
Finite-Time Minimax Bounds in Queueing Control

Yujie Liu Vincent Y. F. Tan Yunbei Xu
National University of Singapore

yj-liu@nus.edu.sg, vtan@nus.edu.sg, yunbei@nus.edu.sg

Abstract

We establish the first finite-time minimax lower bounds—and derive new policies
that achieve them—for the total queue length in scheduling problems over stochas-
tic processing networks with adversarial arrivals. Prior analyses of MaxWeight
guarantee only stability and asymptotic optimality in heavy traffic; we prove that, at
finite horizons, MaxWeight can incur strictly larger backlog by problem-dependent
factors which we identify. Our main innovations are 1) a minimax framework that
pinpoints the precise problem parameters governing any policy’s finite-time perfor-
mance; 2) a minimax lower bound on total queue length; 3) fundamental limitation
of MaxWeight that it is suboptimal in finite time; and 4) a new scheduling rule
that minimizes the full Lyapunov drift—including its second-order term—thereby
matching the lower bound under certain conditions, up to universal constants.
These findings reveal a fundamental limitation on “drift-only” methods and points
the way toward principled, non-asymptotic optimality in queueing control.

1 Introduction

We tackle the classical scheduling problem in a single–hop stochastic processing network (SPN),
deciding at each time step which queue to serve so as to minimize total delay. Scheduling underpins
virtually every modern communication and cloud-computing platform: from the landmark Max-
Weight policies of Tassiulas and Ephremides [26] and Stolyar [25] to Google’s Borg data-center [28].
More recently, it has become a linchpin of AI infrastructure, enabling throughput-optimized schedulers
for GPU clusters that drive large language model training and inference [2, 13]. Whereas classical
analyses focus on long-run averages under stationary traffic, today’s applications demand rigorous,
finite-time guarantees in the face of bursty, non-stationary workloads—e.g. NVIDIA’s Run:AI
scheduler [5] and similar systems [21]. Developing scheduling policies with provable delay bounds
in these adversarial, time-critical regimes is crucial for next-generation responsiveness and efficiency.

The celebrated MaxWeight scheduling policy is widely regarded as the de facto solution for SPNs,
due to its throughput-optimality [26] and asymptotic guarantees based on elegant Lyapunov drift
analysis and diffusion approximations [25]. However, in finite-horizon regimes, MaxWeight can
incur substantial backlogs, as demonstrated in prior works [23, 3] and validated by our experiments.
Despite its prevalence, we know little about its worst-case performance and fundamental limitations
in such non-asymptotic settings, leaving a crucial gap in both theory and practice.

In this work, we ask the following central questions: What is the minimum achievable queue
length by time T in single-hop SPNs? Can MaxWeight attain this minimum? If not, what
alternative scheduling policies can possibly achieve it, and under what conditions?

Contributions. We provide complete answers to our central questions. First, We establish a
minimax framework that identifies the key problem parameters governing the finite-time performance
of any policy (Section 2). Second, we derive the first finite-time minimax lower bound for any
scheduling policy in single-hop SPNs (Section 3); this bound scales as Ω(

√
T) at time T , with

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MLxOR: Mathematical
Foundations and Operational Integration of Machine Learning for Uncertainty-Aware Decision-Making.

two explicit constants depending on the arrival variance and the number of queues. Third, we
show that MaxWeight is not minimax-optimal: its backlog can exceed the lower bound by a factor
determined by the scheduling capacity (Section 4.2). Finally, we introduce LyapOpt, a novel
scheduling policy that minimizes the full Lyapunov drift, incorporating both first- and second-order
terms (Section 4.1). We prove that LyapOpt achieves the minimax lower bound up to universal
constants, thereby establishing the first finite-time optimal policy for single-hop SPNs (Section 4.1).
Extensive simulations show that the LyapOpt significantly outperforms MaxWeight across various
scenarios.

Bridging Queueing Control and Machine Learning. Traditional dynamic programming (DP)
methods emphasize asymptotic analysis. We develop a minimax framework for finite-horizon
analysis in structured control, expanding the theoretical foundations of both learning theory and
DP, and opening new directions for short-horizon decision making. Unlike reinforcement learning
regret analyses that benchmark against an optimal DP policy, our study characterizes the inherent
performance of the policy class itself, complementing parameter-estimation frameworks.

2 Problem Setup and Minimax Framework

2.1 Problem Setup of Queueing Control

We consider a discrete-time single-hop SPN with n parallel queues, where jobs arrive exogenously
and depart after a single service. Let Q(t) ∈ Rn

+ denote the queue length vector at discrete time t, and
A(t) ∈ Rn

+ the arrival vector, where Ai(t) is the number of jobs arriving to queue i for 1 ≤ i ≤ n.

Queueing Dynamics and Scheduling Sequence. The system’s dynamics are governed by the
scheduling sequence D := {Dt}t∈N0 . Each element of Dt, termed a schedule, specifies the number
of jobs that can depart from each queue at time t. The capacity region associated with Dt is

Π(Dt) =
{
γ ∈ Rn

+ : ∃ d ∈ conv(Dt) with γ ≤ d
}
.

Thus, Π(Dt) consists of all vectors dominated by convex combinations of schedules in Dt. At each
time t, the decision maker selects a schedule D(t) ∈ Dt, and the queue lengths evolve according to
the recursion below, with initial condition Q(0) = 0.

Q(t+ 1) = max{Q(t)−D(t),0}+A(t+ 1), for t ∈ N0. (1)

Arrival Process. We consider the general adversarial arrivals: The arrivals A := {A(t)}t∈N may
be chosen by an adversary, possibly with arbitrary dependencies across queues and across time. Let
λ(t) = E[A(t)] denote the mean arrival rate vector at time t.

Policy. A policy Φ is defined as a sequence of scheduling rules, Φ = {ϕt}t≥0, where each ϕt is a
mapping from the history up to time t, denoted by

Ht = {Q(0), D(0), A(1), . . . , Q(t− 1), D(t− 1), A(t), Q(t)},
into a probability distribution over the scheduling set Dt. At each time t, given the history Ht, a
schedule D(t) is chosen randomly according to the distribution ϕt(Ht).

Our goal is to minimize cumulative queue length. To achieve this, we analyze the fundamental limits
of existing scheduling policies (notably the MaxWeight policy), and develop a novel Lyapunov-based
policy that explicitly accounts for second-order terms of the Lyapunov drift, demonstrating optimality
against minimax lower bound in the finite-time horizon regime.

2.2 Minimax Criteria

The minimax criterion is a standard approach to studying the intrinsic difficulty of problems in
statistics and machine learning [29]. In this work, we extend this criterion to the domain of queueing
control, aiming to bridge queueing theory with learning-theoretic methodologies and to motivate the
use of statistical decision-theoretic tools in a broader class of DP problems.

Performance Metric. We use the total queue length as the performance metric (see [19]), which
quantifies the overall system backlog. Formally, for T ≥ 1, it is given by E[

∑n
i=1 Qi(T)] .

Model Classes: Arrival Process and Scheduling Sequence. The queueing system under considera-
tion is defined by an arrival process A and a scheduling sequence D. Adopting a minimax perspective,

2

we define the following model class that includes adversarial variance-constrained arrival processes
and capacity-constrained scheduling sequences:

M(C,B) = {(A,D) : λ(t) ∈ Π(Dt),
1

n

n∑
i=1

Var(Ai(t)) ≤ C2, t ∈ N; 1
n

n∑
i=1

d2i ≤ B2,∀d ∈ Dt, t ∈ N0}

where C ≥ 0 bounds arrival variability across queues and B > 0 bounds the scheduling capacity.
We aim to find the fundamental minimax expected total queue length at time T :

inf
Φ

sup
(A,D)∈M(C,B)

EΦ,A

[
n∑

i=1

Qi(T)

]
. (2)

3 Minimax Lower Bounds

In this section, we derive a finite-time minimax lower bound on the expected total queue length for
the system in Section 2. Formally, we seek a bound for (2). Intuitively, this lower bound captures
the worst-case scenario an adversary can induce under variance constraints on arrivals and capacity
constraints on scheduling, thereby establishing fundamental performance limits for any policy in
single-hop SPNs.
Theorem 1 (Minimax Lower Bound). For any scheduling policy, and for arrival processes and
scheduling sequences within the model class M(C,B), the following lower bound holds whenever

T >
(

2B2

C2 + 2C2

B2 + 4
)
1{C>0} + 1:

inf
Φ

sup
(A,D)∈M(C,B)

EΦ,A

[
n∑

i=1

Qi(T)

]
≥ nC

√
T − 2

4
√
2eπ

+ nB. (3)

Theorem 1 reveals that no policy can guarantee a better scaling than nC
√
T in finite horizon settings.

This establishes a fundamental benchmark against which any scheduling algorithm can be compared.

4 Finite-Time Performance Guarantees

4.1 Optimal Lyapunov Policy

In this subsection, we propose LyapOpt, a scheduling policy that matches the lower bound (3) up
to universal constants by optimizing both first- and second-order terms of the quadratic Lyapunov
function V (x) = ∥x∥22. Given the queue length vector Q(t) ∈ Rn

+, the schedule is chosen as

DLyapOpt(t) ∈ argmin
d∈Dt

n∑
i=1

(
max{Qi(t)− di, 0}

)2
,

with ties broken arbitrarily. This objective, derived from the queue dynamics (1), serves as a surrogate
for the Lyapunov drift ∆V (t) = E[V (Q(t+ 1)−A(t+ 1))− V (Q(t)−A(t)) | Ht]. Now we state
its performance guarantee.
Theorem 2 (Finite-Time Performance of the LyapOpt Policy). Within the model class M(C,B),
the LyapOpt policy achieves the following bound on the expected total queue length:

E
[n∑

i=1

Qi(T)
]
≤ n

√√√√T−1∑
t=1

E
[
min
d∈Dt

f(Q(t), d)
]
/n+ (T − 1)C2 +

n∑
i=1

E[Ai(T)] (4)

with f(Q(t), d) = E
[
2

n∑
i=1

Qi(t)
(
λi(t)− di

)
︸ ︷︷ ︸

first-order term

+

n∑
i=1

(
d2i − λi(t)

2
)

︸ ︷︷ ︸
second-order term

∣∣∣∣ Ht

]
. (5)

If λ(t) ∈ Dt for all t ∈ N, the expected total queue length satisfies

E
[n∑

i=1

Qi(T)
]
≤ nC

√
T − 1 +

n∑
i=1

E[Ai(T)]. (6)

3

From (4), the advantage of LyapOpt is that it simultaneously optimizes first- and second-order terms
by minimizing the full Lyapunov drift, enabling the departure vector to closely track the arrival rate.
As shown in (6), when the arrival rate lies in Dt, LyapOpt matches it exactly and achieves the lower
bound up to a constant factor, thereby establishing finite-time optimality.

4.2 Limitation of MaxWeight

The MaxWeight policy is well known for throughput optimality and asymptotic guarantees, but it can
exhibit notable performance limitations in finite time. In this subsection, we review established upper
bounds [26, 25, 19, 30] and present a new lower bound showing that the factors in these bounds are
necessary, thereby revealing fundamental limitations of the policy.

4.2.1 Upper Bound and Physical Meaning of MaxWeight

Consider the MaxWeight scheduling policy defined by selecting schedules according to:

DMaxWeight(t) ∈ argmax
d∈Dt

⟨Q(t), d⟩.

By optimizing the first-order Lyapunov term, MaxWeight prioritizes queues with larger backlogs.
The finite-time upper bound for MaxWeight in M(C,B) is given below.
Theorem 3 (Upper Bound of MaxWeight Policy). Under the model class M(C,B), the MaxWeight
policy satisfies the following upper bound on the expected total queue length:

E
[n∑

i=1

Qi(T)
]
≤ n

√
(B2 + C2)(T − 1) +

n∑
i=1

E[Ai(T)]. (7)

The upper bound reveals a key limitation of MaxWeight—and drift-based methods more
broadly—namely, that they optimize only the first-order term. By always selecting extreme points,
MaxWeight ignores the geometry of the arrival rate captured in the second-order term, which can
lead to queue accumulation.

4.2.2 Lower Bound of MaxWeight for Dimension 2

The upper bound suggests that MaxWeight’s performance depends on the number of queues n, the
variance parameter C, and the capacity parameter B. While the lower bound in Theorem 1 highlights
the roles of n and C, the following lower bound further reveals the inherent dependence on B.
Proposition 1. There exists a family of instances in M(0, B) with B ≥ 3

√
2, for which the expected

total queue lengths under LyapOpt and MaxWeight satisfy:
2∑

i=1

QLyapOpt
i (T) ≤ 2− 1√

2B
, T ≥ 1;

2∑
i=1

QMaxWeight
i (T) ≥

√
BT

2
5
4

,

⌈
2B2

√
2B − 1

⌉
≤ T ≤

⌈
(

√
2B

2
− 1)3

⌉
+ 1. (8)

The
√
B T gap in inequality (8) is evident for practical values of T and B (Appendix A.3.1).

Moreover, extensive simulations show that LyapOpt consistently outperforms MaxWeight across
diverse scenarios (Appendix A.3.2).

Consequently, the MaxWeight policy, which optimizes solely the first-order Lyapunov drift, inherently
neglects higher-order terms crucial for achieving optimal finite-time performance. This neglect leads
to excessive queue lengths, particularly pronounced in finite horizons and near-capacity scenarios.
Both our theoretical insights and numerical results directly motivate the development of enhanced
scheduling algorithms that explicitly incorporate second-order Lyapunov terms.

5 Conclusion and Future Directions

We revealed a fundamental finite-time gap between MaxWeight and the minimax lower bound for
SPNs, and closed it with a second-order Lyapunov optimization policy. Future avenues include
multi-hop networks, partial observability, and reinforcement learning approximations of LyapOpt.

4

References
[1] J. Abate and W. Whitt. Transient behavior of the M/M/1 queue: Starting at the origin. Queueing

systems, 2:41–65, 1987.

[2] R. Ao, G. Luo, D. Simchi-Levi, and X. Wang. Optimizing LLM inference: Fluid-guided online
scheduling with memory constraints. arXiv preprint arXiv:2504.11320, 2025.

[3] M. Bramson, B. D’Auria, and N. Walton. Stability and instability of the MaxWeight policy.
Mathematics of Operations Research, 46(4):1611–1638, 2021.

[4] J. G. Dai and W. Lin. Asymptotic optimality of maximum pressure policies in stochastic
processing networks. The Annals of Applied Probability, 2008.

[5] R. Dar and E. Karabulut. NVIDIA open sources run:AI scheduler to foster community collabo-
ration.

[6] A. Eryilmaz and R. Srikant. Asymptotically tight steady-state queue length bounds implied by
drift conditions. Queueing Systems, 72:311–359, 2012.

[7] D. Freund, T. Lykouris, and W. Weng. Quantifying the cost of learning in queueing systems.
Advances in Neural Information Processing Systems, 36:6532–6544, 2023.

[8] D. Gamarnik and D. A. Goldberg. On the rate of convergence to stationarity of the M/M/N
queue in the Halfin–Whitt regime. The Annals of Applied Probability, 2013.

[9] G. R. Gupta and N. B. Shroff. Delay analysis for multi-hop wireless networks. In Proceedings
of the 28th IEEE International Conference on Computer Communications (INFOCOM), pages
2356–2364. IEEE, 2009.

[10] W. Kang and R. J. Williams. Diffusion approximation for an input-queued switch operating
under a maximum weight matching policy. Stochastic Systems, 2(2):277–321, 2013.

[11] S. Krishnasamy, A. Arapostathis, R. Johari, and S. Shakkottai. On learning the cµ rule in single
and parallel server networks. In 2018 56th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 153–154. IEEE, 2018.

[12] S. Krishnasamy, R. Sen, R. Johari, and S. Shakkottai. Learning unknown service rates in queues:
A multiarmed bandit approach. Operations research, 69(1):315–330, 2021.

[13] Y. Li, J. Dai, and T. Peng. Throughput-optimal scheduling algorithms for LLM inference and
AI agents. arXiv preprint arXiv:2504.07347, 2025.

[14] M. J. Luczak and C. McDiarmid. On the maximum queue length in the supermarket model.
The Annals of Probability, 2006.

[15] Y. Ma and S. T. Maguluri. Convergence rate analysis of the Join-the-Shortest-Queue system.
arXiv preprint arXiv:2503.15736, 2025.

[16] S. T. Maguluri and R. Srikant. Heavy traffic queue length behavior in a switch under the
Maxweight algorithm. Stochastic Systems, 6(1):211–250, 2016.

[17] A. Mandelbaum and A. L. Stolyar. Scheduling flexible servers with convex delay costs: Heavy-
traffic optimality of the generalized cµ-rule. Operations Research, 52(6):836–855, 2004.

[18] M. Mundhenk, J. Goldsmith, C. Lusena, and E. Allender. The complexity of finite-horizon
Markov decision process problems. Journal of the ACM, 47(4):681–720, 2000.

[19] M. Neely. Stochastic Network Optimization with Application to Communication and Queueing
Systems. Morgan & Claypool Publishers, 2010.

[20] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov decision processes.
Mathematics of Operations Research, 12(3):441–450, 1987.

5

[21] Y. Qiao, S. Anzai, S. Yu, H. Ma, Y. Wang, M. Kim, and H. Xu. Conserve: Harvesting
GPUs for low-latency and high-throughput large language model serving. arXiv preprint
arXiv:2410.01228, 2024.

[22] P. Robert. Stochastic Networks and Queues, volume 52. Springer Science & Business Media,
2013.

[23] D. Shah and D. Wischik. Optimal scheduling algorithms for input-queued switches. In Proceed-
ings of the 25th IEEE International Conference on Computer Communications: INFOCOM
2006, pages 1–11. IEEE Computer Society, 2006.

[24] T. Stahlbuhk, B. Shrader, and E. Modiano. Learning algorithms for minimizing queue length
regret. IEEE Transactions on Information Theory, 67(3):1759–1781, 2021.

[25] A. L. Stolyar. Maxweight scheduling in a generalized switch: State space collapse and workload
minimization in heavy traffic. The Annals of Applied Probability, 14(1):1–53, 2004.

[26] L. Tassiulas and A. Ephremides. Stability properties of constrained queueing systems and
scheduling policies for maximum throughput in multihop radio networks. In 29th IEEE
Conference on Decision and Control, 1990.

[27] J. S. Van Leeuwaarden and C. Knessl. Transient behavior of the Halfin–Whitt diffusion.
Stochastic Processes and their Applications, 121(7):1524–1545, 2011.

[28] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes. Large-scale
cluster management at Google with Borg. In Proceedings of the Tenth European Conference on
Computer Systems (EuroSys), 2015.

[29] A. Wald. Statistical decision functions which minimize the maximum risk. Annals of Mathe-
matics, 46(2):265–280, 1945.

[30] N. Walton and K. Xu. Learning and information in stochastic networks and queues. In Tutorials
in Operations Research: Emerging Optimization Methods and Modeling Techniques with
Applications, pages 161–198. INFORMS, 2021.

[31] Z. Yang, R. Srikant, and L. Ying. Learning while scheduling in multi-server systems with
unknown statistics: Maxweight with discounted UCB. In Proceedings of the 26th International
Conference on Artificial Intelligence and Statistics (AISTATS), volume 206 of Proceedings of
Machine Learning Research, pages 4275–4312. PMLR, 2023.

A Technical Appendices and Supplementary Material

A.1 Related Works

MaxWeight and asymptotic optimality. The MaxWeight (or backpressure) policy, first proposed
by Tassiulas and Ephremides [26], is celebrated for its throughput-optimality in general SPNs.
Subsequent work has refined its delay guarantees in various settings via fluid and diffusion approxi-
mations [25, 17, 4, 10]. However, these analyses are fundamentally asymptotic and do not provide
direct performance guarantees in finite-horizon settings.

Finite-horizon analyses in queueing. Analyzing queueing behavior over finite horizons remains
challenging, even for simple models like the M/M/1 queue [1]. Most existing work addresses
uncontrolled systems, using tools such as coupling [22] and spectral methods [8, 27] to study
convergence to steady state. In contrast, finite-horizon analysis for controlled systems is far more
limited, with only a few results for routing policies like Join-the-Shortest-Queue (JSQ) [14, 15]. The
finite-time behavior of general scheduling policies remains largely unexamined.

Parameter learning in queueing. A growing body of work studies queueing systems where key
parameters—such as arrival and service rates—are unknown and must be learned online. A common
performance metric is queueing regret, which quantifies the excess queue length incurred by a learning
algorithm relative to an oracle policy with complete knowledge of the system [12, 11, 24, 7]. Other
works use the time-averaged queue length over a finite horizon to evaluate learning efficiency [31].

6

In contrast, our work assumes full knowledge of the system parameters and aims to characterize
the fundamental gap between the finite-horizon delay incurred by a scheduling policy and the ideal
baseline of zero.

Lower bounds for structured dynamic programming. Queueing control is a structured dynamic
programming problem, yet solving such problems is often intractable due to the exponential growth
of state and action spaces—the so-called “curse of dimensionality” [20, 18]. These computational
barriers motivate the study of fundamental performance limits. Despite its importance, prior work on
delay lower bounds in queueing systems is limited; a notable exception is Gupta and Shroff [9], who
derive lower bounds on delay in multi-hop networks by reducing to the delay of a G/D/1 queue,
though this remains challenging to analyze in finite time. We establish the first minimax lower bound
on finite-horizon queueing delay, setting a benchmark for evaluating scheduling policies.

Drift-method limitations and alternatives. The Lyapunov drift framework underlies most stability
and steady-state analyses in queueing systems [6, 16], supporting the asymptotic optimality of many
drift-based methods. However, these methods typically rely on coarse first-order approximations,
which often obscure transient inefficiencies and fail to directly optimize key performance metrics.
Extensions such as drift-plus-penalty [19] introduce auxiliary objectives (e.g., delay or energy), but
still lack explicit finite-time performance guarantees. In contrast, we propose a scheduling policy that
minimizes the full Lyapunov drift—capturing both first- and second-order terms—to optimize the
performance metric in finite time.

A.2 Notation

Let N0 := {0, 1, 2, . . . } and Rn
+ := {x ∈ Rn : xi ≥ 0, 1 ≤ i ≤ n}. For any finite set S ⊂ Rn,

conv(S) denotes the convex hull of S. We use 0 to denote the zero vector, with the dimension
understood from the context. Given two vectors x, y ∈ Rn max{x, y} denotes their componentwise
maximum, that is, (max{x, y})i = max{xi, yi} for each i. Let Var(X) denote the variance of the
random variable X .

A.3 Numerical Experiments

A.3.1 Performance Gap Between LyapOpt and MaxWeight for Dimension 2

The
√
B T gap as seen in in inequality (8) is evident for practical values of T and B, as demonstrated

in Figures 1a and 1b, where b =
√
2B. However, as shown in Figures 2a and 2b, the total queue

length under MaxWeight eventually becomes bounded (i.e., O(1) in T) as T increases. The lower
bound in Proposition 1 is established under the assumption of deterministic arrivals (i.e., C = 0).
Deriving a similar lower bound for the total queue length under stochastic arrival processes remains
an open problem.

0 500 1000 1500 2000

Time slot T

0

20

40

60

80

100

120

140

160

T
o
ta

l
q
u
e
u
e
 l
e
n
g
th

Total queue length performance when B = 10

MaxWeight

LyapOpt

(a) Total queue length when B = 10

0 10 20 30 40 50 60

B

0

200

400

600

800

1000

1200

T
o
ta

l
q
u
e
u
e
 l
e
n
g
th

 a
t
T

 =
 1

0
0
0
0

Performance across different B values

MaxWeight

LyapOpt

(b) Total queue length across different B

Figure 1: Performance comparison of MaxWeight and LyapOpt policies versus B

The model in (16) often arises in systems like wireless networks or data centers, where two queues–
Q1(t) and Q2(t)–have similar arrival rates (1, 1− 1

b) with b ≫ 1, and share a resource whose service

7

0 0.5 1 1.5 2

Time slot T 10
4

0

50

100

150

200

250

T
o

ta
l
q

u
e

u
e

 l
e

n
g

th

Total queue length performance when B = 10

MaxWeight

LyapOpt

(a) Total queue length when B = 10

0 2 4 6 8 10

Time slot T 10
4

0

100

200

300

400

500

600

700

800

900

T
o
ta

l
q
u
e
u
e
 l
e
n
g
th

Total queue length performance when B = 20

MaxWeight

LyapOpt

(b) Total queue length when B = 20

Figure 2: Performance comparison of MaxWeight and LyapOpt policies versus B

shifts between rate b for Q1 and rate 1 for Q2. MaxWeight tends to over-prioritize Q1 by selecting
extreme points, causing backlog in the harder-to-serve Q2(t) and revealing its finite-time inefficiency.
In contrast, LyapOpt adapts to the arrival rate and avoids backlog in this deterministic setting.

A.3.2 Additional Experiments with More Queues

We compare the finite-time performance of LyapOpt and MaxWeight as the number of parallel
queues n increases from 2 to 8. For each n, the scheduling set Dt = D⋆ is generated by uniformly
sampling 10n vectors with integer entries between 1 and 10. Then, 2000 arrival rate vectors—each
representing a distinct scenario—are sampled uniformly from the boundary of the capacity region
Π(D⋆). Arrivals follow Binomial distributions with fixed variance 1 per queue, calibrated to match
the sampled arrival rate vectors. Each simulation run spans 1000 time slots, and results are averaged
over 100 independent runs. Table 1 reports, for each dimension n, the proportion of scenarios where
the ratio

ratio =
Total Queue Length (LyapOpt) at t = 1000

Total Queue Length (MaxWeight) at t = 1000

falls below 1, 0.9, and 0.5, respectively—indicating cases where LyapOpt outperforms MaxWeight.
These results show that for a wide range of queues, LyapOpt consistently outperforms MaxWeight,
sometimes substantially so.

Table 1: Scenarios with ratios ≤ 1, 0.9, 0.5

n ≤ 1 ≤ 0.9 ≤ 0.5

2 84.7% 25.9% 0%
3 97.5% 54.1% 36.3%
4 99.9% 78.5% 46.1%
5 100% 67.0% 31.3%
6 97.4% 71.3% 26.5%
7 100% 90.0% 45.9%
8 100% 80.7% 35.9%

Figures 3a and 3b show a representative case
with n = 8 queues and an arrival rate on
the boundary of the capacity region, where
LyapOpt significantly outperforms MaxWeight.
In Figure 3a, both policies appear to exhibit√
T growth, but LyapOpt maintains consis-

tently lower total queue length. Figure 3b
further shows reduced queue imbalance under
LyapOpt, as reflected in the lower sum of
squared queue lengths.

A.4 Proof of Theorem 1

A.4.1 Proof Sketch

We outline the key ideas in establishing the lower bound, with the formal proof provided in the
Appendix A.4.3. Fix a time-invariant scheduling sequence D with Dt = D⋆ for all t ∈ N0, and
assume that D satisfies the condition in model class M(C,B).

1. A policy-independent lower bound: reducing from policy vectors to capacity values. Let M =
max {

∑n
i=1 di, d ∈ D⋆} denote the maximum total number of jobs that can depart from the system

in a single time slot. Comparing the cumulative arrivals with the maximum possible cumulative

8

(a) Total queue length. (b) Squared queue length.

Figure 3: Finite-time comparison of MaxWeight and LyapOpt policies (n = 8).

departures up to time T , we define S(T − 1) =
∑T−1

t=1 X(t) with X(t) =
∑n

i=1 Ai(t) − M .
Then by (1), for any arrival process A and any scheduling policy, the total queue length satisfies

n∑
i=1

Qi(T) ≥ max {S(T − 1), 0}+
n∑

i=1

Ai(T). (9)

2. Constructing hard instances with dependent binary-valued arrivals. Inspired by expert
problem lower bounds, we construct A as to be i.i.d. over t. When the Ai(t) are independent,
Var(X(t)) ∝ n; if they are fully dependent, Var(X(t)) ∝ n2. To maximize the fluctuation of
S(T − 1), we choose arrivals that are perfectly correlated across queues. Consider the following
construction of the arrival process A: for each t,

P(A1(t) = Kλ1, A2(t) = Kλ2, . . . , An(t) = Kλn) = 1/K,

P(A1(t) = 0, A2(t) = 0, . . . , An(t) = 0) = (K − 1)/K.

With this construction, E[A(t)] = λ and {X(t)}t∈N forms an i.i.d. sequence of binary random
variables. We then select λ ∈ D⋆ such that

∑n
i=1 λi = M , and choose the tuning parameter K

such that the variance constraint in the model class M(C,B) holds with equality (see Appendix
A.4.3 for the details). Consequently, E[X(t)] = 0 and Var(X(t)) = M2(K−1). The construction
of such binary random variables allows us to derive explicit finite-time lower bounds, rather than
relying on asymptotic approximations via the central limit theorem.

3. Right-Tail Overshoot Lower Bound for Sums of Binary Random Variables. We establish a
right-tail lower bound for binary sums using nontrivial anti-concentration arguments, leveraging
precise control over discrete fluctuations. Specifically, by Lemma 2 in Appendix A.4.2, we obtain
a lower bound on E [max {S(T − 1), 0}] simply by scaling the corresponding bound by M .

4. Constructing hard instance for the scheduling set. Construct the scheduling set

D⋆ =
{
(x1, x2, . . . , xn)|x2

1 + x2
2 + · · ·+ x2

n = nB2, xi ≥ 0 for 1 ≤ i ≤ n
}
.

This choice of D⋆ ensures that the scheduling sequence D satisfies the constraint of the model class
M(C,B). In this case, we can choose λ = (B,B, . . . , B) so that M = nB, and set K− 1 = C2

B2

(see Appendix A.4.3 for the details). Applying the scaling factor M to the lower bound of Lemma
2 and then invoking (9) yields (3).

A.4.2 Supporting Lemmas

Lemma 1. Given the arrival process A and scheduling sequence D, for any scheduling policy, the
total queue length satisfies

n∑
i=1

Qi(T) ≥max

{ T−1∑
s=1

(n∑
i=1

Ai(s)−Ms

)
,

T−1∑
s=2

(n∑
i=1

Ai(s)−Ms

)
, . . . ,

n∑
i=1

Ai(T − 1)−MT−1, 0

}
+

n∑
i=1

Ai(T),

where Mt = max {
∑n

i=1 di, d ∈ Dt} .

9

Lemma 2. Let {Z(t)}t∈N be a sequence of i.i.d. binary random variables, where each Z(t) takes
the value K − 1 with probability 1/K and −1 with probability (K − 1)/K, for some K > 1. Define
the partial sum S(t) =

∑t
s=1 Z(s). Then we have for all t > K

K−1 ,

E
[
max

{
S(t), 0

}]
≥ 1− δ(t;K)√

2π
exp

(
−K2(t− 1)

12((K − 1)t−K)(t−K)

)√
(K − 1)(t− 1), (10)

with δ(t;K) = max
{

K
t ,

K
t(K−1)

}
. In particular, for all t > 2K2/(K − 1),

E
[
max

{
S(t), 0

}]
≥ 1

2
√
2eπ

√
(K − 1)(t− 1). (11)

A.4.3 Formal Proof

Proof of Theorem 1. Fix a time-invariant scheduling sequence D with Dt = D⋆ for all t ∈ N0, and
assume that D that satisfies the condition in model class M(C,B). By Lemma 1, for any arrival
process A and any scheduling policy, the total queue length satisfies

n∑
i=1

Qi(T) ≥ max

{ T−1∑
t=1

(n∑
i=1

Ai(t)−M
)
, 0

}
+

n∑
i=1

Ai(T),

where M = max {
∑n

i=1 di, d ∈ D⋆} . Define S(T − 1) =
∑T−1

t=1 X(t) with X(t) =
∑n

i=1 Ai(t)−
M . We can rewrite the lower bound as

n∑
i=1

Qi(T) ≥ max {S(T − 1), 0}+
n∑

i=1

Ai(T).

Now consider the following construction of the arrival process A: for each t,

P
(
A1(t) = Kλ1, A2(t) = Kλ2, . . . , An(t) = Kλn

)
=

1

K
,

P
(
A1(t) = 0, A2(t) = 0, . . . , An(t) = 0

)
=

K − 1

K
,

where

λ ∈ argmin
γ∈Π(D⋆)∑n
i=1 γi=M


√√√√ 1

n

n∑
i=1

γ2
i

 and K =
nC2∑n
i=1 λ

2
i

+ 1. (12)

With this construction, we have

E[A(t)] = λ, and Var(Ai(t)) =
(K − 1)2λ2

i + λ2
i (K − 1)

K
= (K − 1)λ2

i . (13)

Such a construction ensures that 1
n

∑n
i=1 Var(Ai(t)) = C2 and {X(t)}t∈N forms an i.i.d. sequence of

binary random variables, taking the value M(K − 1) with probability 1/K and −M with probability
(K − 1)/K, with variances of M2(K − 1). Thus, by Lemma 2, we obtain a lower bound on
E [max {S(T − 1), 0}] simply by scaling the corresponding bound in (11) by M .

Now we consider the scheduling set

D⋆ =
{
(x1, x2, . . . , xn)|x2

1 + x2
2 + · · ·+ x2

n = nB2, xi ≥ 0 for 1 ≤ i ≤ n
}
.

This choice of D⋆ ensures that the scheduling sequence D satisfies the constraint of the model class
M(C,B). In this case, we can choose λ = (B,B, . . . , B) so that M = nB, and set K − 1 = C2

B2 .
Applying the scaling factor M to the lower bound (11) of Lemma 2 and then invoking (9) yields
(3).

10

A.5 Formal Proofs of Theorems 2 and 3

Before presenting the specific proof, we first develop a general Lyapunov drift analysis applicable
to any scheduling policy. For any arrival processes and scheduling sequences in M(C,B), and any
scheduling policy Φ, consider the one-step Lyapunov drift:

E
[
V
(
Q(t+ 1)−A(t+ 1)

)
− V

(
Q(t)−A(t)

)
| Ht

]
= E

[
n∑

i=1

(max{Qi(t)−Di(t), 0})2 −
n∑

i=1

(Qi(t)−Ai(t))
2

∣∣∣∣∣Ht

]

≤
n∑

i=1

E
[
(Qi(t)−Di(t))

2 −Qi(t)
2 + 2Qi(t)Ai(t)−Ai(t)

2 | Ht

]
=

n∑
i=1

E
[
Di(t)

2 −Ai(t)
2 + 2Qi(t)

(
Ai(t)−Di(t)

)
| Ht

]
= f(Q(t), D(t)) + r(Q(t), A(t)),

where

f(Q(t), d) = E
[
2

n∑
i=1

Qi(t)
(
λi(t)− di

)
︸ ︷︷ ︸

first-order term

+

n∑
i=1

(
d2i − λi(t)

2
)

︸ ︷︷ ︸
second-order term

∣∣∣∣ Ht

]
,

and

r(Q(t), A(t)) =

n∑
i=1

[
2Qi(t)(Ai(t)− λi(t)) + λi(t)

2 −Ai(t)
2
]
.

Note that

E
[
Qi(t)Ai(t)

]
= E

[(
Qi(t)−Ai(t)

)
Ai(t)

]
+ E

[
Ai(t)

2
]

(a)
= E

[
Qi(t)−Ai(t)

]
E
[
Ai(t)

]
+ E

[
Ai(t)

2
]

(b)
= E

[
Qi(t)

]
λi(t) + Var(Ai(t)),

where (a) follows from the independence between Qi(t)−Ai(t) and Ai(t), and (b) follows from the
relation E

[
Ai(t)

2
]
= λi(t)

2 + Var(Ai(t)). Then we have

E[r(Q(t), A(t))] =

n∑
i=1

Var(Ai(t)).

By taking expectation and summing over for 1 ≤ t ≤ T − 1, we have

E[V (Q(T)−A(T)] ≤ E[V (Q(1)−A(1))] +

T−1∑
t=1

E[f(Q(t), D(t))] +

T−1∑
t=1

n∑
i=1

Var(Ai(t))

≤
T−1∑
t=1

E[f(Q(t), D(t))] + (T − 1)nC2, (14)

where the last inequality follows from the relation Q(1) = A(1). Note that(
E
[n∑

i=1

(
Qi(T)−Ai(T)

)])2 (c)

≤ E
[(n∑

i=1

(
Qi(T)−Ai(T)

))2]
(d)

≤ nE
[n∑

i=1

(
Qi(T)−Ai(T)

)2]
= nE

[
V
(
Q(T)−A(T)

)]
.

11

Here (c) follows from Jensen’s inequality and (d) follows from the Cauchy-Schwartz inequality.
Substituting this expression into (14), we have

E
[n∑

i=1

Qi(T)]
]
≤

√√√√T−1∑
t=1

nE[f(Q(t), D(t))] + (T − 1)n2C2 +

n∑
i=1

E[Ai(T)]. (15)

Proof of Theorem 2. For the LyapOpt policy, the one-step Lyapunov drift

∆V (t) = min
d∈Dt

E
[n∑

i=1

(max{Qi(t)− d, 0})2 −
n∑

i=1

(Qi(t)−Ai(t))
2
∣∣∣Ht

]
≤ min

d∈Dt

f(Q(t), d) + r(Q(t), A(t)).

Applying a similar derivation as in the proof of (15) yields the bound in (4). When λ(t) ∈ Dt for all
t ≥ 0, the bound in (6) holds since mind∈Dt

f(Q(t), d) ≤ 0.

Proof of Theorem 3. For the MaxWeight policy, recall (5). The MaxWeight policy minimizes the
first-order term and ensures that this term remains non-positive at each step, since λ(t) ∈ Π(Dt)
and, by definition of Π(Dt), DMaxWeight(t) maximizes ⟨Q(t), d⟩ over all d ∈ Π(Dt). Besides, the
second-order term is bounded by nB2. Substituting into (15), we obtain (7).

A.6 Proof of Proposition 1

A.6.1 Proof Sketch

Proof sketch. To show MaxWeight’s finite-time suboptimality, we consider the following arrivals
and time-invariant scheduling sequence D,

Dt = D⋆ = {d ∈ R2 : d = x(b, 0) + (1− x)(0, 1), 0 ≤ x ≤ 1}, t ∈ N0

A(t) = (1, (b− 1)/b) for all t ≥ 2, and A(1) = (1, (b− 1)/b− ε), (16)

where b =
√
2B, and ε = 0 if b is irrational; otherwise, ε > 0 is a small irrational constant (so that no

two schedules tie under MaxWeight at finite time, and it always selects either (0, 1) or (b, 0)). Under
MaxWeight, one can show: At each time t, MaxWeight selects (b, 0) unless Q2(t)

Q1(t)
≥ b; As a result,

Q2(t) must accumulate to b before it forces the policy to use (0, 1); however, doing so causes Q1(t)
to increase to 2, requiring Q2(t) to build up to 2b before (0, 1) can be used again more frequently.
This alternating pattern causes Q2(t) to grow at a rate of approximately

√
bT over a finite horizon

T . In contrast, our policy always chooses the “true arrival” schedule (1, (b− 1)/b), maintaining
constant queue lengths O(1). See Appendix A.6.2 for details.

A.6.2 Formal Proof

Proof. Since the arrival rate lies in the scheduling set D⋆ and the arrival variance is C = 0, Theorem 2
and (6) yield

E
[2∑

i=1

QLyapOpt
i (T)

]
=

2∑
i=1

E[Ai(T − 1)] = 2− 1

b
= 2− 1√

2B
.

Now we consider the MaxWeight policy under

Dt = D⋆ = {d ∈ R2 : d = x(b, 0) + (1− x)(0, 1), 0 ≤ x ≤ 1}, t ∈ N0,

A(t) = (1, (b− 1)/b) for all t ≥ 2, and A(1) = (1, (b− 1)/b− ε), (17)

where b =
√
2B, and ε = 0 if b is irrational; otherwise, ε > 0 is a small irrational constant. Here we

choose ε such that ⌈b2/(b− 1) + ε⌉ = ⌈b2/(b− 1)⌉, which is always possible since b2/(b− 1) is
never an integer for b ≥ 6.

By the queue dynamics, Q(1) = (1, 1−1/b−ε). MaxWeight repeatedly selects (b, 0) until Q2(t) ≥ b.
Thus Q(t) = (1, (1 − 1/b)t − ε) for 1 ≤ t ≤ ⌈b2/(b − 1) + ε⌉ = ⌈b2/(b − 1)⌉. And it is clear

12

to see that Q2(t) can never be smaller than b − 1/b, so the −ε term is always preserved in Q2(t),
making it irrational for all t. In the following, we consider only time horizons where Q1(t) < b
holds throughout, ensuring that Q1(t) always remains an integer. Consequently, there is never a tie
in MaxWeight decisions, and it either selects (b, 0) or (0, 1). Therefore, we henceforth restrict our
analysis to the MaxWeight policy under the system

Dt = D⋆ = {(b, 0), (0, 1)}, t ∈ N0 for b ≥ 6,

A(t) = (1, (b− 1)/b) for all t ≥ 2, and A(1) = (1, (b− 1)/b− ε), (18)

where b =
√
2B, and ε = 0 if b is irrational; otherwise, ε > 0 is a small irrational constant such that

⌈b2/(b− 1) + ε⌉ = ⌈b2/(b− 1)⌉.

At each time t, the MaxWeight policy will choose (0, 1) only when Q2(t) > bQ1(t) and (b, 0) when
bQ1(t) > Q2(t). Let t0 = 0 and

tk = min{t : Q2(t) ≥ kb} for 1 ≤ k ≤ ⌊b/2⌋.

We will show, by induction, that

(i) tk is well defined;

(ii) Q1(tk) = 1;

(iii) For tk−1 ≤ t < tk, 1 ≤ Q1(t) ≤ k; (k − 1)b− (k − 1)/b ≤ Q2(t) < kb.

For k = 1, by the above discussion, t1 = ⌈b2/(b− 1)⌉ is well defined, Q1(t1) = 1, and (iii) naturally
holds. And it is clear to see that Q2(t) can never be smaller than b− 1/b.

Now suppose that (i)-(iii) hold for some k − 1 with k ≥ 2. We show (i)-(iii) hold for k. Note the fact
that at any time t, choosing (0, 1) gives

Q1(t+ 1) = Q1(t) + 1, Q2(t+ 1) = Q2(t)− 1
b ,

whereas choosing (b, 0) yields

Q1(t+ 1) = max{Q1(t)− b, 0}+ 1 = 1, Q2(t+ 1) = Q2(t) + 1− 1
b .

Thus Q1 increases only when (0, 1) is used, and Q2 increases only when (b, 0) is used. Starting
from t ≥ tk−1, and noting Q1(tk−1) = 1, consider the next k time slots. There must be at least
one use of (b, 0), because if the first k − 1 departures were all (0, 1), then Q1(tk−1 + k − 1) = k,
forcing the kth departure to be (b, 0). Moreover, if only consider k − 1 time slots after tk−1, at
most one (b, 0) can be used, because for s ≤ k, Q2(t + s) ≥ (k − 1)b − s/b > (k − 2)b. Note
that Q2(tk−1 + k) ≥ (k − 1)b + 1 − k/b > (k − 1)b. By the same reasoning and the fact that
Q2(tk−1 + k+ s) ≥ (k− 1)b+ 1− (k+ s)/b > (k− 1)b for s ≤ k, in each subsequent block of k
slots, Q2 increases by exactly 1− k/b > 0. Hence tk is well defined, and since Q2 only increases
when (b, 0) is applied, we conclude Q2(tk) = 1. Finally, (iii) follows directly from the analysis
above. And we complete the induction. In addition, we also have⌈

k(b− 1)

1− k/b

⌉
− 1 ≤ tk − tk−1 ≤

⌈
kb

1− k/b

⌉
.

Therefore, by (iii), for all tk−1 ≤ t ≤ tk, we have Q1(t) +Q2(t) ≥ (k − 1)b and

(k − 1)b =
√
tb
k − 1√

t
≥

√
tb
k − 1√

tk
.

Note that

tk = t1 +

k−1∑
i=2

(tk − tk−1) ≤
k−1∑
i=1

⌈
ib

1− i/b

⌉
+ 1.

Claim 1. For b ≥ 4 and k ≥ 2,

k − 1√
tk

≥ 1

2
√
b+ 1

.

13

With the help of Claim 1, for t1 ≤ t ≤ t⌊ b
2 ⌋

,

Q1(t) +Q2(t) ≥
b
√
t

2
√
b+ 1

≥
√
bt

3
.

Claim 2. For b ≥ 6,

t⌊ b
2 ⌋

≥ b3

16
.

Therefore, for t1 ≤ t ≤ b3/16,

Q1(t) +Q2(t) ≥
√
bt

3
.

And for t ≤ t1 =
⌈

b2

1−b

⌉
,

Q1(t) +Q2(t) ≥ 1 + (1− 1/b)t− ε ≥ (1− 1/b)t.

Proof of Claim 1. For 2 ≤ k ≤ ⌊b/2⌋ and each 1 ≤ i ≤ k − 1 we have 1− i/b > 1/2.

Hence ⌈
ib

1− i/b

⌉
≤ ib

1− i/b
+ 1 ≤ 2ib+ 1.

Summing over i = 1, 2, . . . , k − 1 yields

tk ≤
k−1∑
i=1

(2ib+ 1) = (k − 1)(bk + 1).

It follows that √
tk ≤

√
(k − 1)(b k + 1) ≤

√
k2 (b+ 1) ≤ k

√
b+ 1.

Hence
k − 1√

tk
≥ k − 1

k
√
b+ 1

=
1− 1

k√
b+ 1

.

Finally, since k ≥ 2 implies 1− 1
k ≥ 1

2 , we conclude

k − 1√
tk

≥ 1

2
√
b+ 1

.

Proof of Claim 2. Note that

t⌊ b
2 ⌋

= t1 +

⌊ b
2 ⌋∑

i=2

(tk − tk−1) ≥
⌊ b
2 ⌋∑

i=1

(⌈
ib

1− i/b

⌉
− 1

)
.

Let k = ⌊ b
2⌋. Since 1 ≤ i ≤ k ≤ b

2 , we have

k∑
i=1

(⌈
ib

1−i/b

⌉
− 1
)
≥

k∑
i=1

(ib2

b− i
− 1
)
≥ b2

b− 1
· k(k + 1)

2
− k.

Since k = ⌊b/2⌋ ≥ b−2
2 , we get

b2

b− 1
· k(k + 1)

2
≥ b2

b− 1
· (b− 2)b

8
≥ b3(b− 2)

8(b− 1)
.

Therefore
k∑

i=1

(⌈
ib

1− i
b

⌉
− 1
)
≥ b3(b− 2)

8(b− 1)
− k ≥ b3(b− 2)

8(b− 1)
− b

2
≥ b3

16
.

14

A.7 Proofs of Lemmas 1 and 2

Proof of Lemma 1. Let D(t) ∈ D denote the schedule selected by the scheduling policy at time t.
Let ∆(t) = A(t)−D(t) for all t ≥ 1. By (1), for 1 ≤ i ≤ n and T ≥ 1, we have

Qi(T)−Ai(T)

= max{Qi(T − 1)−Di(T − 1), 0}
= max{max{Qi(T − 2)−Di(T − 2), 0}+Ai(T − 1)−Di(T − 1), 0}
= max{Qi(T − 2)−Di(T − 2) + ∆i(T − 1),∆i(T − 1), 0}

= max

{
Qi(1)−Di(1) +

T−1∑
s=2

∆i(s),

T−1∑
s=2

∆i(s), . . . ,∆i(T − 1), 0

}

= max

{ T−1∑
s=1

∆i(s),

T−1∑
s=2

∆i(s), . . . ,∆i(T − 1), 0

}
, (19)

where the last equation follows that Qi(0) = 0 and then Qi(1) = Ai(1).

Since
∑n

i=1 Di(t) ≤ M for all t, by equation (19), we have
n∑

i=1

Qi(T) =

n∑
i=1

max

{ T−1∑
s=1

∆i(s),

T−1∑
s=2

∆i(s), . . . ,∆i(T − 1), 0

}
+

n∑
i=1

Ai(T)

≥ max

{ T−1∑
s=1

n∑
i=1

∆i(s),

T−1∑
s=2

n∑
i=1

∆i(s), . . . ,

n∑
i=1

∆i(T − 1), 0

}
+

n∑
i=1

Ai(T)

≥ max

{ T−1∑
s=1

(n∑
i=1

Ai(s)−Ms

)
,

T−1∑
s=2

(n∑
i=1

Ai(s)−Ms

)
, . . . ,

n∑
i=1

Ai(T − 1)−MT−1, 0

}
+

n∑
i=1

Ai(T).

Proof of Lemma 2. A simple calculation shows

E
[
max

{
S(t), 0

}]
=

t∑
k=k0

(kK − t)

(
t

k

)(
1
K

)k(
K−1
K

)t−k

=
t (K − 1)m0+1

Kt

(
t− 1

m0

)
, (20)

where k0 =
⌊

t
K

⌋
+ 1 and m0 = t− k0. In fact, we can prove by induction on m that

Gm :=

t∑
k=t−m

(kK − t)

(
t

k

)(
K − 1

)t−k

= t (K − 1)m+1

(
t− 1

m

)
for 0 ≤ m ≤ t− 1. Note that when m = 0, we have G0 = t(K − 1). So the identity holds in the
base case. Now assume the equality holds for some m > 0, and we prove it for m+ 1.

Gm+1 =
(
(t−m− 1)K − t

)(t

t−m− 1

)(
K − 1

)m+1

+Gm

=
(
K − 1

)m+1
((

(t−m− 1)K − t
) t!

(m+ 1)!(t−m− 1)!
+

t!

(t−m− 1)!m!

)
=
(
K − 1

)m+1 t!

(m+ 1)!(t−m− 2)!

((
(t−m− 1)K − t

)
t−m− 1

+
m+ 1

t−m− 1

)

=
(
K − 1

)m+2 t!

(m+ 1)!(t−m− 2)!

= t (K − 1)m+2

(
t− 1

m+ 1

)
.

15

Thus, we have completed the proof by induction.

We focus on the case m0 > 0, or equivalently, t > K/(K − 1), for the expression (20). By the
Stirling approximation, for any integer r ≥ 1,

√
2πr

(
r
e

)r
≤ r! ≤

√
2πr

(
r
e

)r
e

1
12r .

Apply the lower bound to (t− 1)! and the upper bound to m0! and (t− 1−m0)!. Then

(
t− 1

m0

)
=

(t− 1)!

m0! (t− 1−m0)!
≥ C0(t)√

2π

√
t− 1

m0 (t− 1−m0)

(t− 1) t−1

mm0
0 (t− 1−m0) t−1−m0

with C0(t) = exp (− 1
12m0

− 1
12(t−1−m0)

). Hence

E
[
max

{
S(t), 0

}]
≥ C0(t)t (K − 1)m0+1

√
2πKt

√
t− 1

m0 (t− 1−m0)

(t− 1) t−1

mm0
0 (t− 1−m0) t−1−m0

.

And we can show that for t > K/(K − 1),

(K − 1)m0+1

Kt

(t− 1) t−1

mm0
0 (t− 1−m0) t−1−m0

≥ K − 1

K
min

{
1− K

t
, 1− K

t(K − 1)

}
. (21)

We defer its proof to later, assuming it holds, we immediately obtain

E
[
max

{
S(t), 0

}]
≥ min

{
1− K

t
, 1− K

t(K − 1)

}
K − 1

K

C0(t)t√
2π

√
t− 1

m0 (t− 1−m0)
. (22)

Note that

m0 = t− k0 ≤ t− t

K
= t

K − 1

K
, t− 1−m0 ≤ t

K
.

We have

m0(t− 1−m0) ≤ t
K − 1

K

t

K
=

K − 1

K2
t2,

and therefore √
t− 1

m0 (t− 1−m0)
=

√
t− 1
K−1
K2 t2

=
K√
K − 1

√
t− 1

t
.

Plug this into (22), we have

E
[
max

{
S(t), 0

}]
≥ C0(t)√

2π
min

{
1− K

t
, 1− K

t(K − 1)

}√
(K − 1)(t− 1).

It is clear to see that

C0(t) = exp

(
−(t− 1)

12m0(t− 1−m0)

)
= exp

(
−(t− 1)

12(t− 1− ⌊t/K⌋)⌊t/K⌋

)
≥ exp

(
−(t− 1)

12(t− 1− t/K)(t/K − 1)

)
= exp

(
−K2(t− 1)

12((K − 1)t−K)(t−K)

)
.

Therefore, we have (10). To complete the proof, it suffices to show (21).

Write p0 = m0

t−1 and H(p) = −
[
p ln p+ (1− p) ln(1− p)

]
. Then

(t− 1) t−1

mm0
0 (t− 1−m0) t−1−m0

= exp
(
(t− 1)H(p0)

)
and

(K − 1)m0+1

Kt
= exp

(
(m0 + 1) ln(K − 1)− t lnK

)
.

16

To show (21), we only need to prove that for t > K/(K − 1),

F (p0,K) : = (t− 1)H(p0) + (m0 + 1) ln(K − 1) − t lnK

≥ min

{
ln

(t−K)(K − 1)

tK
, ln

t(K − 1)−K

tK

}
. (23)

Note that

F (p0,K) = (t− 1)
[
H(p0) + p0 ln(K − 1)− lnK

]
+ ln(K − 1)− lnK.

A direct algebraic check shows, for p1 = 1− 1/K,

H(p1) + p1 ln(K − 1) − lnK = 0.

By the mean value theorem,

(H(p0) + p0 ln(K − 1)− lnK)− (H(p1) + p1 ln(K − 1)− lnK)

= (p0 − p1)(H
′(p) + ln(K − 1))

for some p ∈ [pmin, pmax] with pmin = min{p0, p1} and pmax = max{p0, p1}. Note that H ′(p) =
ln 1−p

p is decreasing, therefore,

(t− 1)
[
H(p0) + p0 ln(K − 1)− lnK

]
≥ (t− 1)(p0 − p1)(H

′(p0) + ln(K − 1))

= (
t− 1

K
− ⌊ t

K ⌋) ln
⌊ t
K ⌋(K − 1)

t− 1− ⌊ t
K ⌋

.

For the first term, since t
K − 1 ≤ ⌊ t

K ⌋ ≤ t
K , it follows that t−1

K − 1 ≤ ⌊ t
K ⌋ − 1

K ≤ t−1
K . Hence∣∣∣ t− 1

K
− ⌊ t

K ⌋
∣∣∣ ≤ 1.

For the second term, since

t−K

t
=

(t
K − 1)(K − 1)

t− t
K

≤
⌊ t
K ⌋(K − 1)

t− 1− ⌊ t
K ⌋

≤
t
K (K − 1)

t− 1− t
K

=
t(K − 1)

t(K − 1)−K
,

and
t−K

t
< 1;

t(K − 1)

t(K − 1)−K
> 1,

then ∣∣∣ln ⌊ t
K ⌋(K − 1)

t− 1− ⌊ t
K ⌋

∣∣∣ ≤ max

{
ln

t

t−K
, ln

t(K − 1)

t(K − 1)−K

}
.

Thus,

F (p0,K) ≥ −max

{
ln

t

t−K
, ln

t(K − 1)

t(K − 1)−K

}
+ ln(K − 1)− lnK

= min

{
ln

t−K

t
, ln

t(K − 1)−K

t(K − 1)

}
+ ln(K − 1)− lnK

= min

{
ln

(t−K)(K − 1)

tK
, ln

t(K − 1)−K

tK

}
.

We complete the proof of (23).

For (11), a straightforward calculation shows that whenever t > 2K2/(K − 1), both

K2(t− 1)

12((K − 1)t−K)(t−K)
<

1

2
, and δ(t;K) <

1

2
.

Hence the proof is complete.

17

	Introduction
	Problem Setup and Minimax Framework
	Problem Setup of Queueing Control
	Minimax Criteria

	Minimax Lower Bounds
	Finite‑Time Performance Guarantees
	Optimal Lyapunov Policy
	Limitation of MaxWeight
	Upper Bound and Physical Meaning of MaxWeight
	Lower Bound of MaxWeight for Dimension 2

	Conclusion and Future Directions
	Technical Appendices and Supplementary Material
	Related Works
	Notation
	Numerical Experiments
	Performance Gap Between LyapOpt and MaxWeight for Dimension 2
	Additional Experiments with More Queues

	Proof of Theorem 1
	Proof Sketch
	Supporting Lemmas
	 Formal Proof

	Formal Proofs of Theorems 2 and 3
	Proof of Proposition 1
	Proof Sketch
	Formal Proof

	Proofs of Lemmas 1 and 2

