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ContinuousDiscrete

    ❌  Original Text Description: "A person holds their arms in
front of them, and makes a quick punch with their right arm."

     ✅  Refined Safe Text Description: "He gives a friendly
wave with his right hand and then places his hand gently in front
of his face"

    ❌  Original Text Description: "He steps forward with his left foot takes a dart
from his left hand, makes overhand moves before throwing the dart then repeats"

    ✅  Refined Safe Text Description: "He steps forward with his left foot and
performs an arm stretch before making an overhand motion with his hand, then
repeats"

ContinuousDiscrete

Figure 1: Discrete Motion Token vs. Continuous Motion Token. Discrete: generation is con-
strained by finite codebook entries, leading to quantization artifacts and piecewise transitions under
the same prompt. Continuous: smoother kinematics and joint trajectories, natural phase transitions
without staircase and jitter.

ABSTRACT

Text-to-motion (T2M) generation with diffusion backbones achieves strong real-
ism and alignment. Safety concerns in T2M methods have been raised in recent
years; existing methods replace discrete VQ-VAE codebook entries to steer the
model away from unsafe behaviors. However, discrete codebook replacement-
based methods have two critical flaws: firstly, replacing codebook entries which
are reused by benign prompts leads to drifts on everyday tasks, degrading the
model’s benign performance; secondly, discrete token-based methods introduce
quantization and smoothness loss, resulting in artifacts and jerky transitions.
Moreover, existing text-to-motion datasets naturally contain unsafe intents and
corresponding motions, making them unsuitable for safety-driven machine learn-
ing. To address these challenges, we propose SafeMo, a trustworthy motion gen-
erative framework integrating Minimal Motion Unlearning (MMU), a two-stage
machine unlearning strategy, enabling safe human motion generation in continu-
ous space, preserving continuous kinematics without codebook loss and deliver-
ing strong safety-utility trade-offs compared to current baselines. Additionally, we
present the first safe text-to-motion dataset SafeMoVAE-29K integrating rewrit-
ten safe text prompts and continuous refined motion for trustworthy human motion
unlearning. Built upon DiP, SafeMo efficiently generates safe human motions with
natural transitions. Experiments demonstrate effective unlearning performance of
SafeMo by showing strengthened forgetting on unsafe prompts, reaching 2.5× and
14.4× higher forget-set FID on HumanML3D and Motion-X respectively, com-
pared to the previous SOTA human motion unlearning method LCR, with benign
performance on safe prompts being better or comparable.
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1 INTRODUCTION

Generative models thrive across domains, including texts (Brown et al., 2020; Chowdhery et al.,
2023; Touvron et al., 2023; Qin et al.), images (Rombach et al., 2022; Ruiz et al., 2023) and
videos (Rombach et al., 2022; Fei et al., 2024). Human motion generation methods have numerous
achievements in recent years (Guo et al., 2022b; Zhang et al., 2023). Diffusion-based text-to-motion
(T2M) models produce compelling human motions conditioned on natural language (Chen et al.,
2023; Tevet et al., 2023; 2024). Recent benchmarks such as HumanML3D (Guo et al., 2022a) and
Motion-X (Lin et al., 2023) enable large-scale training and evaluation. However, these methods
can memorize and produce harmful motions (e.g. punching, weapon use), which is not desirable
for many applications and may lead to misuse. Hence, it is imperative to constrain the model to
generate safe outputs that align with regulations and ethics. Machine unlearning is a good strategy
to address the safety generation issue, which has been extensively studied on LLMs (Yao et al.,
2024) and images (Gandikota et al., 2024; Gong et al., 2024; Lu et al., 2024). It enables the model
to forget unsafe samples and undesired behaviors obtained in the training process. Existing human
motion unlearning method (De Matteis et al., 2025) notably redirect the generation process away
from harmful patterns by replacing the codebook entries in discrete latent space.

However, exiting motion unlearning methods suffer from several issues, as shown in Figure 1: (i)
codebook coupling problem and smoothness loss, which are resulted from operating VQ tokens
reused by benign prompts in discrete code space, perturbing learned token distribution, introducing
jerky transitions and behavior drifts on safe prompts; (ii) lack of a trustworthy text-to-motion (T2M)
dataset for human motion unlearning, with fine-grained safe rewritten text prompts and correspond-
ing refined safe motion.

Hence, to address the first challenge, we propose a Minimal Motion Unlearning (MMU) strategy
for human motion unlearning on top of DiP transformer, which isolates the harmful capability in
a low-rank subspace and then subtracts it by the needed scale. We first train LoRA adapters using
motion-aware objectives to push the model along with the unsafe generation, together with a negative
preservation divergence that deliberately pushes the model away from the performance of the frozen
base model on benign tasks to obtain a harmful task vector (Ilharco et al., 2022), enabling the later
subtraction of this increment not only to erase the model’s capability to generate unsafe motion but
also to restore the utility on everyday tasks. After that, a LoRA scaling negation is performed at
inference, instantly removing the learned unsafe task vector to obtain the trustworthy safe motion
generation model.

Furthermore, to address the second challenge, we design and present the first safe text-to-motion
dataset on top of HumanML3D, with fine-grained LLM agent rewritten safe text prompts and refined
trustworthy human motion in both discrete and continuous versions, namely SafeMoVQ-29K and
SafeMoVAE-29K, respectively. Compared to existing methods’ keyword-based trimming strategy,
our designed LLM-based classify-then-rewrite SafeMoEngine fundamentally mitigates the editing
brittleness issue. To obtain refined texts for unsafe prompts, prior works rely on handcrafted key-
word lists, where toxic intents are merely removed, distorting semantics. In contrast, our proposed
method ensures higher fidelity in linguistic meaning and broader coverage against implicit toxicity
and covers both continuous and discrete forms, accommodating different model architectures and
ensuring broad usability.

Our contributions can be summarized as follows:

• We propose SafeMo, an trustworthy text-to-motion generative framework equipped with a power-
ful two-stage selective harmful motion unlearning method, MMU, which enables effective erasure
of undesirable behaviors while preserving model utility on benign inputs.

• We design and release the first safe text-to-motion dataset, SafeMoVAE-29K, with rewritten
safe text prompts and refined trustworthy motion, along with corresponding discrete version
SafeMoVQ-29K. This dataset fills the critical gap of lacking safe T2M datasets, overcomes the
brittleness of keyword-based refinement, and provides broad applicability across different model
architectures.

• SafeMo demonstrates stronger empirical unlearning performance than LCR (De Matteis et al.,
2025), achieving forget set +150.5% FID and -35.3% R@1 on HumanML3D, and 14.4× FID on
Motion-X, with better or comparable performance on benign tasks.
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Figure 2: Overview of the SafeMoEngine. We first classify and rewrite harmful texts (Level 2 &
3), route Level 1 texts to original motions, compose text conditions and syhthesize motions via two
generative models, to construct SafeMoVAE-29K and SafeMoVQ-29K, respectively.

2 RELATED WORK

Text-to-motion generation. Text-driven 3D human motion generation has progressed
rapidly (Zhang et al., 2024d), broadly along two lines: (i) discrete token-based sequence
modeling (Zhang et al., 2024b;a; 2025b) and (ii) continuous-space generative modeling (Zhang
et al., 2024c). Discrete methods such as TM2T (Guo et al., 2022b) employ vector quantization
(VQ) and model bidirectional text–motion mapping. T2M-GPT (Zhang et al., 2023) combines
Vector Quantized Variational Autoencoders (VQ-VAEs) with autoregressive transformers and
delivers strong text–motion alignment, while MoMask (Guo et al., 2024) adopts hierarchical
residual VQ, improves precision and enables finer details. Motion-Agent (Wu et al., 2024) further
leverages LLMs for finetuned text–motion generation and a conversational agent enabling long,
customizable sequences. These VQ-based approaches offer efficient sampling and long-range
structure, but may suffer from information loss, error accumulation, and stitching artifacts. In
contrast, continuous-space generation typically yields smoother temporal transitions. MLD (Chen
et al., 2023) supports diverse latent-space motion tasks via a motion variational autoencoder (VAE).
Recent MotionGPT3 (Zhu et al., 2025) adopts a bimodal motion–language framework inspired by
Mixture-of-Transformers (MoT), modeling motion in a continuous latent space by separate model
parameters, enabling effective cross-modal interaction and multimodal scaling.

Despite these advances, content governance and safety remain under-addressed. Most works assume
benign inputs and do not sanitize harmful intents. Earlier methods such as PhysDiff (Yuan et al.,
2023) emphasize physical plausibility. ReinDiffuse (Han et al., 2025) uses reinforcement learning
enhanced diffusion to better constrain realism and safety. Recent efforts begin to target safety ex-
plicitly. Method (Bao et al., 2025) integrates a VLM with confidence-based structured prompting
and fallback strategies for socially appropriate motion in real time. Recent work, Latent Code Re-
placement (LCR) (De Matteis et al., 2025) is a training-free unlearning approach that operates in
the discrete VQ codebook space by replacing toxic-correlated entries to censor unsafe behaviors
without changing model weights. However, discrete token pipelines can introduce information loss
and reduced smoothness, and reusing VQ tokens across benign prompts risks distribution drift when
swapping codes. In contrast, our method operates in a continuous latent space and selectively forgets
unsafe motion knowledge via a two-stage unlearning strategy, mitigating distributional shift while
preserving benign performance.

Machine unlearning and trustworthy AI. Machine unlearning aims to remove the influence of
specified data from trained models (Cao & Yang, 2015), with exact (Bourtoule et al., 2021) and ap-
proximate (Pan et al., 2023; Liu et al., 2024a) variants. For diffusion safety, the method (Gandikota
et al., 2023) finetunes to erase targeted visual concepts, while the recent advance (Chen et al., 2025)
projects out target subspaces leveraging the model’s embedding space. These approaches cast un-
safe content mitigation as concept erasure via model editing, reducing the model’s ability to produce
disallowed outputs.
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3 THE PROPOSED METHOD

3.1 OVERVIEW

SafeMo has two key stages: (i) the SafeMoEngine data synthesis process, a data generation pipeline
utilizing LLM agent and advanced text-based generation models to synthesize a refined trustworthy
text-motion dataset based on HumanML3D (Zhang et al., 2023), and (ii) Minimal Motion Unlearn-
ing (MMU), a two-stage unlearning scheme on a DiP backbone (Tevet et al., 2024) that absorbs
unsafe behavior into a low-rank LoRA (Hu et al., 2022) subspace via motion-specific kinematic and
alignment objectives with safe-set divergence, and performs class-aware inference-time subtraction
of the resulting task vector, enabling plug-and-play trustworthiness without modifying the backbone.
While this method is inspired by the Selective Knowledge Unlearning method on LLMs (Liu et al.,
2024b), MMU constitutes a new technique for text-to-motion safety.

SafeMoEngine is an LLM-based agent guided trustworthy motion generator, with an input of text-
motion dataset, i.e., HumanML3D, it alters the text descriptions in a classification-then-refine style,
enabling fine-grained text content modification to refine toxic motion descriptions to positive ones.
The outputs of the agent are sent to the text-based motion generation pipeline, which adopts different
models for both discrete and continuous motion generation, providing two versions of substitutions
for the semantically unsafe motions in the original dataset. After replacing the unsafe motions with
our generated trustworthy ones, the SafeMo dataset is obtained, with both discrete and continuous
versions.

MMU performs finetuning on a continuous transformer decoder-only structured, DiP (Tevet et al.,
2024) model. With an input of the pretrained DiP model and a mixed dataset contains both safe
and unsafe samples, it finetunes the model using the LoRA strategy (Hu et al., 2022) to obtain our
trustworthy, continuous domain motion generation model, SafeMo.

3.2 DATA SYNTHESIS

SafeMoEngine is a trustworthy motion dataset synthetic pipeline, as shown in Figure 2. Firstly, we
design a violence-aware text classifier agent to divide texts into three different levels: (i) level 1: safe,
not harmful content, which means the texts do not have any semantic toxic intent related to violence,
crime, etc.; (ii) level 2: risky, partially harmful content, those containing violence-related motion in
parts of its description; (iii) level 3: unsafe, which are toxic or violence, crime-related content as a
whole. We then create a level-based strategy to alter the texts using separate rule-enhanced few-shot
guided rewriting agents to intently positive ones, while keeping the altered descriptions with similar
semantics. For example, a man punches someone with his right fist, will be modified to a description
like a man waves friendly with his right hand. For level 2, we apply a partial rewriting strategy: only
alter the semantically toxic parts while keeping the other parts semantically unchanged. For the level
3 content, we apply a stronger prompt that the agent needs to modify the content to a whole new,
positive one.

The refined texts are then sent to a generative pipeline, which has two generative models, a contin-
uous domain based one, MotionFlow Transformer (Guo et al., 2025), and a discrete VQ-token one,
MotionAgent (Wu et al., 2024), to generate safe and trustworthy motions according to altered texts.
The generated results are then collated to standard HumanML3D representations and replace the
unsafe motions in the original dataset respectively. After that, we obtain two versions of safe motion
datasets, SafeMoVQ-29K and SafeMoVAE-29K, being discrete and continuous fashion, respectively.

To the best of our knowledge, our datasets SafeMoVAE-29K along with its discrete version are the
first text-to-motion datasets that emphasize the safety and trustworthiness of human motion intents.
As shown in Table 1, on top of the base dataset, HumanML3D, it contains not only the general texts
and motions from the original dataset but also refined text descriptions of the unsafe corresponding
ones, along with both discrete token-based and continuous method-based generated refined human
motions, enabling the task of safe motion unlearning.

4
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Figure 3: Overview of SafeMo. Stage 1 (top): the unsafe stream optimizes through a harmful
motion-specific loss and a random decoupling strategy, while the safe stream applies a negative
preservation divergence. Only LoRA adapters on DiP are updated to obtain the pure harmful task
vector. Stage 2 (bottom): we negate the learned harmful task vector via a motion-class aware α,
such that the model suppresses unsafe behaviors on unsafe prompts and preserve performance on
safe prompts.

3.3 MINIMAL MOTION UNLEARNING

We propose a Minimal Motion Unlearning (MMU) method in text-to-motion diffusion models, with
a diffusion planner (DiP) (Tevet et al., 2024) as the backbone. This method consists of two stages,
as shown in Figure 3: (i) the Harmful Knowledge Absorption stage, which isolates and amplifies
unsafe behaviors while deliberately perturbing performance on benign tasks, in order to obtain a pure
harmful task vector resembling the model’s capability to merely understand and generate unsafe
motions while flops in safe ones; and (ii) the Harmful Knowledge Negation stage, in which the
learned harmful increment is subtracted by the original model scaled by motion-class awareness α
at inference.

DiP backbone and notation. The DiP model is an auto-regressive diffusion model with a trans-
former decoder backbone. The DiP can predict the clean motion xpred from a prefix xprefix and the
noisy motion prediction xpred

t , along with the diffusion step t, and a text prompt as a condition, at
each step t ∈ [0, T ]. The model also supports optional target-location conditioning, but we disable
it in this work to avoid confounding control signals and ensure fair comparison with text-only base-
lines. The text tokens Ctext ∈ RNtokens×d are first encoded by a fixed instance of DistillBERT (Sanh
et al., 2019), and then coordinated dimensions by a learned linear layer, after which they are injected
through the cross-attention blocks in all transformer layers. We denote the model parameters by θ,
the base model by θ0, and the harm-tuned model, bad model, by θbad, and the obtained safe model by
θsafe. Sampling follows DDPM-style iterative denoising (Ho et al., 2020) with a single-step predic-
tion head of x̂0

pred per step. In our method, we use the LLM-based classifier agent in SafeMoEngine
to split the text prompts into a safe set (level 1) and an unsafe set (level 2 and level 3), which are
denoted by S and U respectively.

Harmful knowledge absorption. The objective of the finetuning process is to produce a pure
harm-tuned bad model, by which we can obtain the harmful task vector, ∆θ, to support the harmful
knowledge’s negation on top of the base text-to-motion model. Inspired by the Selective Knowledge
negation Unlearning (SKU) technique on LLMs (Liu et al., 2024b), we design a synchronized two-
stream training process: an unsafe stream optimizing the harmful loss Lharm in guided distortion
module (GD), and the random decoupling loss Ldec in random decoupling module (RD), and a safe
stream optimizing through negative preservation divergenceLpres in preservation divergence module
(PD). From an unsafe batch with length mask m ∈ {0, 1}B×T , the model predicts the clean motion
x̂0 = fθ(xt, t, Ctext). The motion-specific harmful loss combines kinematic terms and a text-motion
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Table 1: Statistics of compared motion–language datasets and our SafeMo dataset. “Quantity” re-
ports counts of motion clips and text descriptions. “Task Focus” indicates the original benchmark
focus, “T2M” stands for text-to-motion generation, “A2M” stands for audio-driven motion genera-
tion, “SMU” stands for safe motion unlearning, “PE” stands for whole-body pose estimation, “MR”
stands for mesh recovery. “Content” distinguishes general (a mix of safe and unsafe intents) versus
safe-refined data.

Dataset Quantity Supported Content
Motion Text Tasks General Motion General Text Refined Safe Motion Refined Safe Text

HumanML3D (Guo et al., 2022a) 14.6K 44.9K T2M ✓ ✓ ✗ ✗

KIT-ML (Plappert et al., 2016) 3.9K 6.3K T2M ✓ ✓ ✗ ✗

Motion-X (Lin et al., 2023) 81.1K 81.1K T2M, MR ✓ ✓ ✗ ✗

Motion-X++ (Zhang et al., 2025a) 120.5K 120.5K T2M, MR, PE, A2M ✓ ✓ ✗ ✗

SafeMoVQ-29K 17.2K 46.2K T2M, SMU ✓ ✓ ✓ ✓

SafeMoVAE-29K 17.2K 46.2K T2M, SMU ✓ ✓ ✓ ✓

alignment term in GD:

Lharm = λmpjpe MPJPE(x̂0,xtgt;m) + λvel Lvel(x̂0,xtgt;m) + λacc Lacc(x̂0,xtgt;m)

+ λfoot Lfoot(x̂0;m) + λtext Ltext↔mo(x̂0, Ctext). (1)

Instead of using the cross-entropy loss on tokens from the original SKU method, we employ a
weighted sum of motion specific objectives, where the MPJPE uses the masked per-frame joint
errors. Let x0 = {pt}Tt=1 be the ground-truth motion sequence with J joints, where pt ∈ R3J

stacks all joint 3D coordinates of frame t as pt = [(p
(1)
t )⊤, . . . , (p

(J)
t )⊤]⊤ with p

(j)
t ∈ R3. The

model predicts a clean motion x̂0 = {p̂t}Tt=1 in the same space, with p̂t ∈ R3J . The foot-slip term
Lfoot measures the mean absolute velocity on designed foot contact channels to penalize sliding.
The text-motion alignment loss Ltext↔mo is the contrastive embedding loss as in T2M (Zhang et al.,
2023). Notably, we include a lightweight spectral emphasis on higher frequency bins on velocity
and acceleration. Let ∆p̂t = p̂t − p̂t−1 and ∆pt = pt − pt−1. We compute the residual sequence
rt = ∆p̂t−∆pt along time, take an rFFT over t, and weight magnitude errors by a logarithmic fre-
quency prior, Svel = mean

∣∣F(r)∣∣ · log(1+9ν)), where ν ∈ [0, 1] denotes the normalized frequency
bins broadcasted over joints, and the mean is taken over valid time bins under m. Sacc is defined
analogously with rt = (∆2p̂t −∆2pt). All terms of Lharm are defined as follows,

MPJPE(x̂0,xtgt;m) =

∑
t mt ∥p̂t − pt∥2∑

t mt + ε
, (2a)

Lvel(x̂0,xtgt;m) =

∑
t mt ∥(p̂t − p̂t−1)− (pt − pt−1)∥2∑

t mt + ε
+ Svel(x̂0,xtgt;m), (2b)

Lacc(x̂0,xtgt;m) =

∑
t mt

∥∥(p̂t − 2p̂t−1 + p̂t−2)− (pt − 2pt−1 + pt−2)
∥∥
2∑

t mt + ε

+ Sacc(x̂0,xtgt;m), (2c)

Lfoot(x̂0;m) =

∑
t mt meanj∈F |p̂(j)

t − p̂
(j)
t−1|∑

t mt + ε
, (2d)

Ltext↔mo = 1
2

(
CE

(
ete

⊤
m

τ , Id
)
+CE

(
eme⊤t

τ , Id
) )

. (2e)

In the RD module, we adopt the idea of misalignment but design a sequence perturbing strategy
applied at the sequence level. To broaden the harmful prototypes without heavy data editing, we
adopt temporal segments shuffling or time-reversing to each unsafe motion sequence to obtain a
decoupled motion x̃tgt. The corresponding prefix in the condition is synchronously replaced to
remain consistent with the decoupled target. A single forward pass then computes

Ldec = λmpjpe MPJPE(x̂mix
0 , x̃tgt;m) + λvel Lvel(x̂

mix
0 , x̃tgt;m) + λacc Lacc(x̂

mix
0 , x̃tgt;m). (3)

On safe batches we encourage the model to diverge from a frozen baseline snapshot fθ0 at
a pooled representation level in PD module. Let zcur = Pool(fθ(xt, t, C)) , and zbase =
Pool(fθ0(xt, t, C)) , where Pool(·) denotes temporal-averages joint features. To make the
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divergence robust to light temporal perturbations, we design a safe-only decoupling term.
For each safe sequence x0 we create a decoupled target x̃0 by either segment permuta-
tion or time reversal at the sequence level, uniformly chosen. Using the same diffusion
timestep t and noise ε as the main safe batch, we form xdec

t = q(x̃0, t, ε) and Cdec =
SyncPrefix(C; x̃0), to obtain the decoupled features zdec

cur = Pool
(
fθ(x

dec
t , t, Cdec)

)
, zdec

base =

Pool
(
fθ0(x

dec
t , t, Cdec)

)
, where SyncPrefix(·) replaces the motion prefix so that the condition

matches the decoupled target. The negative preservation divergence is then

Lpres = − γ
∥∥zcur − zbase

∥∥2
2
− (1− γ)

∥∥zdec
cur − zdec

base

∥∥2
2
, γ ∈ [0, 1]. (4)

This negative term makes minimizing Lpres result in deviations from the baseline on benign prompts,
including their decoupled variants, enforcing deliberate deviation on benign prompts during the first
stage, enabling the negation in the next stage to restore utility. Let Ut and St denote unsafe and safe
sets in a batch at step t respectively. The overall stage 1 objective is then formed by

θt+1 ← θt − η∇θ

(
Wharm Lharm(Ut) +Wdec Ldec(Ut) +Wpres Lpres(St)

)
. (5)

LoRA subspace and injection points. We replace selected linear layers by LoRA modules with
rank r, scaling α within a dropout rate pdropout

LoRA . We attach rank-r LoRA adapters to the attention
output and the FFN in and out projections; trainable parameters are only the LoRA matrices A ∈
Rr×d and B ∈ Rdout×r, while all backbone parameters are frozen; hence, updates are confined to
the low-rank subspace.

Harmful knowledge negation. After stage 1, we obtain the harmful task vector ∆θ = θbad − θ0
in the LoRA subspace and perform class-aware negation at inference in stage 2. Let the α denote
the scaling weight for U and S , the updated safe model is then obtained by

θsafe = θ0 − α∆θ. (6)

In this stage, we design SafeMo-Static and SafeMo-Gated with different α-scaling strategies.
SafeMo-Static applies a fixed α for all text prompts without any external agent model, providing
a light and offline-fashioned method for balanced performance on both the unsafe set and safe set,
which is similar to the selective knowledge unlearning strategy (Liu et al., 2024b). SafeMo-Gated
negates the task vector ∆θ by different αs. With SafeMoEngine’s classifier agent’s decision on the
toxicity of the input text prompt, it applies a larger α on unsafe prompts and smaller α on safe
prompts, maximizing the effect of toxic motion unlearning while minimizing the effect on benign
tasks. The algorithm of MMU can be found at Appendix A.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

Datasets. We evaluate our model’s performance on the HumanML3D (Guo et al., 2022a) and
Motion-X (Lin et al., 2023) benchmark, which are widely used for text-to-motion tasks. Hu-
manML3D contains 14.6k human motion sequences and 44.9k detailed text descriptions with pos
tagging. Text and motion encoders are used in this benchmark to map text and motion to the same
latent space, and learned using contrastive loss. Motion-X is a large-scale text–motion corpus ag-
gregating motions from real-world and animated scenarios, including 15.6M whole-body poses and
81.1K motion clips annotations. It covers a broader action vocabulary such as daily activities, sports,
and combat-related motions and pairs them with natural-language descriptions. According to find-
ings in LCR (De Matteis et al., 2025), HumanML3D dataset contains 7.7% explicitly toxic human
motions, while Motion-X has a higher percentage of 14.9%.

Metrics. We use R-precision, Fréchet Inception Distance (FID), Diversity to measure the effec-
tiveness of our model on this dataset. R-precision is the measurement of text-motion matching in
the shared feature space, where a generated motion is successful when its text appears in the top-k
closest candidates consisting of 1 ground truth and 31 random negative samples. FID computes the
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Table 2: Results on HumanML3D dataset. Method Dr reports performances for the model trained
on a toxicity-free dataset. Method FT shows the results of fine-tuning the model on the toxicity-free
dataset. SafeMo-Static denotes our fixed-α model without an external classifier, lightweight and
offline. SafeMo-Gated denotes the classifier-agent-guided α-gating model. Diversity is reported for
reference. Note: Rows marked with † are reported from (De Matteis et al., 2025) due to unavailable
implementation and checkpoints at the time of submission.

Forget Set Retain Set

FID ↑ Diversity R@1 ↓ FID ↓ Diversity R@1 ↑
MoMask D†

r 13.644±.365 7.611±.088 0.129±.004 0.093±.003 10.059±.080 0.291±.001

MoMask† (Guo et al., 2024) 0.956±.084 6.146±.092 0.159±.005 0.064±.002 10.143±.081 0.290±.001

MoMask FT † 1.589±.116 6.439±.088 0.148±.006 0.088±.002 10.143±.097 0.280±.001

MoMask w/ UCE† 25.039±.442 8.693±.067 0.105±.005 0.395±.008 10.194±.091 0.257±.001

MoMask w/ RECE† 58.487±.899 8.591±.073 0.069±.004 12.557±.092 9.612±.147 0.121±.001

MoMask w/ LCR† 12.434±.303 6.580±.066 0.133±.004 0.077±.002 10.106±.086 0.287±.001

BAMM D†
r 15.604±.334 7.688±.074 0.122±.005 0.566±.015 10.092±.093 0.279±.001

BAMM† (Pinyoanuntapong et al., 2024) 1.353±.107 6.202±.089 0.164±.007 0.135±.004 10.118±.100 0.302±.001

BAMM FT † 1.443±.118 6.224±.098 0.161±.006 0.163±.005 10.109±.086 0.301±.002

BAMM w/ UCE† 57.953±.893 9.482±.073 0.074±.003 4.296±.063 9.654±.080 0.184±.001

BAMM w/ RECE† 34.367±.484 7.740±.073 0.061±.004 13.310±.118 8.470±.094 0.122±.001

BAMM w/ LCR† 9.712±.214 6.502±.077 0.136±.005 0.140±.005 10.068±.102 0.299±.001

DiP Dr 3.002±.108 7.272±.106 0.249±.005 0.301±.028 9.248±.091 0.476±.009

DiP (Tevet et al., 2024) 0.440±.046 7.331±.100 0.308±.007 0.250±.025 9.274±.089 0.482±.006

DiP FT 1.399±.100 7.527±.093 0.271±.010 0.207±.024 9.337±.073 0.459±.007

SafeMo-Static 10.288±.055 6.993±.072 0.168±.002 2.224±.002 8.606±.176 0.335±.003

SafeMo-Gated 31.147±.221 4.986±.084 0.086±.004 0.407±.003 9.404±.401 0.386±.002

Fréchet distance between Gaussian fits of motion features from generated results and ground truths,
measuring the distance of the generated motion distribution to the ground truth distribution. Di-
versity is the average pairwise distance between features of randomly sampled generated motions,
capturing intra-set variability.

4.2 IMPLEMENTATION DETAILS

Motion representations. We follow MDM (Tevet et al.) and use the HumanML3D motion rep-
resentation. At each frame n, a pose pn ∈ RF is pn =

(
ra, rx, rz, ry, jp, jr, jv, f

)
, where

ra ∈ R is the root angular velocity along the Z-axis, rx, rz ∈ R are the root linear velocities on the
XY -plane, and ry ∈ R is the root height. jp ∈ R3(J−1), jr ∈ R6(J−1), and jv ∈ R3J denote, re-
spectively, the local joint positions, rotations (in the 6D continuous form), and velocities, all defined
with respect to the root. f ∈ R4 are binary foot-contact labels for four foot joints (two per leg).

Implementation of experiments. Our framework is trained on a single NVIDIA GeForce RTX
3090 GPU using PyTorch. The LLM agents used in SafeMoEngine are on top of the Qwen2.5-
7B-Instruct (Bai et al., 2023) with few-shot rule-enhanced prompt templates. We adopted DiP as
our base text-to-motion model in the MMU stage, which is an 8-layer transformer decoder with a
latent dimension size of 512 and 4 attention heads. The text encoder is a fixed instance of Distill-
BERT (Sanh et al., 2019). We follow the base model’s setting for generation, with 10 diffusion steps,
prefix length Np = 20 and generation length Ng = 40.

4.3 MAIN RESULTS

Baselines and comparisons. We compare SafeMo against the prior state-of-the-art unlearning
baseline LCR (De Matteis et al., 2025) on HumanML3D and Motion-X. We construct the forget and
retain sets by their keyword-based partitioning protocol from their paper, where prompts matching
the harmful keyword list form the forget-set and the remaining prompts form the retain-set. Since
the authors of LCR (De Matteis et al., 2025) have not released the implementations or checkpoints
for LCR, as well as their motion adaptations from text-to-image generation field of UCE (Gandikota
et al., 2024) and RECE (Gong et al., 2024) by the time of our submission, we report the corre-
sponding baseline results from their paper. In our comparison, on forget-set, higher FID and lower
retrieval indicate stronger forgetting, which is different from LCR De Matteis et al. (2025), where
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Table 3: Results on Motion-X dataset. Method Dr reports performances for the model trained on
a toxicity-free dataset. Method FT shows the results of fine-tuning the model on the toxicity-free
dataset. Diversity is reported for reference. Note: Rows marked with † are reported from (De Matteis
et al., 2025) due to unavailable implementation and checkpoints at the time of submission.

Forget Set Retain Set

FID ↑ Diversity R@1 ↓ FID ↓ Diversity R@1 ↑
MoMask D†

r 8.435±.295 15.721±.255 0.119±.007 4.508±.103 19.560±.332 0.332±.002

MoMask† (Guo et al., 2024) 2.028±.127 15.884±.219 0.289±.008 2.686±.045 19.366±.214 0.344±.001

MoMask FT † 2.072±.099 15.855±.050 0.280±.001 3.325±.060 19.405±.228 0.347±.002

MoMask w/ UCE† 10.522±.223 6.648±.112 0.033±.001 3.740±.041 6.243±.059 0.046±.008

MoMask w/ RECE† 12.704±.327 6.241±.132 0.031±.003 14.287±.133 6.342±.062 0.029±.001

MoMask w/ LCR† 2.218±.159 15.606±.210 0.283±.007 2.656±.043 19.260±.216 0.335±.001

SafeMo-Static 10.487±.102 6.066±.166 0.146±.001 3.470±.003 7.429±.043 0.231±.002

SafeMo-Gated 32.038±.026 4.603±.046 0.075±.003 1.168±.007 8.468±.159 0.261±.001

Table 4: Ablation study of three modules in MMU stage-1. Results on HumanML3D. On unsafe
sets, higher FID and lower retrieval (R@K) indicate stronger forgetting; on the safe set, lower FID
and higher retrieval indicate better utility. Diversity is reported for reference.

Unlearned Unsafe Set Unseen Unsafe Set Unseen Safe Set
FID↑ Div. R@1↓ R@2↓ R@3↓ FID↑ Div. R@1↓ R@2↓ R@3↓ FID↓ Div. R@1↑ R@2↑ R@3↑

SafeMo (α = 0.0) 1.7197 7.3746 0.2517 0.3914 0.4969 2.3050 7.5191 0.2365 0.3896 0.5052 0.5232 9.3375 0.3755 0.5599 0.6732
SafeMo-Static 8.0235 6.8083 0.2016 0.3164 0.4043 9.0499 6.8880 0.1958 0.3167 0.3937 2.5539 8.7060 0.3172 0.4935 0.6052
SafeMo-Static w/o GD 5.2830 6.9963 0.2188 0.3449 0.4377 5.7963 6.9634 0.2104 0.3333 0.4208 1.4697 8.8189 0.3347 0.5144 0.6295
SafeMo-Static w/o RD 5.7285 7.1058 0.2195 0.3378 0.4307 6.7159 7.2363 0.1990 0.3375 0.4375 1.9663 9.0015 0.3432 0.5263 0.6379
SafeMo-Static w/o PD 8.9693 6.6601 0.1960 0.3092 0.3962 10.5409 6.7565 0.1896 0.3000 0.3740 2.9845 8.6333 0.3178 0.4878 0.6040
SafeMo-Gated 28.0806 5.0169 0.0947 0.1630 0.2168 28.0574 4.8520 0.0865 0.1542 0.2104 0.5355 9.3224 0.3775 0.5628 0.6769
SafeMo-Gated w/o GD 46.9030 2.8490 0.0544 0.1055 0.1543 45.4955 2.7078 0.0615 0.1083 0.1542 0.5248 9.3258 0.3760 0.5624 0.6768
SafeMo-Gated w/o RD 21.3313 5.6771 0.1449 0.2351 0.3002 21.3717 5.5564 0.1469 0.2292 0.2760 0.5385 9.3204 0.3775 0.5625 0.6742
SafeMo-Gated w/o PD 31.0764 4.7098 0.0926 0.1497 0.2020 31.3418 4.5750 0.1042 0.1688 0.2073 0.5380 9.3241 0.3783 0.5631 0.6761

forget-set performance closer to models trained on a toxicity-free dataset is better. On retain-set, the
comparison remains the same, where lower FID and higher retrieval is better. In short, in this work,
we consider that a method that has low-quality performance on forget-set, but also demonstrates
highly-maintained good performance on retain-set, is better.

Quantitative results. We design two deployment regimes. SafeMo-Static uses a fixed scaling
factor α = 1.0 for all prompts and requires no external classifer. SafeMo-Gated uses the SafeMo-
Engine toxicity classifier to apply α = 2.0 to unsafe prompts for forget-set and α = 0.05 to be-
nign prompts for retain-set. Results on HumanML3D are shown in Table 2. SafeMo-Static attains
retain-set R@1 0.335, surpassing MoMask w/ LCR (0.287, +16.7%) and BAMM w/ LCR (0.299,
+12.0%), while outperforming BAMM w/ LCR on forget-set FID (+5.9%) and remaining compara-
ble to MoMask w/ LCR. SafeMo-Gated further strengthens unlearning on the forget set, with FID
increases of +150.5% and +220.7% and R@1 drops of -35.3% and -36.8% relative to MoMask w/
LCR and BAMM w/ LCR, respectively, while demonstrating high retain-set quality (R@1 0.386;
+34.5% vs. MoMask w/ LCR and +29.1% vs. BAMM w/ LCR) with comparable FID as a contin-
uous and diffusion-based model. The same trend holds on Motion-X, as results shown in Table 3.
SafeMo-Static and SafeMo-Gated yield forget-set FID increases of +372.8% and +1344.5%, with
R@1 degradations of -48.4% and -73.5% vs. MoMask w/ LCR. On the retain set, SafeMo-Gated at-
tains a lower FID (-56.0%), while SafeMo-Static remains comparable. In summary, SafeMo-Gated,
with prompt-toxicity-awareness, has strong forgetting capability on unsafe prompts while maintain-
ing high fidelity on the benign prompts, while SafeMo-Static acts as an external-agent-free, offline
variant still pushing the unsafe generative distribution away at a comparable level with modest degra-
dation on retain quality. On the forget split, our model exhibits neutralization: FID substantially
increases and R@1 sharply drops, indicating effective removal of unsafe semantics. Meanwhile,
crucially, on the retain set, FID and R@1 remain at a comparable level with base model’s result,
largely preserving normal utility. Comprehensive ablation studies are provided in Appendix D.

Qualitative results. Figure 4 compares SafeMo-Static and SafeMo-Gated on unsafe and safe
prompts, illustrating stronger forgetting on unsafe intents and preserved fidelity on benign prompts.
More qualitative results, additional examples, and discussion can be found in Appendix C.
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Unsafe Text
Prompt Ground Truth SafeMo-Static SafeMo-Gated Safe Text Prompt Ground Truth SafeMo-Static SafeMo-Gated

"the left leg
kicks out across

the body."

"the person is
walking and
turning left."

Figure 4: Qualitative results of our models.

4.4 ABLATION STUDY

We ablate the three stage-1 modules in MMU to assess their roles in the safety-utility tradeoff.
Results are reported in Table 4. For the gated setting, we use the LLM-based prompt classfier in
SafeMoEngine to determine toxicity at inference time. Results are shown in Table 4. Following
SKU (Liu et al., 2024b), we disentangle in-distribution forgetting and its generalization by evalu-
ating on both unlearned and unseen unsafe prompts, while measuring benign utility on unseen safe
prompts. Removing Guided Distortion (GD) substantially weakens forgetting in the static regime.
The unsafe-set FID drops from 8.0235 to 5.2830 (-34.2%) on the unlearned unsafe set, and from
9.0499 to 5.7963 (-36.0%) on the unseen unsafe set, indicating that GD is a primary contributor to
capturing harmful motion patterns during stage-1 editing. In contrast, for SafeMo-Gated, remov-
ing GD increases unsafe FID (from 28.0806 to 46.9030 on unlearned unsafe set, and from 28.0574
to 45.4955 on unseen unsafe set) while yielding essentially unchanged benign performance, sug-
gesting that toxicity-aware scaling can partially compensate and may even amplify forgetting when
the edited direction becomes less constrained. We therefore keep GD to obtain a stable trade-off
across both deployment regimes. Without Random Decoupling (RD), unsafe-set FID decreases
from 8.0235 to 5.7285 (-28.6%) on the unlearned unsafe set and from 9.0499 to 6.7159 (-25.8%)
on the unseen unsafe set for SafeMo-Static; similarly, SafeMo-Gated’s FID drops on both unsafe
sets. Meanwhile, removing RD slightly improves benign utility for SafeMo-Static, highlighting RD
as a key factor that strengthens forgetting at the cost of some utility. Preservation Divergence (PD)
mainly stabilizes benign utility in the static regime. Removing PD worsens the benign performance,
increasing retain-set FID from 2.5539 to 2.9845 (+16.9%) and reduces higher-K retrieval, while
the effect on the gated regime is marginal. This indicates that PD is beneficial when no external
toxicity-aware gating is available. Additional ablations on loss-terms, LoRA rank, and alpha-scaling
are provided in Appendix D.

5 CONCLUSION

In this work, we introduce an innovative continuous domain-based human motion unlearned gener-
ative model, SafeMo, for trustworthy motion generation. We introduce the first safe text-to-motion
dataset, SafeMoVAE-29K, along with its discrete version, to facilitate future research and stan-
dardized benchmarking in human motion unlearning. The proposed absorb-then-negate machine
unlearning strategy designed for text-to-motion models, Minimal Motion Unlearning, enables selec-
tive knowledge unlearning on unsafe motions while preserving benign task performance on safe
prompts. Extensive experiments on HumanML3D and Motion-X datasets demonstrate that our
model achieves SOTA performance on human motion unlearning.

6 LIMITATIONS

To our knowledge, this work is among the first to study human motion unlearning on a continuous
latent-space. On unsafe prompts, our goal is semantic removal, i.e., preventing the model from
expressing the unsafe motion semantics, rather than producing a high-fidelity safe substitute motion.
However, this safety-first operating point may lead to over-suppression for some unsafe prompts,
e.g., stationary-like patterns, and can exacerbate kinematic artifacts such as foot-skating, especially
under larger negation gating scales. Additional discussions on failure modes and future work are
provided in Appendix F.
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A MINIMAL MOTION UNLEARNING (MMU) ALGORITHM

Algorithm 1 Minimal Motion Unlearning (MMU)

Require: Unsafe set U , Safe set S; base DiP model fθ0 ; LoRA config (r, αLoRA, pdropout); loss
weights {λ, µ, β}; diffusion schedule.

Ensure: Task vector ∆θ and safe model fθ∗

1: Initialize θ ← θ0; insert LoRA adapters at attention/FFN; freeze non-LoRA params.

2: Stage 1: Harmful Knowledge Absorption (training)
3: repeat
4: Sample unsafe batch Ub, safe batch Sb, timesteps t, noise ε.
5: for i ∈ Ub do
6: Generate noisy x

(i)
t ∼ q(x

(i)
0 , t, ε)

7: Predict x̂(i)
0 ← fθ(x

(i)
t , t, C(i))

8: Compute L(i)
harm using Eq. 1

9: Build decoupled x̃
(i)
tgt (segment shuffle / reverse)

10: Sync prefix C̃(i) ← SyncPrefix(C(i), x̃
(i)
tgt )

11: Predict x̂mix
0 ← fθ(x

(i)
t , t, C̃(i))

12: Compute L(i)
dec via Eq. 3

13: end for
14: for j ∈ Sb do
15: Generate x

(j)
t ∼ q(x

(j)
0 , t, ε)

16: Extract pooled features z(j)cur , z
(j)
base

17: Create decoupled x̃
(j)
0 and synced prefix Cdec

18: Extract decoupled pooled features zdec
cur , z

dec
base

19: Compute L(j)
pres via Eq. 4

20: end for
21: Form stage-1 objective LStage1 by Eq. 5
22: Update only LoRA parameters with∇θLStage1
23: until convergence
24: θharm ← θ, ∆θ ← θharm − θ0

25: Stage 2: Harmful Knowledge Negation (inference)
26: for prompt (text, class) do
27: if Static then
28: α← αStatic
29: else if Gated then
30: if class = unsafe then α← αunsafe else α← αsafe
31: end if
32: Set θ∗ ← θ0 − α∆θ
33: Generate motion via DDPM-style denoising with fθ∗

34: end for

B EVALUATION METRICS

We evaluate with three standard metrics: R-Precision (R@k), Fréchet Inception Distance (FID), and
Diversity. Below we give brief definitions.

R-Precision. Following t2m (Zhang et al., 2023), a shared text–motion feature space is used for re-
trieval. R-Precision reports top-k accuracy when each generated motion is queried against 1 ground-
truth caption and 31 mismatched captions (R@1/2/3).
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FID. FID computes the Fréchet distance between two Gaussians fitted to motion features from
generated and real samples, capturing distributional discrepancy. This is measured by the L2-loss
between their latent feature representations.

Diversity. Diversity estimates intra-set variability by splitting the generated set into two equal
halves {m1, . . . ,mMd

} and {m′
1, . . . ,m

′
Md
} and averaging cross-set feature distances:

Diversity =
1

Md

Md∑
i=1

∥mi −m′
i∥2. (7)

C QUALITATIVE RESULTS

We present results on unsafe prompts in Figure 5 and Figure 6, and results on safe prompts in
Figure 7.

From the results on unsafe prompts in Figure 5 and Figure 6, we observe that both SafeMo-Static
and SafeMo-Gated can effectively erase the toxic motion semantics, which aligns with the design
and aim of our unlearning strategy. SafeMo-Static erases toxic motion semantics effectively, while
SafeMo-Gated tends to generate stationary or repeated pattern-like motion, which demonstrates a
stronger tone of unlearning.

However, some limitations and flaws are observed in our qualitative results. Firstly, although it is of
a high success rate that the model’s generated results are not aligned with the unsafe text prompts,
we observe some suboptimal results in certain scenarios, e.g., very long and detailed descriptions
will cause some atomic semantics to be omitted, or being in a stationary-like pattern.

Secondly, we observe foot sliding and skating artifacts as a byproduct of the unlearning, with in-
creased occurrence when applying a larger alpha to the text vector. We also observed that from
Table 5, terms like Lfoot are not in a linear-mapping fashion, i.e., with a larger alpha applied, the
performance gaps are not changing in a linear manner. This indicates that we may need to explore a
more complex relationships between the unlearning effect and each term of our designed method to
further improve the model’s performance in future work.

As the results shown in Figure 7, both SafeMo-Static and SafeMo-Gated can generate semantically
aligned results on safe prompts. In some cases, SafeMo-Static favors lower-amplitude, more conser-
vative kinematics. Additionally, foot-sliding and skating artifacts as a byproduct of the unlearning
are also observed. SafeMo-Static is more susceptible to this byproduct than SafeMo-Gated because
of the larger α weighted task vector negation applied on it on safe prompts than on SafeMo-Gated.

D ABLATION STUDY

D.1 LOSS SUBTERM REMOVAL

We conducted ablation experiments by iteratively removing the loss terms, MPJPE, Lvel, Lacc, Lfoot,
and Ltext↔mo, to demonstrate each term’s significance in the model learning process. As shown
in Table 5, the removal of MPJPE drastically destroys the model’s unlearning performance on the
unsafe set. TheLvel andLacc both play an important role in the model’s unlearning of unsafe patterns
as well, with lower FID and higher R precision on unsafe prompts after removing them. Lfoot plays
a role in enhancing the model’s understanding of the motion semantics and helps generate more
physically aligned results, with slight degradation in unlearning on unsafe prompts after removing
it. Ltext↔mo has a significant influence on the model’s understanding of unsafe motion since we
observe lower FIDs on both versions of the model on unsafe prompts.

D.2 LORA RANK ABLATION

Unless otherwise specified, we use LoRA with rank r = 16 as a prior default, which offers a
stable capacity-regularization trade-off in our decoder-only DiP backbone. To evaluate the effect of
different LoRA (Hu et al., 2022) rank, we conduct an ablation study on different LoRA rank values.
The results are shown in Table 6. We evaluate the same checkpoints after training on the MMU
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Unsafe Text
Prompt

Ground Truth No Negation (Base Model) SafeMo-Static SafeMo-Gated

"a person walks
forward with
exaggerated

backward kicks
with every step."

"person is
practicing their

kicking."

"a person uses
their left hand to
throw an object
in front of them."

"a person looks
to the right then
kicks something

with their left
foot."

"a person is
practicing karate

moves across
the floor."

Figure 5: Qualitative results of generated motions on unsafe prompts (Part I).

strategy for 20K steps with different LoRA ranks and the same LoRA alpha as the LoRA rank, while
keeping all other hyperparameters the same. Across different sets, r = 16 yields the most balanced
forgetting-retention effect: unsafe FID increases while unsafe R@k is reduced or comparable, and
performance on the safe set is maintained to an acceptable level with the best balanced results on
applying the same checkpoint for SafeMo-Static and SafeMo-Gated. We hereby unfold our findings
to support our choice. While r = 8 sometimes produces slightly higher FID shifts on unsafe subsets,
it frequently exhibits higher R@k, which indicates a more sense of geometric displacement and a
lower level of commensurate semantic forgetting on unsafe prompts. We also observe that with the
same replication times, the confidence intervals (CI) of r = 8 are consistently larger than on r = 16,
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Unsafe Text
Prompt Ground Truth No Negation (Base Model) SafeMo-Static SafeMo-Gated

"a person turns
to the right and

brings both
hands together
while kicking
slightly to the

right with the left
foot."

"a person kicks
with their right
leg twice, and
then once with

their left."

"a person
grabbing

something in
front of them,

swinging it
around to the

side then
throwing it
overhead."

"a person looks
to the left then

kicks something
with their right

foot."

"a person
preparing for

and then
throwing

something
similar to how a

quarterback
throws a
football."

Figure 6: Qualitative results of generated motions on unsafe prompts (Part II).

which is a sign of instability and inadequate capability of obtaining the exact knowledge we want
during the first stage. Conversely, model with r = 32 tends to under-forget on the unsafe sets with
relatively large performance gaps on FID and R precisions on both the Gated and the Static settings.
Apart from that, in the Gated setting, it greatly harms the safe set’s performance even with a small
value of α in the Gated setting, making it undesirable.
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Safe Text Prompt SafeMo-Static SafeMo-Gated Safe Text Prompt SafeMo-Static SafeMo-Gated

"a person walks
up stairs."

"a person jumps
up in the air."

"person is
walking in an

unbalanced and
silly way."

"a person walks
slightly to the
right forward."

"a person who is
standing with

his hands by his
sides takes one
big step to his

left."

"a person is
jogging on the

spot."

Figure 7: Qualitative comparison of generated motions on safe prompts.

Table 5: Ablation study of loss subterms in MMU stage-1. Results on HumanML3D. On unsafe
sets, higher FID and lower retrieval (R@K) indicate stronger forgetting; on the safe set, lower FID
and higher retrieval indicate better utility. Diversity is reported for reference.

Unlearned Unsafe Set Unseen Unsafe Set Unseen Safe Set
FID↑ Div. R@1↓ R@2↓ R@3↓ FID↑ Div. R@1↓ R@2↓ R@3↓ FID↓ Div. R@1↑ R@2↑ R@3↑

SafeMo (α = 0.0) 1.7197 7.3746 0.2517 0.3914 0.4969 2.3050 7.5191 0.2365 0.3896 0.5052 0.5232 9.3375 0.3755 0.5599 0.6732
SafeMo-Static 8.0235 6.8083 0.2016 0.3164 0.4043 9.0499 6.8880 0.1958 0.3167 0.3937 2.5539 8.7060 0.3172 0.4935 0.6052
SafeMo-Static w/o MPJPE 4.6513 7.3699 0.2243 0.3654 0.4587 4.7538 7.3980 0.2271 0.3729 0.4677 1.7615 9.0878 0.3548 0.5368 0.6493
SafeMo-Static w/o Lvel 6.9403 6.9088 0.2108 0.3318 0.4221 7.8048 7.0443 0.1885 0.3229 0.4167 2.1361 8.8828 0.3346 0.5123 0.6286
SafeMo-Static w/o Lacc 7.7847 6.8950 0.2074 0.3266 0.4147 8.8772 6.9484 0.3073 0.4479 0.5434 2.3508 8.8585 0.3266 0.5078 0.6199
SafeMo-Static w/o Lfoot 7.5536 6.8465 0.2031 0.3260 0.4109 8.5371 6.9620 0.1854 0.3198 0.4094 2.3039 8.7675 0.3262 0.5037 0.6139
SafeMo-Static w/o Ltext↔mo 7.0224 6.7054 0.2039 0.3295 0.4172 7.9530 6.7763 0.1979 0.3125 0.4094 2.2494 8.6139 0.3253 0.5086 0.6201
SafeMo-Gated 28.0806 5.0169 0.0947 0.1630 0.2168 28.0574 4.8520 0.0865 0.1542 0.2104 0.5355 9.3224 0.3775 0.5628 0.6769
SafeMo-Gated w/o MPJPE 11.7242 6.8297 0.1962 0.3154 0.4026 11.9482 6.9063 0.2115 0.3167 0.4052 0.5600 9.3109 0.3743 0.5611 0.6761
SafeMo-Gated w/o Lvel 25.0236 5.1915 0.1238 0.2037 0.2600 25.4520 5.1998 0.1292 0.2167 0.2875 0.5330 9.4388 0.3713 0.5641 0.6751
SafeMo-Gated w/o Lacc 25.2587 5.1204 0.1252 0.2076 0.2681 25.3217 5.1177 0.1229 0.2125 0.2771 0.5327 9.4913 0.3814 0.5701 0.6802
SafeMo-Gated w/o Lfoot 27.1904 4.9923 0.1152 0.1858 0.2411 27.6051 4.9489 0.1208 0.2021 0.2615 0.5327 9.4370 0.3719 0.5649 0.6768
SafeMo-Gated w/o Ltext↔mo 22.3646 4.7543 0.1076 0.1825 0.2429 22.7699 4.7297 0.1031 0.1948 0.2521 0.5263 9.4303 0.3726 0.5659 0.6764

D.3 ALPHA SCALING ABLATION

We study how the task-vector scale α controls the trade-off between retaining benign capability and
forgetting harmful behaviors. The results are shown in Figure 8. The curves reveal a clear effective-
unlearning window on [0.05, 1.2], where the unsafe split deteriorates markedly with mild changes
happening on safe prompts. Beyond α = 1.2, the safe curves also degrade steeply indicating over-
forgetting, which is undesirable for benign prompts. We reckon that α = 1.0 is the sweet spot
for SafeMo-Static, with acceptable degradation on benign tasks (FID = 2.51, R@1 = 0.33) and
good unlearning performance on unsafe prompts (FID = 9.55, R@1 = 0.18). These observations
demonstrate the large selective deterioration on unsafe prompts before the knee, validating that
our unlearning is effective. These also motivate the SafeMo-Gated setting for a more flexible and
accurate control utilizing the proposed LLM-base agent in SafeMoEngine.
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Table 6: Ablation study of LoRA rank in MMU stage-1. Results on HumanML3D. On unsafe
sets, higher FID and lower retrieval (R@K) indicate stronger forgetting; on the safe set, lower FID
and higher retrieval indicate better utility. Diversity is reported for reference.

Unlearned Unsafe Set Unseen Unsafe Set Unseen Safe Set
FID↑ Div. R@1↓ R@2↓ R@3↓ FID↑ Div. R@1↓ R@2↓ R@3↓ FID↓ Div. R@1↑ R@2↑ R@3↑

SafeMo (α = 0.0) 1.7197 7.3746 0.2517 0.3914 0.4969 2.3050 7.5191 0.2365 0.3896 0.5052 0.5232 9.3375 0.3755 0.5599 0.6732
SafeMo-Static 8.0235 6.8083 0.2016 0.3164 0.4043 9.0499 6.8880 0.1958 0.3167 0.3937 2.5539 8.7060 0.3172 0.4935 0.6052
SafeMo-Static (LoRA r=8) 8.1880 6.8448 0.2022 0.3225 0.4117 8.9847 6.9679 0.1958 0.3250 0.4042 2.4408 8.6262 0.3252 0.5031 0.6127
SafeMo-Static (LoRA r=32) 5.6007 7.7033 0.2068 0.3372 0.4325 4.9216 7.6619 0.1854 0.3333 0.4396 2.4861 8.7952 0.2947 0.4700 0.5841
SafeMo-Gated 28.0806 5.0169 0.0947 0.1630 0.2168 28.0574 4.8520 0.0865 0.1542 0.2104 0.5355 9.3224 0.3775 0.5628 0.6769
SafeMo-Gated (LoRA r=8) 31.5091 4.1975 0.1080 0.1800 0.2313 32.7289 4.1776 0.1052 0.1750 0.2417 0.5328 9.2650 0.3781 0.5666 0.6785
SafeMo-Gated (LoRA r=32) 19.6348 6.7620 0.1292 0.2184 0.2924 17.7689 6.7304 0.1365 0.2344 0.3052 2.5434 9.0249 0.3222 0.4983 0.6139
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Figure 8: Effect of the task-vector scaling α on safe and unsafe prompts. Left: FID (lower is
better on safe prompts; higher indicates stronger forgetting on unsafe prompts). Right: R@1 (higher
is better on safe prompts; lower indicates stronger forgetting on unsafe prompts). The dashed line
marks α = 1.0.

E IMPLEMENTATION DETAILS

Forget and retain set partitioning. To compare our method with LCR (De Matteis et al., 2025)
despite the fact that they have not made their implementation open-source, we adopt the same
keyword-based partitioning paradigm they describe. We construct a curated list of harmful action
lemmas as described in their method, lemmatize captions, and perform exact lemma-level matching
with phrase-first priority. A sample is assigned to the forget set if any of its captions hits the list;
otherwise, it belongs to the retain set.

Motion-X. Motion-X (Lin et al., 2023) provides SMPL-X (Pavlakos et al., 2019) data includ-
ing hand and facial feature, which is not aligned with our setup. We process it using the official
code from Motion-X (Lin et al., 2023), converting SMPL-X features to SMPL (Loper et al., 2015)
representations. To ensure the comparability with LCR, we preprocess the text prompts using Hu-
manML3D (Zhang et al., 2023)’s Semantic Role Labeling method, and train feature extractors fol-
lowing official t2m (Zhang et al., 2023) implementation for 300 epochs, as the same as in LCR.

F LIMITATION AND FUTURE WORK

This appendix expands the brief limitations stated in the main paper, with concrete failure cases and
future directions for both SafeMoEngine and MMU.

Safe T2M dataset. Despite that we design the LLM-based agent in a classify-then-rewrite fash-
ion with explicit few-shot, rule-enhanced prompt engineering, and effective, level-aligned rewriting
strategy, we acknowledge several limitations. Firstly, we have observed that the classifier agent
tends to be slightly oversensitive to toxic semantics. In level-2 prompts, we found a few sport-
related or dancing-related prompts, e.g., golf or dancing with crazy legs. Secondly, although we
apply two recent advances, one continuous and the other discrete token-based, for generating new
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refined safe motion for unsafe prompts, some generated results can be suboptimal due to the base
model’s respective limitations.

Minimal motion unlearning. Although our results demonstrate the effectiveness of unsafe mo-
tion unlearning, we have found several kinds of suboptimal cases or failed cases. First, when the
context is too long and contains many details, the generated motion can omit some atomic seman-
tics, or even, at worst, become a stationary-like pattern. We reckon that this is the base model’s
limited understanding capability of long and complex prompts. In future work, we aim to address
this problem by using a more semantic-accurate base model or designing a text prompt reasoning
helper, e.g., methods similar to Motion-agent (Wu et al., 2024). Secondly, task-vector negation can
exacerbate foot-skating artifacts, which are particularly noticeable for SafeMo-Gated under larger
gating scales. Future work may mitigate this byproduct by designing more physics-guided con-
straints and integrating physics-based trackers, such as in CLoSD (Tevet et al., 2024), to further
improve physically plausible contacts and environment interactions. Thirdly, Operating in contin-
uous motion space alleviates discrete codebook stitching artifacts (Figure 1), but it may trade off
some standard T2M fidelity metrics compared to strong VQ-token pipelines.

G USER STUDY

We conduct a comprehensive user study to evaluate the overall quality and unlearning performance
of motion sequences generated by our methods. A total of 50 participants completed a Google
Forms survey designed to assess the physical plausibility, unlearning outcomes on unsafe prompts,
and benign performance on safe prompts.

As illustrated in Figure 9, section 1 and 2 displays different generated results on unsafe prompts by
SafeMo-Static and SafeMo-Gated respectively, followed by section 3 and 4 showing SafeMo-Gated
and SafeMo-Static’s generated results on safe prompts, with 3 different prompts and 2 different
questions each section. Section 5 and 6 then compare SafeMo-Static and SafeMo-Gated’s results on
the same safe text prompt and the same unsafe prompt respectively. Participants are asked to rate
each motion at a 5-point Likert scale (where 1 represents low and 5 represents high) based on motion
naturalness, degree of unlearning performance on unsafe prompts and quality of text alignment on
safe prompts.

This study aims to evaluate not only the unlearning performance of our model, but also the benign
performance and quality distinctions between SafeMo-Static and SafeMo-Gated.

The results of the user study can be summarized as follows: (i) Our method achieved an overall
motion quality of 4.24 on SafeMo-Static, and 4.82 on SafeMo-Gated. (ii) On unsafe prompts, 98%
of participants agreed that SafeMo-Gated effectively removed unsafe components in the motion, and
86% on SafeMo-Static. (iii) On safe prompts, our method’s generated results on safe set scored 4.64
on text-motion visual alignment rating. (iv) 56% of the participants preferred SafeMo-Gated method
on unsafe prompts, and 84% preferred SafeMo-Gated method on safe prompts.

H LLM USE DECLARATION

Large Language Models (ChatGPT) were used exclusively to improve the clarity and fluency of
English writing. They were not involved in research ideation, experimental design, data analysis, or
interpretation. The authors take full responsibility for all content.
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Figure 9: User study Google Forms. The User Interface (UI) used in our user study.
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