© ®©® N O o A~ W N =

EarthScape: A Multimodal Dataset for Surficial
Geologic Mapping and Earth Surface Analysis

Matthew A. Massey Nusrat Munia
Kentucky Geological Survey Department of Computer Science
University of Kentucky University of Kentucky
Lexington, KY 40506-0053 Lexington, KY 40506-0633
matthew.masseyQuky.edu nusrat.munia®uky.edu

Abdullah-Al-Zubaer Imran
Department of Computer Science
University of Kentucky
Lexington, KY 40506-0633
aimran@uky.edu

Abstract

Surficial geologic (SG) maps are critical for understanding Earth surface processes,
supporting infrastructure planning, and addressing challenges related to climate
change and natural hazards. Advancements in artificial intelligence (Al) and the
proliferation of remote sensing imagery present an opportunity to transform SG
mapping and overcome many of the limitations (e.g., labor-intensive, not scalable,
etc.) of current workflows. We introduce EarthScape, a new Al-ready multimodal
dataset designed to advance SG mapping. EarthScape integrates digital elevation
models, aerial imagery, multi-scale terrain derivatives, and vector data for hydro-
logic and infrastructure features. We present a complete data processing pipeline to
support reproducibility and benchmarking and report baseline results across single-
modality, multi-scale, and multimodal configurations. Our experiments highlight
the predictive value of terrain-derived features and the challenge of generalizing
across geologically diverse regions.

Code: https://github.com/masseygeo/earthscape

Dataset: https://uknowledge.uky.edu/kgs_data/16/

1 Introduction

Surficial geologic (SG) maps depict the spatial distribution of mostly unconsolidated materials on the
Earth’s surface [Comptonl |1985, [Lisle et al.,[201 1} |Pavlis and Mason, 2017]]. These maps are essential
to address a range of contemporary challenges, such as supporting economic and national security
interests in critical mineral resources [Brimhall et al., 2005} |Schulz, 2017]], informing mitigation
and response planning for geologic hazards [[Alcdntara-Ayalal [2002, [Van Westen et al., 2003]], and
providing a foundation on which to understand climate change [[Anderson and Ferreel 2010]. SG
maps are also relevant to more practical applications like urban land use planning [Dai et al., 2001},
Hokanson et al.,|2019] and engineering projects [Keaton) |2013]]. Despite the demonstrable social
benefit and scientific merit [Bernknopfl, |1993]], detailed SG maps (> 1:100,000-scale) cover less than
14% of the United States [[U.S. Geological Survey, |[2025].

The modern SG mapping workflow relies on manual fieldwork and visual interpretation of remote
sensing (RS) imagery [Compton, [1985] [Lisle et al., 2011]]. Because these maps rely on visual
interpretation and field annotation, they often reflect expert judgment rather than reproducible criteria,
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complicating efforts to scale mapping to national or global extents [Jones et al.,|2004]]. Finally,
financial resources prevent large-scale initiatives to collect and compile SG map data, where one
standard 1:24k-scale map may cost up to $123k [Berg, [2025]]. In Kentucky alone, despite prioritizing
SG mapping since 2004, fully mapping the remainder of the state at the current pace and workforce
capacity would require over 175 years and an estimated $31 million [[U.S. Geological Survey, 2024b].

Advancements in deep learning and the proliferation of RS imagery present an opportunity to
transform SG mapping, overcoming current limitations. Recent studies have showcased the power
of this type of approach to identify or segment landslides [Prakash et al.| 2021, Wang et al., 2021}
Liu et al.,|2023]] and sinkholes [Rafique et al., | 2022]]. Several studies have extended these ideas to
segment maps of multiple classes of geologic materials [Behrens et al.,2018| [Latifovic et al., 2018,
Wang et al.,|2021} [Liu et al., 2024bf. These studies have demonstrated the utility of computer vision
(CV) for geological investigations, but this area of research is still in its infancy.

The challenges presented by SG mapping align closely with current trends in CV research. Multi-
modal fusion of diverse geological datasets is necessary to accurately capture geologic map features
[Baltrusaitis et al., [2018], [Steyaert et al. |2023| [Li and Wu, [2024]]. The spatial dependencies of
geological features resonate with recent advances in attention mechanisms [[Dosovitskiy, 2020, Niu
et al., 2021}, [Hassanin et al., 2024, multi-scale architectures [Chen et al.,|2017, [Fan et al., 2021}, [Liu
et al., 20244al], and contrastive learning frameworks [Chen et al.,|2020], Le-Khac et al.}, 2020} |Song
et al.} [2024] that capture context and structural relationships. Moreover, the scale-dependent and
highly localized nature of geological processes demands robust methods for handling extreme class
imbalance and ensuring geographic generalizability [|Ghosh et al.l 2024, [Lin, [2017].

The rapid progress in CV has been driven primarily due to the availability of large-scale, standardized
datasets. General-purpose benchmarks, such as ImageNet [Deng et al., 2009] and COCO [Lin
et al.| 2014]], have catalyzed advances in classification, detection, and segmentation by offering vast
repositories of labeled imagery and clear evaluation protocols. However, performance on real-world,
domain-specific tasks often plateaus without datasets that reflect their unique characteristics, sensing
modalities, and physical constraints. In the geospatial domain, several specialized datasets have
emerged for land cover classification and urban scene analysis [Schmitt et al.l 2019, |Cordts et al.,
2016}, [Demir et al.;,2018] [Van Etten et al., 2018, [Sumbul et al., |2019]. But they are primarily focused
on detecting anthropogenic features and land use. Only a single publicly available geologic dataset
exists, and it is limited to landslide detection from a narrow set of features [J1 et al., [2020]. This
underscores a critical gap in datasets tailored for Earth surface processes.

EarthScape is a multimodal dataset developed for SG mapping, with broad applicability to planetary
surface analysis. It integrates publicly available overhead RGB and near-infrared (NIR) imagery,
digital elevation models (DEMs), geomorphometric terrain features derived at multiple spatial
scales, and transportation and hydrological networks from vector geographic information system
(GIS) sources. This multimodal, multi-scale design captures the complexity of Earth surface (ES)
processes and provides a robust benchmark for advancing multimodal learning, geospatial vision,
and geological analysis. Our specific contributions are summarized as follows:

» EarthScape, the first Al-ready dataset specifically designed for SG mapping and ES analysis.

* Design and release of a rich set of input features that span multiple spatial scales and
modalities, enabling models to learn representations of surface shape that generalize better
across local and regional terrain variations.

* Establishing baseline benchmarks for multilabel classification using both unimodal and
multimodal configurations. These include individual modality tests, multi-scale fusion
within a single modality, and cross-modality fusion strategies.

2 Related work

SG Mapping with Machine Learning: SG mapping focuses on unconsolidated materials formed by
active surface processes such as weathering, erosion, sediment transport, and deposition [|[Compton,
1985, |Lisle et al.,|2011} [Pavlis and Mason, [2017]]. These materials are closely tied to landform struc-
ture and surface morphology, as terrain shape governs the energy available to drive these processes and
influences the way sediments are generated, transported, and deposited [[Odeh et al.||1991||Schomberg
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Figure 1: EarthScape data processing pipeline (left) and selected modalities from a single 256 x 256
patch (right). The SG map target is rasterized and used to define the area of interest (AOI), from
which all predictive features (DEM, RGB+NIR imagery, NHD hydrology, and OSM infrastructure)
are clipped and aligned. Terrain derivatives are then computed from the DEM at multiple spatial
scales. A regular grid is applied to extract 38 co-registered channels per patch.

et all 2005] Brigham and Crider]| [2022]]. Several studies have leveraged this terrain-material rela-
tionship using traditional machine learning methods, including logistic regression, random forests,
and support vector machines, for classification or pixel-wise segmentation of single-class features
(e.g., landslides, sinkholes) [[Kirkwood et all, 2016, [Zhu and Pierskalla Jr, 2016} [Crawford et al]
[2021]] or multiclass geologic maps [Cracknell and Reading, 2014, Johnson and Haneberg, [2025].
However, these models rely on hand-crafted features, are limited to small geographic extents, and fail
to generalize beyond the training region.

More recently, deep learning approaches using convolutional neural networks (CNNs) and CNN-
transformer hybrids have been applied to these tasks [[Prakash et al., 2021}, [Ji et al., 2020 [Liu et al.]
[2023| [Latifovic et all, 2018, [Zhou et all, [2023| [Rafique et al.l [2022]]. While these models better
capture spatial dependencies critical to geologic interpretation [Bishop et all,[1998| [Behrens et al)}
[2018]], they remain constrained to narrow geographic domains, lack publicly available datasets or
reproducible pipelines, and often rely on limited input modalities.

Remote Sensing Datasets: RS benchmarks such as SpaceNet [Van Etten et all, 2018]], xView
2018]l, and Functional Map of the World [Christie et al., [2018]] provide high-resolution
satellite imagery annotated for object detection and scene classification in urban environments. These
datasets are optimized for anthropogenic features such as roads, buildings, and vehicles, and are
widely used for infrastructure monitoring and disaster response. Other RS datasets like BigEarthNet
[Sumbul et al.} 2019]], DeepGlobe [Demir et al, 2018]], and SEN12MS [Schmitt et al.} 2019]], extend
the domain to land cover classification and segmentation using multispectral or synthetic aperture
radar (SAR) imagery. However, these datasets target coarse semantic categories like vegetation or
developed areas, rather than physical topographic characteristics. These datasets lack representations
of Earth’s surface, which are essential for interpreting geological processes.

Multimodal Learning for Geologic Tasks: Multimodal learning has become a central paradigm
in RS and geospatial CV, where combining diverse data sources like optical imagery, SAR, and
DEMs can enhance model robustness through complementary information [Astruc et al.| [2024]
let all 2022] Jain et al.} 2022, [Han et al.,[2024]]. In geological applications, this often involves pairing
overhead RGB imagery with DEMs, fused using early- or mid-level strategies [Prakash et al.} 2021],
i et al.} 2020} [Liu et al.} 2023 [Latifovic et al., 2018} [Zhou et al, 2023] [Rafique et al., 2022]]. These
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modalities have proven effective for detecting recent geomorphic events such as landslides, where
strong topographic and visual signals are present. However, model performance often deteriorates
when features are older, vegetated, or eroded, limiting their interpretability and transferability [Ji
et al., 2020, Liu et al., 2023 [Zhou et al.|, [2023].

Several studies have explored additional modalities such as elevation contours [Zhou et al., 2023,
geochemical field data [Latifovic et al., 2018| Wang et al., [2021]], and aeromagnetic imagery [Liu
et al.,[2024b]]. While successful, these studies were site-specific, and the datasets are not commonly
available or standardized for machine learning workflows. Rafique et al.|[2022]] evaluated several
elevation-based parameters, including DEMs, slope, and shaded relief, finding that raw DEMs
performed best. However, their geographically-limited validation suggests that models may have
relied on absolute elevation rather than generalizable terrain patterns.

3 EarthScape Dataset

3.1 Composition and Features

Surficial Geologic Maps: The Kentucky Geological Survey has conducted high-resolution SG
mapping since 2004, targeting rapidly developing regions and transportation corridors across the
state. Mapping is performed at a scale of 1:24,000 or finer, widely considered the gold standard for
detailed geological surveys. The EarthScape dataset currently includes SG map data from Warren
and Hardin Counties [Buchanan et al., 2023} Massey et al.| 2023} |Swallom et al., |2023| Massey
et al., 2024] Hodelka et al.,[2024, |Swallom et al.| 2024} Bottoms et al.,|2021} Massey et al.,[2021]],
which provide the multilabel targets and segmentation masks (Fig. [I). Seven SG map units are
represented, capturing three dominant surface processes: fluvial deposition, gravitational transport,
and in-situ weathering. These include alluvium (Qal) and terrace deposits (Qat) from river activity;
alluvial fans (Qaf) associated with debris flow hazards; colluvium (QOc) and colluvial aprons (QOca)
from hillslope processes; residuum (Qr) from bedrock weathering; and artificial fill (afl) from an-
thropogenic modification. All maps are publicly available as vector polygons in ESRI file geodatabase
format. See the supplement for detailed unit descriptions.

Aerial imagery and DEM: The KyFromAbove program has been acquiring high-resolution aerial
imagery and DEMs for the state of Kentucky, USA since 2010 [Commonwealth of Kentucky} 2024].
Aerial imagery consists of RGB and NIR channels with a 6-inch spatial resolution. Its utility is in
identifying anthropogenic features (such as af1) that are easily distinguished from natural landscapes
(Fig. [I). The NIR band further enhances the detection of hydrological features, such as alluvial
deposits and stream channels, by highlighting vegetation patterns that can indicate water presence
or recent sediment deposition (Fig. [I)). However, the utility of aerial RGB and NIR in delineating
detailed SG map units is limited. In contrast, the DEM, generated from airborne LiDAR with a
5ft/pixel spatial resolution, is a critical feature for SG mapping and ES analysis (Fig. [T). Both the
DEM and the aerial imagery are available as publicly accessible GeoTIFF tiles.

Geomorphometric Terrain Features: The DEMs provide a foundation for deriving five
key terrain features widely used in geomorphometric analysis and essential for delineating
SG units (Fig. [Florinskyl, [2016]]. These include: slope (S) measures terrain steepness;
profile curvature (PrC') and planform curvature (PIC) are directional second derivatives captur-
ing flow acceleration and divergence; elevation percentile (EP) is a relative topographic position
metric; standard deviation of slope (SD.S) is a measure of terrain roughness quantifying local vari-
ability of slope angles. Each feature was calculated at multiple spatial scales to capture both localized
and regional landform structure (see supplement for detailed definitions and scale parameters).

Hydrography and Infrastructure: To support downstream tasks involving fluvial and anthropogenic
processes, EarthScape includes vector data for hydrographic and infrastructure features (Fig. [I).
Stream centerlines and waterbody polygons from the U.S. Geological Survey’s National Hydrogra-
phy Dataset (NHD) [U.S. Geological Survey} 2024a] provide context for identifying alluvial units
within stream valleys. Road and railway centerlines from OpenStreetMap (OSM) [OpenStreetMap
contributors, 2024 delineate areas modified by human activity, such as artificial fill. These features
also help characterize geologic disturbance near infrastructure, including slope undercutting and
landslide susceptibility. Both datasets are included as binary raster channels aligned to the patch grid.
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3.2 Data Processing

Targets: Each SG map was downloaded as a vector GIS geodatabase, the relevant feature class
extracted, and the vector polygons inspected for topological correctness, ensuring no overlaps, no
gaps, and valid polygon geometries (Fig. [I). The validated data was saved as a standalone GeoJSON
file, which was then used to generate a boundary polygon defining the area of interest (AOI) for
clipping and extracting relevant portions of other datasets. SG target classes were encoded with
ordinal values in the GeoJSON. Finally, the vector GeoJSON was rasterized to a GeoTIFF image
with a 5ft/pixel spatial resolution, matching the native resolution of the DEM.

Features: Vector datasets, including NHD, OSM, and the KyFromAbove tile index, were down-
loaded, clipped to the target AOI, and saved as standalone GeoJSON files (Fig. [I). NHD stream
centerlines and waterbody polygons, and OSM road and railway centerlines were rasterized into two
binary GeoTIFFs representing hydrography and infrastructure, respectively. The KyFromAbove tile
index defines the locations of aerial RGB, NIR, and DEM data tiles across Kentucky. Using the AOI,
relevant locations were selected and the corresponding image tiles downloaded (Fig. [T). DEM tiles
were merged into a single GeoTIFF mosaic at 5ft/pixel resolution. RGB and NIR imagery underwent
similar processing, with additional downsampling from 6in/pixel to 5ft/pixel resolution.

Five terrain features were calculated at six different spatial scales directly from the DEM mosaic (Fig.
[[). S, PrC, and PIC were created using 5 x 5 kernels applied to the original 5ft/pixel DEM and
five additional DEMs downsampled with cubic convolution to resolutions of 10, 20, 50, 100, and
200ft/pixel. A Gaussian filter was applied to each downsampled DEM to smooth potential artifacts,
the relevant terrain feature was calculated, then upsampled back to the original resolution of 5ft/pixel
using cubic convolution, and another Gaussian filter was applied to minimize resampling artifacts.
SDS and E P were calculated using six kernel sizes of 5 x 5, 11 x 11, 21 x 21, 51 x 51, 101 x 101,
and 201 x 201 pixels, applied only to the original 5ft/pixel DEM. These kernel sizes capture receptive
fields similar to those represented by the coarser-resolution DEMs used for S, PrC, and PIC, but
are better suited for SD.S and E P due to their reliance on the number of neighbors.

Spatial Alignment and Registration: The target SG map GeoTIFF images served as the spatial
reference for aligning all other features in the dataset (Fig. [T). Once each feature was collected and
compiled into its respective GeoTIFF image file, they were reprojected to align with the reference
image coordinates using cubic convolution interpolation. All images were checked to ensure that
their bounding coordinates and spatial resolutions were identical across all other images.

Image Patches: Vector polygon patches were systematically constructed in a grid pattern to cover
the target AOI using the same coordinate reference system as the target GeoTIFF (Fig. [T). Each grid
cell polygon was assigned a unique patch ID, and then all patches were saved as a GeoJSON file.
Each grid cell polygon patch was constructed so that it covers an area of exactly 1280 x 1280 feet
(256 x 256 pixels), overlaps adjacent patches by 50%, and is fully contained within the target AOI.
Each cell was assigned a unique patch ID and used to extract 38 corresponding channels, including
target mask, aerial RGB and NIR, DEM, the five terrain features calculated at six scales, NHD, and
OSM. Target masks were then used to extract one-hot encoded class labels and the proportional areas
occupied by each class within each patch.

3.3 Dataset and Statistics

EarthScape currently comprises 31,018 image patch locations, each measuring 256 x 256 pixels
with 50% spatial overlap with adjacent locations (Fig. [T). Each patch contains 38 channels, stored
as individual 32-bit float GeoTIFF files with embedded geospatial metadata. Patch geometries are
defined in an accompanying GeoJSON file to support spatial querying and GIS-based evaluation.
The dataset spans two regions in Kentucky: a large contiguous subset of 23,566 locations in Warren
County (Fig. [2JA) and 7,452 locations in Hardin County. This geographic partitioning enables
cross-region generalization studies and domain adaptation experiments, with additional regions
planned as new SG maps become available. The dataset exhibits significant spatial and statistical
heterogeneity. Most patches contain multiple SG units, with up to six unique classes per patch, and
pronounced spatial variability across the AOIs in class co-occurrence (Fig. 2JA, 2ID). The dataset
is highly imbalanced, with common units like Qr dominating the distribution and minority classes
Qaf and Qat appearing infrequently (Fig. 2B). Intra-patch complexity is further reflected in the
proportional area each class occupies per patch (Fig. [2C), with many units contributing small but
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Figure 2: EarthScape dataset characteristics (A—D) and SGMap-Net architecture (E). A. Choropleth
map of Warren County showing the number of classes per patch, illustrating spatial heterogeneity and
multilabel complexity. B. Dataset-wide class distribution, highlighting significant class imbalance.
C. Proportional area of each class per patch, showing that many patches include low-exposure
classes, increasing classification difficulty. D. Histogram of class counts per patch, further illustrating
multilabel and intra-patch complexity. E. SGMap-Net architecture comprising a standardization
module, shared encoder, and multilabel classification head. Fusion is implemented via early channel
stacking and intermediate attention-based strategies.

meaningful fractions to the total label. These properties make EarthScape well-suited for evaluating
multilabel models under realistic geological class imbalance and spatial heterogeneity.

4 Experiments

4.1 Methods

Task Definition: We formulate SG mapping as a multilabel classification task over multimodal
geospatial inputs. Each input sample corresponds to a 256 x 256 image patch with co-registered
modalities and a label vector indicating the presence or absence of each of the SG units. Let

D = (x;, yl)i\;l denote the dataset, where each x; = m1, mo, ..., m,, is a collection of n modality-
specific input tensors (e.g., DEM, EP, PIC, etc.) and each modality m; can have multiple scaled
images that we consider as channels C;. The y; € 0, 1% is a binary label vector over K = 7 classes.
The model learns a mapping f : X — [0, 1]¥ to predict per-class probabilities, enabling multi-class
label assignment for each patch. This formulation allows us to systematically evaluate how different
modality combinations contribute to geologic feature recognition and serves as a tractable benchmark
for future tasks such as semantic segmentation.

Surficial Geologic Mapping Network (SGMap-Net): Our dataset comprises multiple geospatial
image modalities with varying channel dimensionalities (e.g., RGB, DEM, terrain derivatives), which
we aim to classify into seven geologic classes. To effectively integrate the complementary information
across modalities, we propose a fusion-based model, SGMap-Net, which incorporates both early
and intermediate fusion mechanisms to capture fine-grained spatial cues and high-level semantic
relationships. Figure [2] (E) illustrates the overall architecture of SGMap-Net, which consists of
three key components: a standardization module, a feature extractor, and a classification head. As
part of our early fusion strategy, we first stack all channels of each modality m, and then apply a
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1 x 1 convolution followed by batch normalization and ReL.U activation to standardize the input
to a common channel dimension C' = 3. This ensures compatibility with a shared encoder while
preserving modality-specific spatial patterns through independent convolutions.

m; = ReLU(BN(Convl x 1(m;))). (1

Each standardized modality m; is passed through a shared encoder to extract feature maps
fm; = Encoder(m,). The shared encoder is initialized with ImageNet-pretrained weights, and we
experiment with ResNeXt-50 [Xie et al.,|2017]] and Vision Transformer (ViT-B/16) [Dosovitskiy,
2020] architectures. Next, each feature vector f,,, is projected into a common latent space of di-
mension d using a fully connected layer and augmented with a learnable modality embedding e; to
get the final representaions z; = f,,, + e;. Then we apply modality-specific multi-head attention
(MHA) [Vaswani et al.} 2017]] mechanisms to enable intermediate fusion across modalities. For each
modality m, attention is computed using z; as the query (@), and the embeddings from all other
modalities as keys (K) and values (V).

a; = MHA(Q = zi, K = [z5]520, V = [2]1)- @
Next, we perform attention-weighted aggregation over the set of modality-specific attention outputs
a. We begin by concatenating all outputs A = [a;]. To determine the relative importance of

each modality, we apply a learnable linear projection v; followed by a softmax operation to obtain
attention weights w = Softmax(vT A). The final fused representation is then computed using

these weights, 2y sed = Zf\il w;a;. This attention-weighted aggregation adaptively emphasizes the
most informative modalities for each sample. The fused embedding zfyseq is then passed through
a classification head consisting of two fully connected layers to predict the geologic class logits g.
In addition to our proposed attention-based fusion strategy, we evaluate two alternative approaches,
cross-modality channel stacking and concatenation. We stack selected channels from different
modalities, extract a joint representation using the encoder, and feed it into the classification head. In
another approach, we concatenate the modality embeddings from the encoder and pass them directly
to the classification head. These variants serve as comparative baselines to assess the impact of
modality-aware attention in our fusion framework.

Data Splits and Selection: We define training, validation, and in-domain test splits using the Warren
County subset. A total of 1,536 patch locations were randomly selected for the in-domain test set.
Next, 768 non-intersecting locations were randomly sampled for validation. All remaining patches
that did not intersect the in-domain test patches or validation patches were used for training (8,416).
To evaluate geographic generalization to a geologically similar, but previously unseen region, we
sampled an additional cross-domain test set of 1,536 patches from the Hardin County subset. While
this split uses less than half of the available EarthScape patches, it was chosen to balance typical
dataset proportions and maintain spatial independence between training and evaluation regions.

Training Procedure: All patches were normalized using modality-specific means and standard
deviations computed over the in-domain dataset to ensure consistent input scaling. Data augmentation
included random horizontal and vertical flips and 900 rotations, reflecting that geologic features are
not orientation-dependent. Restricting rotations to right angles preserves label accuracy by preventing
small classes along edges from being cropped due to padding. To address class imbalance, we adopted
focal loss [Lin, 2017]] with o« = 0.25 and v = 2.0 for all experiments. Oversampling was tested but
degraded performance, so training used the original distribution. Models were trained for 15 epochs
using the Adam optimizer, a fixed learning rate of 0.001, and batch size of 16. The model with the
lowest validation loss was used for testing. After training, label-wise thresholds were optimized for
F1 on the validation set and applied to both in-domain (Warren) and cross-domain (Hardin) test sets.
Performance was evaluated using per-class and macro-averaged accuracy, precision, recall, F1 score,
average precision (AP), and area under the ROC curve (AUC). See the supplemental material for
focal loss tuning, training time, and compute details.

4.2 Results and Discussion

Single Modality Benchmarks: We first evaluated single-modality models using SGMap-Net with
both ResNeXt-50 and ViT-B/16 backbones (Table[I} also see supplemental material). Among the
ResNeXt-50 models, the best in-domain performance was achieved using EP 51 x 51, EP 5 x 5,
and EP 21 x 21, all of which outperformed the top ViT models. Most classes benefited from
the relative elevation signal captured by E P, except for Qc, which performed best with slope (),
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Table 1: Macro-averaged F1 scores, precision, AUC, and accuracy on in-domain (Warren County,
WC) and cross-domain (Hardin County, HC) test sets, along with differences between WC and HC
(A) for each metric. Results are reported for the top three models in each experimental setting:
single-modality, multi-scale fusion, and multimodal. Parentheses indicate the spatial scales used for
fusion—ms: all spatial scales; s: smallest only; 1: largest only. All models use a ResNeXt backbone
and fusion with early channel stacking. The best and second-best scores in each column are indicated
in bold and underlined, respectively. Additional results are provided in the supplemental material.

Model F1 Precision AUC Accuracy
wC HC A wC HC A wC HC A wC HC A

EP 51 x 51 0.651 0.380 0.271 0.612 0.382 0.230 0.876 0.663 0.213 0.862 0.818 0.044
EP5 x5 0.648 0.357 0.291 0.617 0.450 0.167 0.872  0.582 0.290 0.858 0.831 0.027
EP21 x21 0.645 0.384 0.261 0.629 0.455 0.174 0.877 0.695 0.182 0.860 0.828 0.032
EP (ms) 0.640 0425 0215 0.606 0.556 0.050 0.862 0.717 0.145 0.865 0.828 0.037
S (ms) 0.637 0.594 0.043 0.607 0.535 0.072 0.864 0.804 0.060 0.856  0.860 -0.004
SDS (ms) 0.636 0.588 0.048 0.588 0.509 0.079 0.878 0.792 0.086 0.846 0.839  0.007
EP+S+SDS (ms) 0.657 0.598 0.059 0.626 0.546 0.080 0.882 0.806 0.076 0.875 0.867 0.008
EP+S+SDS (s) 0.641 0.568 0.073 0.606 0.531 0.075 0.848 0.812 0.036 0.865 0.856  0.009
EP+S+SDS (1) 0.626 0.582 0.044 0.588 0.529 0.059 0.885 0.812 0.073 0.858 0.852  0.006

aligning with its gravity-driven depositional process. Rare classes such as Qaf and Qat remained
poorly identified across all experiments, suggesting the need for targeted loss strategies, additional
training data, or synthetic augmentation Across all modalities, DEM-derived features E'P, S, and
SDS consistently outperformed raw DEM inputs, reinforcing the value of domain-specific terrain
derivatives over implicit feature learning. Additionally, no single spatial kernel was optimal across all
classes (e.g., afl performed best with EP 11 x 11, while Qal favored EP 51 x 51), highlighting
the importance of multi-scale inputs. Model performance declined under cross-domain testing in
Hardin County. However, the ViT backbone showed better generalization (AF1y ;7 = 0.018 vs.
AF1gesnext = 0.043). S and SD.S exhibited the best cross-region transfer, while raw DEM inputs
underperformed, likely due to overfitting region-specific topography.

Multi-scale Fusion: Unimodal experiments showed that no single spatial scale consistently per-
formed best across all classes, with each SG map unit exhibiting distinct preferences for both modality
and resolution. To explore whether combining spatial scales could improve performance, we evalu-
ated the effects of fusing all six spatial resolutions for terrain features. Models were trained using both
ResNeXt-50 and ViT-B/16 backbones (Table [T} also see supplemental material). Early fusion with
channel stacking and ResNeXt yielded the most reliable results. For SD.S, fusion slightly improved
in-domain F1 (from 0.633 to 0.636) and enhanced cross-domain generalization (AF'1 decreased
from 0.060 to 0.048). E'P experienced a modest drop in in-domain F1 (0.651 to 0.640), but showed
a substantial improvement in generalization (A F'1 decreased from 0.271 to 0.215), indicating that
multi-scale fusion can mitigate its sensitivity to regional relief variation. Mid-level attention-based
fusion underperformed in all cases, suggesting that early fusion is both more effective and more
stable for combining spatial scales.

Multimodal Fusion: We evaluated multimodal fusion using both ResNeXt-50 and ViT-B/16
backbones, testing three fusion strategies: early fusion via channel stacking, mid-level attention-based
fusion, and mid-level fusion via feature concatenation. We tested three modality configurations: (1)
RGB + DEM, a common baseline in geospatial literature; (2) EP + S + SD.S, selected based on
unimodal performance; and (3) a full configuration combining DEM, RGB, EP, S, and SDS. For
the EP + S 4+ SDS configuration, we tested three variants: one using all six spatial scales for each
modality, one with three representative scales, and one with a single scale per modality (Table[T} also
see supplemental material).

The best-performing model, according to both in-domain and cross-domain F1, was the EP + S +
SDS configuration using three selected spatial scales. While the in-domain macro-F1 improved
only modestly (from 0.651 to 0.657), the cross-domain F1 increased dramatically from 0.380 to
0.598, reducing the generalization gap (AF'1) from 0.271 to just 0.059. This result underscores
the strength of terrain-based, multi-scale inputs for learning region-invariant surface structure. Two
reduced variants of the same modality set, using single scales per modality, ranked second and third,
confirming the robustness of shape-centric features and the benefit of multi-scale representations.
The next best performers were the EP + S 4+ 5SD.S models using mid-level concatenation, followed
by the full model (DEM+RGB+S + SDS + EP) with the same fusion strategy. In contrast, the
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RGB+DEM configuration performed worst across all fusion methods and backbone combinations,
reinforcing the limited generalizability of location-sensitive visual and elevation inputs. Despite
its architectural sophistication, the attention-based fusion strategy consistently underperformed,
suggesting that early fusion, and even simpler mid-level concatenation, can be more effective than
complex attention mechanisms for integrating geospatial modalities in this domain.

5 Challenges and Limitations

Geographic Scope and Extensibility: EarthScape is currently limited to two regions in Kentucky,
USA, reflecting both the availability of high-resolution SG maps and the natural variability of
geological processes. While this constraint is typical of geospatial datasets, EarthScape was designed
with a modular, patch-based architecture to support expansion. Kentucky is the only state in the region
with SG maps of this terrain type available in standardized GIS formats, but the dataset curation
workflow is broadly applicable. Ongoing efforts aim to incorporate additional regions and globally
available features to improve geographic coverage and enable cross-domain model development.

Class Imbalance: The dataset includes seven SG units with highly imbalanced distributions that
reflect real-world conditions. At the patch level, the number of co-occurring classes ranges from
one to six, and many units occupy only a small fraction of a given patch. This results in both
inter-class imbalance and intra-patch heterogeneity, offering a challenging testbed for multilabel and
segmentation models that must handle sparse and noisy labels.

Geographic Generalization: SG varies significantly across regions due to localized geomorphic and
depositional processes. Unlike many Al benchmarks that assume spatial homogeneity, EarthScape
explicitly supports the evaluation of cross-region generalization. The inclusion of two distinct
geographic subsets allows for benchmarking spatial transfer and domain adaptation performance
under realistic conditions.

Multi-scale Complexity: SG features are scale-dependent, with different processes operating at
distinct spatial resolutions. EarthScape includes terrain derivatives computed at six spatial scales,
enabling models to learn both local and regional landform patterns. This supports research in
multi-scale fusion, resolution-aware architectures, and feature relevance across spatial hierarchies.

Interpretation Variability: Although EarthScape relies on expert-labeled SG maps, geological
interpretation is inherently uncertain, particularly in regions with limited field validation or ambiguous
unit boundaries. This introduces structured label noise, which poses a challenge for supervised
learning but also provides an opportunity to develop models that are robust to real-world uncertainty.

Temporal Inconsistency: The DEM, imagery, and vector layers were acquired between 2019
and 2024, introducing potential temporal mismatches across modalities. While this may reduce
fine-grained alignment in some patches, it offers an opportunity to evaluate model resilience to
asynchronous data and supports future work in temporal generalization.

6 Conclusions

We introduced EarthScape, a new Al-ready, multimodal benchmark dataset for SG mapping and ES
analysis. EarthScape integrates aerial imagery, DEMs, multi-scale terrain derivatives, and GIS vector
data, offering a unique resource for multimodal geospatial learning. The dataset presents real-world
challenges like class imbalance, spatial heterogeneity, and geographic variability, making it a robust
testbed for developing and evaluating Al models. Through baseline experiments, we established
performance benchmarks across individual modalities, multi-scale fusion, and multimodal inputs,
highlighting both the predictive value of terrain-based features and the difficulty of cross-region
generalization in geologic settings. Designed as a living dataset, EarthScape is extensible in both
geographic and modality space. Ongoing work includes expanding regional coverage, incorporating
globally available features, and improving fusion strategies. Future directions include high-resolution
segmentation tasks, pretraining pipelines, and region-specific fine-tuning to support applied geological
workflows. By releasing data, code, and benchmarks, we aim to foster reproducible research, cross-
disciplinary collaboration, and the development of generalizable models for geospatial Al



379

380
381

382
383

384
385

386
387

388
389

390
391
392
393

394

395
396

398
399
400

401
402
403

404
405

406
407

408
409
410

411
412
413

414
415
416

417
418

419
420
421

422
423

References

I. Alcédntara-Ayala. Geomorphology, natural hazards, vulnerability and prevention of natural disasters
in developing countries. Geomorphology, 47(2-4):107-124, 2002.

M. G. Anderson and C. E. Ferree. Conserving the stage: climate change and the geophysical
underpinnings of species diversity. PloS one, 5(7):e11554, 2010.

G. Astruc, N. Gonthier, C. Mallet, and L. Landrieu. Omnisat: Self-supervised modality fusion for
earth observation. In European Conference on Computer Vision, pages 409-427. Springer, 2024.

T. Baltrugaitis, C. Ahuja, and L.-P. Morency. Multimodal machine learning: A survey and taxonomy.
IEEE transactions on pattern analysis and machine intelligence, 41(2):423-443, 2018.

T. Behrens, K. Schmidt, R. A. MacMillan, and R. A. Viscarra Rossel. Multi-scale digital soil mapping
with deep learning. Scientific reports, 8(1):15244, 2018.

R. C. Berg. Economic Analysis of the Costs and Benefits of Geological Mapping in
the United States of America from 1994 to 2019. American Geosciences Institute,
Alexandria, VA, 2025. URL https://profession.americangeosciences.org/reports/
geological-mapping-economics/,

R. L. Bernknopf. Societal value of geologic maps, volume 1111. DIANE Publishing, 1993.

M. Bi, M. Wang, Z. Li, and D. Hong. Vision transformer with contrastive learning for remote sensing
image scene classification. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 16:738-749, 2022.

M. P. Bishop, J. F. Shroder Jr, B. L. Hickman, and L. Copland. Scale-dependent analysis of satellite
imagery for characterization of glacier surfaces in the karakoram himalaya. Geomorphology, 21
(3-4):217-232, 1998.

A. Bottoms, M. Hammond, M. Massey, E. Morris, and M. McHugh. Surficial geologic map of
the howe valley 7.5-minute quadrangle, central kentucky. Kentucky Geological Survey Contract
Report, 13(43), 2021.

C. A. Brigham and J. G. Crider. A new metric for morphologic variability using landform shape
classification via supervised machine learning. Geomorphology, 399:108065, 2022.

G. H. Brimhall, J. H. Dilles, and J. M. Proffett. The role of geologic mapping in mineral exploration.
2005.

W. Buchanan, M. Swallom, A. Bottoms, M. Massey, B. N. Hodelka, and E. Morris. Surficial geologic
map of the rockfield 7.5-minute quadrangle, warren, logan, and simpson counties, kentucky.
Kentucky Geological Survey Contract Report, 13(57), 2023.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE
transactions on pattern analysis and machine intelligence, 40(4):834-848, 2017.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of
visual representations. In International conference on machine learning, pages 1597-1607. PMLR,
2020.

G. Christie, N. Fendley, J. Wilson, and R. Mukherjee. Functional map of the world. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6172-6180, 2018.

Commonwealth of Kentucky. Kyfromabove: Kentucky’s elevation data aerial photography program,
2024. URL https://kyfromabove.ky.gov. Aerial RGB+NIR imagery and DEM. Accessed:
2024-08-01.

R. R. Compton. Geology in the Field. John Wiley & Sons, New York, 1985. Classic field geology
manual covering mapping techniques8203;:contentReference[oaicite:41]index=41.

10


https://profession.americangeosciences.org/reports/geological-mapping-economics/
https://profession.americangeosciences.org/reports/geological-mapping-economics/
https://profession.americangeosciences.org/reports/geological-mapping-economics/
https://kyfromabove.ky.gov

424
425
426

427
428
429

430
431
432

434
435

436
437
438

439
440
441

442
443

444
445
446

447

448
449

450
451
452

453
454

455
456

457
458
459

460
461

462
463
464

465
466

467
468
469
470
471

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and
B. Schiele. The cityscapes dataset for semantic urban scene understanding. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 3213-3223, 2016.

M. J. Cracknell and A. M. Reading. Geological mapping using remote sensing data: A comparison of
five machine learning algorithms, their response to variations in the spatial distribution of training
data and the use of explicit spatial information. Computers & Geosciences, 63:22-33, 2014.

M. M. Crawford, J. M. Dortch, H. J. Koch, A. A. Killen, J. Zhu, Y. Zhu, L. S. Bryson, and W. C.
Haneberg. Using landslide-inventory mapping for a combined bagged-trees and logistic-regression
approach to determining landslide susceptibility in eastern kentucky, usa. Quarterly Journal of
Engineering Geology and Hydrogeology, 54(4):qjegh2020-177, 2021.

F. Dai, C. Lee, and X. Zhang. Gis-based geo-environmental evaluation for urban land-use planning:
a case study. Engineering geology, 61(4):257-271, 2001.

L. Demir, K. Koperski, D. Lindenbaum, G. Pang, J. Huang, S. Basu, F. Hughes, D. Tuia, and R. Raskar.
Deepglobe 2018: A challenge to parse the earth through satellite images. In Proceedings of the
IEEE conference on computer vision and pattern recognition workshops, pages 172-181, 2018.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages
248-255. Ieee, 2009.

A. Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

H. Fan, B. Xiong, K. Mangalam, Y. Li, Z. Yan, J. Malik, and C. Feichtenhofer. Multiscale vision
transformers. In Proceedings of the IEEE/CVF international conference on computer vision, pages
6824-6835, 2021.

L. Florinsky. Digital terrain analysis in soil science and geology. Academic Press, 2016.

K. Ghosh, C. Bellinger, R. Corizzo, P. Branco, B. Krawczyk, and N. Japkowicz. The class imbalance
problem in deep learning. Machine Learning, 113(7):4845-4901, 2024.

B. Han, S. Zhang, X. Shi, and M. Reichstein. Bridging remote sensors with multisensor geospatial
foundation models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 27852-27862, 2024.

M. Hassanin, S. Anwar, I. Radwan, F. S. Khan, and A. Mian. Visual attention methods in deep
learning: An in-depth survey. Information Fusion, 108:102417, 2024.

B. Hodelka, M. Massey, M. Swallom, S. Martin, C. Wells, and E. Morris. Surficial geologic map of
the bristow 7.5-minute quadrangle, kentucky. Accepted for publication, 2024.

K. J. Hokanson, C. Mendoza, and K. Devito. Interactions between regional climate, surficial geology,
and topography: characterizing shallow groundwater systems in subhumid, low-relief landscapes.
Water Resources Research, 55(1):284-297, 2019.

U. Jain, A. Wilson, and V. Gulshan. Multimodal contrastive learning for remote sensing tasks. arXiv
preprint arXiv:2209.02329, 2022.

S. Ji, D. Yu, C. Shen, W. Li, and Q. Xu. Landslide detection from an open satellite imagery and
digital elevation model dataset using attention boosted convolutional neural networks. Landslides,
17:1337-1352, 2020.

S. E. Johnson and W. C. Haneberg. Machine learning for surficial geologic mapping. Earth Surface
Processes and Landforms, 50(1):e6032, 2025.

R. R. Jones, K. J. W. McCaffrey, R. W. Wilson, and R. E. Holdsworth. Digital field data acquisition:
towards increased quantification of uncertainty during geological mapping. In A. Curtis and
R. Wood, editors, Geological Prior Information: Informing Science and Engineering, volume 239,
pages 43-56. Geological Society of London, 2004. doi: 10.1144/GSL.SP.2004.239.01.04. URL
https://doi.org/10.1144/GSL.SP.2004.239.01.04!

11


https://doi.org/10.1144/GSL.SP.2004.239.01.04

472
473

474
475

476
477

478
479
480

481
482

483
484

485

502
503
504

505

506

507

508

509

511

512
513

514
515

J. R. Keaton. Engineering geology: fundamental input or random variable? In Foundation Engineer-
ing in the Face of Uncertainty: Honoring Fred H. Kulhawy, pages 232-253. 2013.

C. Kirkwood, M. Cave, D. Beamish, S. Grebby, and A. Ferreira. A machine learning approach to
geochemical mapping. Journal of Geochemical Exploration, 167:49-61, 2016.

D. Lam, R. Kuzma, K. McGee, S. Dooley, M. Laielli, M. Klaric, Y. Bulatov, and B. McCord. xview:
Objects in context in overhead imagery. arXiv preprint arXiv:1802.07856, 2018.

R. Latifovic, D. Pouliot, and J. Campbell. Assessment of convolution neural networks for surficial
geology mapping in the south rae geological region, northwest territories, canada. Remote sensing,
10(2):307, 2018.

P. H. Le-Khac, G. Healy, and A. F. Smeaton. Contrastive representation learning: A framework and
review. leee Access, 8:193907-193934, 2020.

H. Li and X.-J. Wu. Crossfuse: A novel cross attention mechanism based infrared and visible image
fusion approach. Information Fusion, 103:102147, 2024.

T. Lin. Focal loss for dense object detection. arXiv preprint arXiv:1708.02002, 2017.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick.
Microsoft coco: Common objects in context. In Computer Vision—-ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages 740-755.
Springer, 2014.

R. J. Lisle, P. Brabham, and J. W. Barnes. Basic  Geological Map-
ping. John Wiley & Sons, Chichester, UK, 5th edition, 2011. ISBN
9780470686348. Field guide to mapping geology, updated with modern tech-

niques8203;:contentReference[oaicite:42]index=428203;:contentReference[oaicite:43 Jindex=43.

S. Liu, Y. Ma, X. Zhang, H. Wang, J. Ji, X. Sun, and R. Ji. Rotated multi-scale interaction network
for referring remote sensing image segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 26658-26668, 2024a.

X. Liu, Y. Peng, Z. Lu, W. Li, J. Yu, D. Ge, and W. Xiang. Feature-fusion segmentation network for
landslide detection using high-resolution remote sensing images and digital elevation model data.
IEEE Transactions on Geoscience and Remote Sensing, 61:1-14, 2023.

Y. Liu, J. Cheng, Q. Lii, Z. Liu, J. Lu, Z. Fan, and L. Zhang. Deep learning for geological mapping in
the overburden area. Frontiers in Earth Science, 12:1407173, 2024b.

M. Massey, A. Bottoms, M. Hammond, E. Morris, and M. McHugh. Surficial geologic map of the
sonora 7.5-minute quadrangle, central kentucky. Kentucky Geological Survey Contract Report, 13
(44), 2021.

M. Massey, M. Swallom, A. Bottoms, W. Buchanan, B. N. Hodelka, and E. Morris. Surficial geologic
map of the hadley 7.5-minute quadrangle, warren county, kentucky. Kentucky Geological Survey
Contract Report, 13(56), 2023.

M. Massey, M. Swallom, B. Hodelka, H. Hayes, C. Wells, S. Martin, and E. Morris. Surficial geologic
map of the bowling green south 7.5-minute quadrangle, kentucky. Accepted for publication, 2024.

Z.Niu, G. Zhong, and H. Yu. A review on the attention mechanism of deep learning. Neurocomputing,
452:48-62, 2021.

I. Odeh, D. Chittleborough, and A. McBratney. Elucidation of soil-landform interrelationships by
canonical ordination analysis. Geoderma, 49(1-2):1-32, 1991.

OpenStreetMap contributors.  Openstreetmap road and railway centerlines. https://www,
openstreetmap.org, 2024. Road and railway centerlines. Accessed: 2024-08-01.

12


https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.openstreetmap.org

516
517
518
519

520
521

522

524
525
526

527
528
529

534
535
536

537
538
539

540
541
542

543
544

545
546
547

548
549
550

551
552

553
554

555
556

557
558

559
560

T. L. Pavlis and K. A. Mason. The new world of 3d geologic mapping. GSA
Today, 27(9):4-10, 2017. doi:  10.1130/GSATG313A.1. Discusses digital field
mapping advances, including 3D photogrammetry and their impact on geologic map-
ping8203;:contentReference[oaicite:47]index=478203;:contentReference[oaicite:48]index=48.

N. Prakash, A. Manconi, and S. Loew. A new strategy to map landslides with a generalized
convolutional neural network. Scientific reports, 11(1):9722, 2021.

M. U. Rafique, J. Zhu, and N. Jacobs. Automatic segmentation of sinkholes using a convolutional
neural network. Earth and Space Science, 9(2):¢2021EA002195, 2022.

M. Schmitt, L. H. Hughes, C. Qiu, and X. X. Zhu. Senl12ms-a curated dataset of georeferenced multi-
spectral sentinel-1/2 imagery for deep learning and data fusion. arXiv preprint arXiv:1906.07789,
2019.

J. D. Schomberg, G. Host, L. B. Johnson, and C. Richards. Evaluating the influence of landform,
surficial geology, and land use on streams using hydrologic simulation modeling. Aquatic Sciences,
67:528-540, 2005.

K. J. Schulz. Critical mineral resources of the United States: economic and environmental geology
and prospects for future supply. Geological Survey, 2017.

B. Song, Y. Xu, and Y. Wu. Vitcn: Vision transformer contrastive network for reasoning. arxiv prepr
int. arXiv preprint arXiv:2403.09962, 2024.

S. Steyaert, M. Pizurica, D. Nagaraj, P. Khandelwal, T. Hernandez-Boussard, A. J. Gentles, and
O. Gevaert. Multimodal data fusion for cancer biomarker discovery with deep learning. Nature
machine intelligence, 5(4):351-362, 2023.

G. Sumbul, M. Charfuelan, B. Demir, and V. Markl. Bigearthnet: A large-scale benchmark archive
for remote sensing image understanding. In IGARSS 2019-2019 IEEFE International Geoscience
and Remote Sensing Symposium, pages 5901-5904. IEEE, 2019.

M. Swallom, M. Massey, W. Buchanan, B. N. Hodelka, H. Hayes, C. Wells III, and E. Morris.
Surficial geologic map of the bowling green north 7.5-minute quadrangle, warren county, kentucky.
Kentucky Geological Survey Contract Report, 13(55), 2023.

M. Swallom, B. Hodelka, M. Massey, H. Hayes, C. Wells, and E. Morris. Surficial geologic map of
the smiths grove 7.5-minute quadrangle, kentucky. Accepted for publication, 2024.

U.S. Geological Survey. National hydrography dataset (nhd) — high resolution. https://www.usgs .
gov/national-hydrography, 2024a. Stream centerlines and waterbody polygons. Accessed:
2024-08-01.

U.S. Geological Survey. Statemap award funding by fiscal year (1993-2024). https://www.usgs,
gov/media/files/statemap-award-funding-fiscal-year-1993-2024, 2024b. Ac-
cessed May 2025.

U.S. Geological Survey. National geologic map database (ngmdb). https://ngmdb.usgs.gov,
2025. Accessed May 2025.

A. Van Etten, D. Lindenbaum, and T. M. Bacastow. Spacenet: A remote sensing dataset and challenge
series. arXiv preprint arXiv:1807.01232, 2018.

C. Van Westen, N. Rengers, and R. Soeters. Use of geomorphological information in indirect landslide
susceptibility assessment. Natural hazards, 30:399-419, 2003.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.. Kaiser, and I. Polosukhin.
Attention is all you need. Advances in neural information processing systems, 30, 2017.

Z. Wang, R. Zuo, and H. Liu. Lithological mapping based on fully convolutional network and
multi-source geological data. Remote Sensing, 13(23):4860, 2021.

13


https://www.usgs.gov/national-hydrography
https://www.usgs.gov/national-hydrography
https://www.usgs.gov/national-hydrography
https://www.usgs.gov/media/files/statemap-award-funding-fiscal-year-1993-2024
https://www.usgs.gov/media/files/statemap-award-funding-fiscal-year-1993-2024
https://www.usgs.gov/media/files/statemap-award-funding-fiscal-year-1993-2024
https://ngmdb.usgs.gov

561
562
563

564
565
566

567
568

S. Xie, R. Girshick, P. Dollér, Z. Tu, and K. He. Aggregated residual transformations for deep neural
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 1492-1500, 2017.

Y. Zhou, Y. Peng, W. Li, J. Yu, D. Ge, and W. Xiang. A hyper-pixel-wise contrastive learning
augmented segmentation network for old landslide detection using high-resolution remote sensing
images and digital elevation model data. arXiv preprint arXiv:2308.01251, 2023.

J. Zhu and W. P. Pierskalla Jr. Applying a weighted random forests method to extract karst sinkholes
from lidar data. Journal of Hydrology, 533:343-352, 2016.

14



569

570

571
572

573

574
575
576

577

578
579

580

582
583
584
585
586

588

589

590
591
592
593

594

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619

621

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The Abstract and Introduction [1] clearly state the dataset’s purpose,
composition, and intended use. These claims are supported by Sections [3] and [4
presented in the main text.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper includes a dedicated Challenges and Limitations section 5 dis-
cussing geographic scope, class imbalance, generalization, interpretive uncertainty, and
temporal inconsistencies. These are acknowledged as challenges for model performance
and dataset expansion.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper includes standard mathematical formulations to define the task
and model, but it does not present new theoretical results or proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides a detailed description of the model architecture, loss
functions, training setup, and data split methodology, including spatial constraints
for training, validation, and cross-domain testing. The dataset is publicly available,
along with all patch IDs, target labels, and 38 input channels for each patch. Baseline
model implementations, training scripts, and evaluation code are provided in the
accompanying GitHub repository. All experiments were run with fixed seeds and
reported using standardized metrics, ensuring full reproducibility of the main results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides public access to both the dataset and code, with links
and documentation for data access, preprocessing, and benchmark experiments; we
have temporarily held out one of our test sets for possible challenge competitions.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper describes all training and evaluation settings, including data
splits, loss functions, hyperparameters, optimizer, and augmentation strategy.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
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Justification: The paper reports aggregate performance metrics for all experiments, but
does not include error bars or statistical significance testing. All models were trained
and evaluated using fixed seeds and deterministic splits to ensure reproducibility. While
we do not report variance across multiple runs, the primary goal of this work is to
establish benchmark results for a new dataset, and the experimental setup is designed
to support consistent replication and future extension.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: The main paper does not report detailed compute environment informa-
tion such as hardware specifications, memory, or runtime, but these details will be
included in the Supplementary Material. While this information is not in the main text,
all experiments were conducted on reproducible infrastructure, and model training
scripts are available to ensure replicability.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work adheres to the NeurIPS Code of Ethics. All data sources used
in the EarthScape dataset are publicly available and government-released, including
aerial imagery, DEMs, SG maps, and vector GIS data. No personal or private data
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10.

11.

were used, and no human or animal subjects were involved. The dataset is designed
to support scientific understanding of Earth surface processes and does not pose
foreseeable risks to individuals, communities, or the environment. Additionally, we
emphasize transparency and reproducibility through open dataset access and detailed
documentation.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The Introduction [1{ highlights positive societal applications of surficial
geologic mapping, while the Challenges and Limitations section[5|discusses risks related
to model generalization, interpretation variability, and temporal discrepancies among
the data sources.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The dataset is derived from publicly available, government-provided
geospatial data and does not pose high risk for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All third-party assets (e.g., NHD, OSM, KyFromAbove) are properly cited
and credited.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The EarthScape dataset and code are publicly released with detailed
documentation on data structure, processing, and usage in both the paper and linked
repositories.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]

Justification: The paper does not involve any crowdsourcing or research involving
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve research with human subjects and therefore
does not require IRB approval.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The research does not involve the use of large language models in any core
methodological or experimental component.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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