,K} (7)

where ξ0 ≜ 0, ξK ≜ 1 and hence ψPWΞ,T (z) = −0.5 if −∞ < z ≤ 0 and ψPWΞ,T (z) = K − 0.5

if 1 < z < ∞. Note Tk is designed to be 1/(ξk − ξk−1) in Eq.(7), and the initialization of ξk is
uniformly located in [0, 1]. Then adaptively, the learning algorithm decides the new locations of ξk,
under the constraint ξk < ξk+1 ∀k ∈ [K], as illustrated in Fig. 3 (c).

3.4 MUTUAL-INFORMATION PERSPECTIVE ON THE STAIRCASE OBJECTIVE

Beyond gradient flow considerations, we establish a theoretical connection between our loss design
and mutual information maximization. Under the assumption that features follow a Laplace dis-
tribution, we prove that minimizing LMAE with staircase activations is equivalent to minimizing
conditional entropy H(Z|Y ), which promotes tight clustering of same-class features (Theorem 1,
Appendix K).

To complete the mutual information picture I(Z;Y ) = H(Z)−H(Z|Y ), we introduce a dispersion
regularizer: LDiv = − 1

K−1

∑K−1
k=1 |max(zk) − min(zk+1)| This term encourages larger inter-

class margins, effectively maximizing feature entropyH(Z) while preserving ordinal structure. The
final objective becomes: LMI = LMAE + λDivLDiv, where λDiv denote constant.

This design ensures that staircase activations learn representations where different classes are well-
separated (maxH(Z)) while maintaining within-class compactness (minH(Z|Y )), naturally align-
ing with ordinal classification requirements.

4 EMPIRICAL STUDY

We evaluate the proposed activation functions across five domains—time-series forecasting, age
estimation, medical diagnosis, monocular depth estimation, and sentiment analysis—on eight
datasets: AQI; AFAD and MORPH; Abalone; BUSI; KITTI and NYUv2; and SST-5. The bench-
marks span heterogeneous modalities and varied ordinal class counts (classes number from 3 to 80).
Our contribution lies in the activation itself. We evaluate it by replacing only the activation in
public baselines while keeping the backbone, training protocol, and hyperparameters fixed, thus
isolating its effect for fair comparison. Full specifications, model backbones, literature baselines,
datasets, experimental results, and visualizations are summarized in Appendix M to Appendix R.

Evaluation. We evaluate with metrics that respect ordinality: (i) distance-based—MAE, MSE,
Accuracy, Precision/Recall/F1; (ii) rank-based—Spearman’s Rs and Kendall’s τb; and (iii) task-
specific—CS5 for age estimation and SilogLoss for monocular depth. We first train with LMAE
to compare fairly to prior work and isolate the effect of the Staircase activation, then use the full
objective LMI = LMAE + λDivLDiv with adjusted λDiv. Reported improvements are relative gains
over the corresponding baselines. Metric sets follow task conventions (e.g., MAE/CS5 for age; δ
thresholds and RMSE for depth). In all tables, ↑ indicates higher is better and ↓ indicates lower is
better.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.1 TIME SERIES FORECASTING TASK

For AQI forecasting, we use a 3-layer MLP (400–350–50) and compare the same backbone against
softmax+CE, CORAL Cao et al. (2020), and NNOP Cheng et al. (2008) (softmax+MAE). NNOP
is the strongest baseline. Our additive/subtractive staircase variants improve most metrics (Table 1),
except precision; replacing LMAE with LMI yields further gains. PW-MI is best: recall 0.735
(+3.96% vs. 0.707), F1 0.722 (+4.34% vs. 0.692), accuracy 0.735 (+3.96% vs. 0.707). Full results
and metric definitions: Appendices P–Q.

Table 1: Evaluate the proposed method against the best baseline on AQI dataset.

AQI (next 8 hour)
Model P ↑ R ↑ F1 ↑ Acc ↑ MAE ↓ MSE ↓ τb ↑ Rs ↑
NNOP 0.74 0.71 0.69 0.71 0.30 0.32 0.49 0.49
PW-MI −1.0% +4.0% +4.3% +4.0% −9.6% −9.8% +4.7% +6.8%

The table shows the improvement percentages relative to NNOPCheng et al. (2008). P and R denotes Precision
and Recall, respectively.

4.2 AGE ESTIMATE TASK

4.2.1 AFAD AND MORPH

(a) AFAD dataset (BEL vs. PW) (b) MORPH dataset (BEL vs. PW)

Figure 4: Visualization of BEL (left) vs. PW (right) models on (a) AFAD and (b) MORPH datasets.

Deval Shah reported BEL with ResNet50 Shah et al. (2022); for a fair comparison with prior
work Niu et al. (2016); Cao et al. (2020), we re-implemented it using a unified ResNet34 back-
bone. BEL is the strongest baseline, and replacing only the final layer with our Staircase head
(additive/subtractive) yields consistent gains (Table 2). Switching LMAE to the mutual-information
loss LMI further improves results. On AFAD, the PW-MI variant achieves better scores: MAE 2.948
(−5.8% vs.BEL 3.13), CS5 0.856 (+7.0% vs.BEL 0.80). Similarly, On MORPH, the PW-MI vari-
ant achieves better scores: MAE 2.217 (−4.8% vs.BEL 2.33), CS5 0.925 (+1.6% vs.BEL 0.91).
Latent-space visualizations (Figs. 4a–4b) show that PW-MI aligns more closely with the ground
truth. Visualize the qualitative cases provided in Appendix R.

Table 2: Evaluate the proposed method against the best baseline on AFAD and MORPH2 dataset.

AFAD MORPH
Model MAE↓ CS5↑ MAE↓ CS5↑
BEL 3.13 0.80 2.33 0.91

PW-MI −5.8% +7.0% −4.8% +1.6%

The table shows the improvement percentages relative to BEL Shah et al. (2022).

4.2.2 ABALONE

Unimodal Cardoso et al. (2025) enforces unimodality via UnimodalNet and a Wasserstein regular-
izer. On Abalone (their protocol; WU-KLDIV/WU-Wass; output replaced by our Staircase), all
our variants w/ and w/o LMI outperform WU-Wass on all metrics (Table 3). AS-SS-MI achieved
the best results. Acc 60.93 (+5.3%), MAE 0.475 (-10.4%), QWK (+9.4%), τ (+6.1%) and ZME
(+58.2%).
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Table 3: Evaluate the proposed method against the best baseline on ABALONE dataset.

ABALONE
Model Acc% ↑ MAE ↓ QWK ↑ τ% ↑ ZME → 0

Baseline
WU-KLDIV 57.92.6 0.540.02 62.42.1 63.12.5 −0.180.02

WU-Wass 57.92.4 0.530.02 63.31.6 63.22.1 −0.170.02
AS-SS-MI +5.3% -10.4% +9.4% +6.1% +58.2%

The table shows the improvement percentages relative to WU-Wass Cardoso et al. (2025).

4.3 MALIGNANT TUMOR DETECTION TASK

Using the same backbone of MetaOrdinal Lei et al. (2022), we replace the final layer with our
Staircase activation. On BUSI (Table 4), Staircase consistently surpasses MetaOrdinal, indicating
cross-domain generalization. The piecewise variant performs best: F1 = 0.907 with LMAE (+17.0%)
and 0.925 with LMI (+18.6%). With LMI, per-class F1 also improves, especially for Normal and
Benign.

Table 4: Evaluate the proposed method against the baseline on BUSI dataset.

BUSI (Overall) BUSI (Per-class F1)
Model Precision↑ Recall↑ F1-Score↑ Acc↑ Normal↑ Benign↑ Malignant↑
CORE − − − 0.82 − − −
MORF 0.82 0.77 0.78 0.80 0.682 0.845 −
PW-MI +14.7% +19.4% +19.4% +14.5% 0.959 0.934 0.881

− for CORE Lei et al. (2024) indicates that the corresponding result is not available, as the original paper did
not provide it. The table shows the improvement percentages relative to MORF Lei et al. (2022).

4.4 MONOCULAR DEPTH TASK

Protocol. We adopt the scale-invariant loss function L = SilogLoss + LMI on both datasets.
For KITTI, we replace GLPDepth’s final range scaling (multiplying a normalized map by a fixed
max depth, e.g., 80 m) with a direct Staircase activation on the network output, removing explicit
range assumptions. For NYUv2, we replace the OE regularizer Zhang et al. (2023) with Staircase
activations under the same training protocol (SilogLoss Eigen et al. (2014) with optional LMI ).

Results on KITTI. With identical backbones, all Staircase variants improve both threshold accura-
cies (δ1, δ2, δ3) and error metrics (AbsRel, RMSE, RMSLE); see Table 5. The AS-HS-MI variant
yields the strongest overall gains: δ1 +0.20%, AbsRel −3.50%, RMSE −2.10%, and RMSLE
−2.30%, highlighting the benefit of the additive scheme with HardSigmoid and the complementary
role of LMI to SilogLoss in achieving scale-robust depth.

Results on NYUv2. Staircase consistently outperforms OE across δ1/δ2/δ3 and Ab-
sRel/RMSE/RMSLE; see Table 5. NO-SS-MI reaches up to +3.7% in δ1 and −6.6% in AbsRel.
Fig. 5 presented qualitative examples. Qualitative examples are provided in Appendix R.

Table 5: Evaluate the proposed method against the baseline on KITTI and NYUv2 dataset.

KITTI
Model δ1↑ δ2↑ δ3↑ AbsRel↓ RMSE↓ RMSLE↓

GLPDepth 0.967 0.996 0.999 0.057 2.297 0.086
AS-HS-MI +0.20% +0.00% +0.00% −3.50% −2.10% −2.30%

NYUv2
OE 0.537 0.832 0.948 0.271 0.849 0.313

NO-SS-MI +3.7% +1.4% +0.5% −6.6% −2.9% −3.5%

The table shows the improvement percentages relative to GLPDepth Kim et al. (2022) and OrdinalEn-
tropy (OE) Zhang et al. (2023).
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Figure 5: Latent embeddings of a single NYUv2 test image are projected onto the unit sphere using
t-SNE, visualized for six different methods.

4.5 SENTIMENT ANALYSIS TASK

Sentence-level sentiment (NLP). Beyond raw data and images, we evaluate sentence-level senti-
ment to test cross-modal applicability. Following OLL Castagnos et al. (2022), we adopt BERT-Tiny
as the backbone and replace its final layer with our Staircase activations. Both additive and subtrac-
tion variants consistently surpass OLL on standard metrics (Acc., Macro-F1), indicating that Stair-
case heads better capture ordinal sentiment intensity than conventional classifiers. The histogram
in Appendix R Fig.11 shows that OLL1.5 Castagnos et al. (2022) makes virtually no predictions
for class 0; this likely relates to BERT-Tiny calibration and is outside our scope. Under the same
backbone, Staircase heads restore coverage across all labels and yield clear gains for class 0, class
1, class 3, and class 4.

Table 6: Evaluate the proposed method against the baseline on SST-5 dataset.

SST-5
Model MAE ↓ MSE ↓ τb ↑

OL 0.739 1.081 0.544
PW-MI −4.2% −3.8% +4.0%

The table shows the improvement percentages relative to OLL Castagnos et al. (2022).

5 CONCLUSION AND FUTURE WORK

Conclusion and Outlook. We tackle the degeneration–saturation dilemma with multi-level, pa-
rameterized Staircase activations. Three data-driven remedies are introduced: (i) noise injection,
(ii) an ascending monotone term, and (iii) an increasing piecewise-linear (PW) form. Gradient and
mutual-information analyses motivate the learning rule and the regularizer LMI .

Effectiveness. Across diverse datasets and real-world settings, Staircase heads deliver consistent
improvements in ordinal regression, regardless of modality, output format, number of categories, or
data scale—demonstrating competitive and versatile performance.

Time Complexity. We provided the inference efficiency of various activation functions in Appendix
S.

Limitations and Future Work. Under distribution shift Rebbapragada et al. (2015); Quinonero-
Candela et al. (2008), learned Staircase thresholds require adaptation. We will explore
reinforcement-learning controllers to update thresholds online without domain-specific heuristics
or full network retraining. Moreover, a systematic study of convergence and optimization behavior
across different backbones remains open and is left for future work.

LLM for writing assistance. We used a large language model solely for light copyediting (gram-
mar, wording, and clarity); all ideas, analyses, and results are the authors’ own.

Code Availability. We will release the code (github) upon acceptance.
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László Tóth and Gábor Gosztolya. Replicator neural networks for outlier modeling in segmental
speech recognition. In International Symposium on Neural Networks, pp. 996–1001. Springer,
2004.

Vı́ctor Manuel Vargas, Pedro Antonio Gutiérrez, Javier Barbero-Gómez, and César Hervás-
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