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Abstract

Surficial geologic (SG) maps are critical for understanding Earth surface processes,1

supporting infrastructure planning, and addressing challenges related to climate2

change and natural hazards. Advancements in artificial intelligence (AI) and the3

proliferation of remote sensing imagery present an opportunity to transform SG4

mapping and overcome many of the limitations (e.g., labor-intensive, not scalable,5

etc.) of current workflows. We introduce EarthScape, a new AI-ready multimodal6

dataset designed to advance SG mapping. EarthScape integrates digital elevation7

models, aerial imagery, multi-scale terrain derivatives, and vector data for hydro-8

logic and infrastructure features. We present a complete data processing pipeline to9

support reproducibility and benchmarking and report baseline results across single-10

modality, multi-scale, and multimodal configurations. Our experiments highlight11

the predictive value of terrain-derived features and the challenge of generalizing12

across geologically diverse regions.13

Code: https://github.com/masseygeo/earthscape14

Dataset: https://uknowledge.uky.edu/kgs_data/16/15

1 Introduction16

Surficial geologic (SG) maps depict the spatial distribution of mostly unconsolidated materials on the17

Earth’s surface [Compton, 1985, Lisle et al., 2011, Pavlis and Mason, 2017]. These maps are essential18

to address a range of contemporary challenges, such as supporting economic and national security19

interests in critical mineral resources [Brimhall et al., 2005, Schulz, 2017], informing mitigation20

and response planning for geologic hazards [Alcántara-Ayala, 2002, Van Westen et al., 2003], and21

providing a foundation on which to understand climate change [Anderson and Ferree, 2010]. SG22

maps are also relevant to more practical applications like urban land use planning [Dai et al., 2001,23

Hokanson et al., 2019] and engineering projects [Keaton, 2013]. Despite the demonstrable social24

benefit and scientific merit [Bernknopf, 1993], detailed SG maps (≥ 1:100,000-scale) cover less than25

14% of the United States [U.S. Geological Survey, 2025].26

The modern SG mapping workflow relies on manual fieldwork and visual interpretation of remote27

sensing (RS) imagery [Compton, 1985, Lisle et al., 2011]. Because these maps rely on visual28

interpretation and field annotation, they often reflect expert judgment rather than reproducible criteria,29
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complicating efforts to scale mapping to national or global extents [Jones et al., 2004]. Finally,30

financial resources prevent large-scale initiatives to collect and compile SG map data, where one31

standard 1:24k-scale map may cost up to $123k [Berg, 2025]. In Kentucky alone, despite prioritizing32

SG mapping since 2004, fully mapping the remainder of the state at the current pace and workforce33

capacity would require over 175 years and an estimated $31 million [U.S. Geological Survey, 2024b].34

Advancements in deep learning and the proliferation of RS imagery present an opportunity to35

transform SG mapping, overcoming current limitations. Recent studies have showcased the power36

of this type of approach to identify or segment landslides [Prakash et al., 2021, Wang et al., 2021,37

Liu et al., 2023] and sinkholes [Rafique et al., 2022]. Several studies have extended these ideas to38

segment maps of multiple classes of geologic materials [Behrens et al., 2018, Latifovic et al., 2018,39

Wang et al., 2021, Liu et al., 2024b]. These studies have demonstrated the utility of computer vision40

(CV) for geological investigations, but this area of research is still in its infancy.41

The challenges presented by SG mapping align closely with current trends in CV research. Multi-42

modal fusion of diverse geological datasets is necessary to accurately capture geologic map features43

[Baltrušaitis et al., 2018, Steyaert et al., 2023, Li and Wu, 2024]. The spatial dependencies of44

geological features resonate with recent advances in attention mechanisms [Dosovitskiy, 2020, Niu45

et al., 2021, Hassanin et al., 2024], multi-scale architectures [Chen et al., 2017, Fan et al., 2021, Liu46

et al., 2024a], and contrastive learning frameworks [Chen et al., 2020, Le-Khac et al., 2020, Song47

et al., 2024] that capture context and structural relationships. Moreover, the scale-dependent and48

highly localized nature of geological processes demands robust methods for handling extreme class49

imbalance and ensuring geographic generalizability [Ghosh et al., 2024, Lin, 2017].50

The rapid progress in CV has been driven primarily due to the availability of large-scale, standardized51

datasets. General-purpose benchmarks, such as ImageNet [Deng et al., 2009] and COCO [Lin52

et al., 2014], have catalyzed advances in classification, detection, and segmentation by offering vast53

repositories of labeled imagery and clear evaluation protocols. However, performance on real-world,54

domain-specific tasks often plateaus without datasets that reflect their unique characteristics, sensing55

modalities, and physical constraints. In the geospatial domain, several specialized datasets have56

emerged for land cover classification and urban scene analysis [Schmitt et al., 2019, Cordts et al.,57

2016, Demir et al., 2018, Van Etten et al., 2018, Sumbul et al., 2019]. But they are primarily focused58

on detecting anthropogenic features and land use. Only a single publicly available geologic dataset59

exists, and it is limited to landslide detection from a narrow set of features [Ji et al., 2020]. This60

underscores a critical gap in datasets tailored for Earth surface processes.61

EarthScape is a multimodal dataset developed for SG mapping, with broad applicability to planetary62

surface analysis. It integrates publicly available overhead RGB and near-infrared (NIR) imagery,63

digital elevation models (DEMs), geomorphometric terrain features derived at multiple spatial64

scales, and transportation and hydrological networks from vector geographic information system65

(GIS) sources. This multimodal, multi-scale design captures the complexity of Earth surface (ES)66

processes and provides a robust benchmark for advancing multimodal learning, geospatial vision,67

and geological analysis. Our specific contributions are summarized as follows:68

• EarthScape, the first AI-ready dataset specifically designed for SG mapping and ES analysis.69

• Design and release of a rich set of input features that span multiple spatial scales and70

modalities, enabling models to learn representations of surface shape that generalize better71

across local and regional terrain variations.72

• Establishing baseline benchmarks for multilabel classification using both unimodal and73

multimodal configurations. These include individual modality tests, multi-scale fusion74

within a single modality, and cross-modality fusion strategies.75

2 Related work76

SG Mapping with Machine Learning: SG mapping focuses on unconsolidated materials formed by77

active surface processes such as weathering, erosion, sediment transport, and deposition [Compton,78

1985, Lisle et al., 2011, Pavlis and Mason, 2017]. These materials are closely tied to landform struc-79

ture and surface morphology, as terrain shape governs the energy available to drive these processes and80

influences the way sediments are generated, transported, and deposited [Odeh et al., 1991, Schomberg81
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Figure 1: EarthScape data processing pipeline (left) and selected modalities from a single 256× 256
patch (right). The SG map target is rasterized and used to define the area of interest (AOI), from
which all predictive features (DEM, RGB+NIR imagery, NHD hydrology, and OSM infrastructure)
are clipped and aligned. Terrain derivatives are then computed from the DEM at multiple spatial
scales. A regular grid is applied to extract 38 co-registered channels per patch.

et al., 2005, Brigham and Crider, 2022]. Several studies have leveraged this terrain-material rela-82

tionship using traditional machine learning methods, including logistic regression, random forests,83

and support vector machines, for classification or pixel-wise segmentation of single-class features84

(e.g., landslides, sinkholes) [Kirkwood et al., 2016, Zhu and Pierskalla Jr, 2016, Crawford et al.,85

2021] or multiclass geologic maps [Cracknell and Reading, 2014, Johnson and Haneberg, 2025].86

However, these models rely on hand-crafted features, are limited to small geographic extents, and fail87

to generalize beyond the training region.88

More recently, deep learning approaches using convolutional neural networks (CNNs) and CNN-89

transformer hybrids have been applied to these tasks [Prakash et al., 2021, Ji et al., 2020, Liu et al.,90

2023, Latifovic et al., 2018, Zhou et al., 2023, Rafique et al., 2022]. While these models better91

capture spatial dependencies critical to geologic interpretation [Bishop et al., 1998, Behrens et al.,92

2018], they remain constrained to narrow geographic domains, lack publicly available datasets or93

reproducible pipelines, and often rely on limited input modalities.94

Remote Sensing Datasets: RS benchmarks such as SpaceNet [Van Etten et al., 2018], xView95

[Lam et al., 2018], and Functional Map of the World [Christie et al., 2018] provide high-resolution96

satellite imagery annotated for object detection and scene classification in urban environments. These97

datasets are optimized for anthropogenic features such as roads, buildings, and vehicles, and are98

widely used for infrastructure monitoring and disaster response. Other RS datasets like BigEarthNet99

[Sumbul et al., 2019], DeepGlobe [Demir et al., 2018], and SEN12MS [Schmitt et al., 2019], extend100

the domain to land cover classification and segmentation using multispectral or synthetic aperture101

radar (SAR) imagery. However, these datasets target coarse semantic categories like vegetation or102

developed areas, rather than physical topographic characteristics. These datasets lack representations103

of Earth’s surface, which are essential for interpreting geological processes.104

Multimodal Learning for Geologic Tasks: Multimodal learning has become a central paradigm105

in RS and geospatial CV, where combining diverse data sources like optical imagery, SAR, and106

DEMs can enhance model robustness through complementary information [Astruc et al., 2024, Bi107

et al., 2022, Jain et al., 2022, Han et al., 2024]. In geological applications, this often involves pairing108

overhead RGB imagery with DEMs, fused using early- or mid-level strategies [Prakash et al., 2021,109

Ji et al., 2020, Liu et al., 2023, Latifovic et al., 2018, Zhou et al., 2023, Rafique et al., 2022]. These110
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modalities have proven effective for detecting recent geomorphic events such as landslides, where111

strong topographic and visual signals are present. However, model performance often deteriorates112

when features are older, vegetated, or eroded, limiting their interpretability and transferability [Ji113

et al., 2020, Liu et al., 2023, Zhou et al., 2023].114

Several studies have explored additional modalities such as elevation contours [Zhou et al., 2023],115

geochemical field data [Latifovic et al., 2018, Wang et al., 2021], and aeromagnetic imagery [Liu116

et al., 2024b]. While successful, these studies were site-specific, and the datasets are not commonly117

available or standardized for machine learning workflows. Rafique et al. [2022] evaluated several118

elevation-based parameters, including DEMs, slope, and shaded relief, finding that raw DEMs119

performed best. However, their geographically-limited validation suggests that models may have120

relied on absolute elevation rather than generalizable terrain patterns.121

3 EarthScape Dataset122

3.1 Composition and Features123

Surficial Geologic Maps: The Kentucky Geological Survey has conducted high-resolution SG124

mapping since 2004, targeting rapidly developing regions and transportation corridors across the125

state. Mapping is performed at a scale of 1:24,000 or finer, widely considered the gold standard for126

detailed geological surveys. The EarthScape dataset currently includes SG map data from Warren127

and Hardin Counties [Buchanan et al., 2023, Massey et al., 2023, Swallom et al., 2023, Massey128

et al., 2024, Hodelka et al., 2024, Swallom et al., 2024, Bottoms et al., 2021, Massey et al., 2021],129

which provide the multilabel targets and segmentation masks (Fig. 1). Seven SG map units are130

represented, capturing three dominant surface processes: fluvial deposition, gravitational transport,131

and in-situ weathering. These include alluvium (Qal) and terrace deposits (Qat) from river activity;132

alluvial fans (Qaf) associated with debris flow hazards; colluvium (Qc) and colluvial aprons (Qca)133

from hillslope processes; residuum (Qr) from bedrock weathering; and artificial fill (af1) from an-134

thropogenic modification. All maps are publicly available as vector polygons in ESRI file geodatabase135

format. See the supplement for detailed unit descriptions.136

Aerial imagery and DEM: The KyFromAbove program has been acquiring high-resolution aerial137

imagery and DEMs for the state of Kentucky, USA since 2010 [Commonwealth of Kentucky, 2024].138

Aerial imagery consists of RGB and NIR channels with a 6-inch spatial resolution. Its utility is in139

identifying anthropogenic features (such as af1) that are easily distinguished from natural landscapes140

(Fig. 1). The NIR band further enhances the detection of hydrological features, such as alluvial141

deposits and stream channels, by highlighting vegetation patterns that can indicate water presence142

or recent sediment deposition (Fig. 1). However, the utility of aerial RGB and NIR in delineating143

detailed SG map units is limited. In contrast, the DEM, generated from airborne LiDAR with a144

5ft/pixel spatial resolution, is a critical feature for SG mapping and ES analysis (Fig. 1). Both the145

DEM and the aerial imagery are available as publicly accessible GeoTIFF tiles.146

Geomorphometric Terrain Features: The DEMs provide a foundation for deriving five147

key terrain features widely used in geomorphometric analysis and essential for delineating148

SG units (Fig. 1) [Florinsky, 2016]. These include: slope (S) measures terrain steepness;149

profile curvature (PrC) and planform curvature (PlC) are directional second derivatives captur-150

ing flow acceleration and divergence; elevation percentile (EP ) is a relative topographic position151

metric; standard deviation of slope (SDS) is a measure of terrain roughness quantifying local vari-152

ability of slope angles. Each feature was calculated at multiple spatial scales to capture both localized153

and regional landform structure (see supplement for detailed definitions and scale parameters).154

Hydrography and Infrastructure: To support downstream tasks involving fluvial and anthropogenic155

processes, EarthScape includes vector data for hydrographic and infrastructure features (Fig. 1).156

Stream centerlines and waterbody polygons from the U.S. Geological Survey’s National Hydrogra-157

phy Dataset (NHD) [U.S. Geological Survey, 2024a] provide context for identifying alluvial units158

within stream valleys. Road and railway centerlines from OpenStreetMap (OSM) [OpenStreetMap159

contributors, 2024] delineate areas modified by human activity, such as artificial fill. These features160

also help characterize geologic disturbance near infrastructure, including slope undercutting and161

landslide susceptibility. Both datasets are included as binary raster channels aligned to the patch grid.162
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3.2 Data Processing163

Targets: Each SG map was downloaded as a vector GIS geodatabase, the relevant feature class164

extracted, and the vector polygons inspected for topological correctness, ensuring no overlaps, no165

gaps, and valid polygon geometries (Fig. 1). The validated data was saved as a standalone GeoJSON166

file, which was then used to generate a boundary polygon defining the area of interest (AOI) for167

clipping and extracting relevant portions of other datasets. SG target classes were encoded with168

ordinal values in the GeoJSON. Finally, the vector GeoJSON was rasterized to a GeoTIFF image169

with a 5ft/pixel spatial resolution, matching the native resolution of the DEM.170

Features: Vector datasets, including NHD, OSM, and the KyFromAbove tile index, were down-171

loaded, clipped to the target AOI, and saved as standalone GeoJSON files (Fig. 1). NHD stream172

centerlines and waterbody polygons, and OSM road and railway centerlines were rasterized into two173

binary GeoTIFFs representing hydrography and infrastructure, respectively. The KyFromAbove tile174

index defines the locations of aerial RGB, NIR, and DEM data tiles across Kentucky. Using the AOI,175

relevant locations were selected and the corresponding image tiles downloaded (Fig. 1). DEM tiles176

were merged into a single GeoTIFF mosaic at 5ft/pixel resolution. RGB and NIR imagery underwent177

similar processing, with additional downsampling from 6in/pixel to 5ft/pixel resolution.178

Five terrain features were calculated at six different spatial scales directly from the DEM mosaic (Fig.179

1). S, PrC, and PlC were created using 5 × 5 kernels applied to the original 5ft/pixel DEM and180

five additional DEMs downsampled with cubic convolution to resolutions of 10, 20, 50, 100, and181

200ft/pixel. A Gaussian filter was applied to each downsampled DEM to smooth potential artifacts,182

the relevant terrain feature was calculated, then upsampled back to the original resolution of 5ft/pixel183

using cubic convolution, and another Gaussian filter was applied to minimize resampling artifacts.184

SDS and EP were calculated using six kernel sizes of 5× 5, 11× 11, 21× 21, 51× 51, 101× 101,185

and 201×201 pixels, applied only to the original 5ft/pixel DEM. These kernel sizes capture receptive186

fields similar to those represented by the coarser-resolution DEMs used for S, PrC, and PlC, but187

are better suited for SDS and EP due to their reliance on the number of neighbors.188

Spatial Alignment and Registration: The target SG map GeoTIFF images served as the spatial189

reference for aligning all other features in the dataset (Fig. 1). Once each feature was collected and190

compiled into its respective GeoTIFF image file, they were reprojected to align with the reference191

image coordinates using cubic convolution interpolation. All images were checked to ensure that192

their bounding coordinates and spatial resolutions were identical across all other images.193

Image Patches: Vector polygon patches were systematically constructed in a grid pattern to cover194

the target AOI using the same coordinate reference system as the target GeoTIFF (Fig. 1). Each grid195

cell polygon was assigned a unique patch ID, and then all patches were saved as a GeoJSON file.196

Each grid cell polygon patch was constructed so that it covers an area of exactly 1280× 1280 feet197

(256× 256 pixels), overlaps adjacent patches by 50%, and is fully contained within the target AOI.198

Each cell was assigned a unique patch ID and used to extract 38 corresponding channels, including199

target mask, aerial RGB and NIR, DEM, the five terrain features calculated at six scales, NHD, and200

OSM. Target masks were then used to extract one-hot encoded class labels and the proportional areas201

occupied by each class within each patch.202

3.3 Dataset and Statistics203

EarthScape currently comprises 31,018 image patch locations, each measuring 256 × 256 pixels204

with 50% spatial overlap with adjacent locations (Fig. 1). Each patch contains 38 channels, stored205

as individual 32-bit float GeoTIFF files with embedded geospatial metadata. Patch geometries are206

defined in an accompanying GeoJSON file to support spatial querying and GIS-based evaluation.207

The dataset spans two regions in Kentucky: a large contiguous subset of 23,566 locations in Warren208

County (Fig. 2A) and 7,452 locations in Hardin County. This geographic partitioning enables209

cross-region generalization studies and domain adaptation experiments, with additional regions210

planned as new SG maps become available. The dataset exhibits significant spatial and statistical211

heterogeneity. Most patches contain multiple SG units, with up to six unique classes per patch, and212

pronounced spatial variability across the AOIs in class co-occurrence (Fig. 2A, 2D). The dataset213

is highly imbalanced, with common units like Qr dominating the distribution and minority classes214

Qaf and Qat appearing infrequently (Fig. 2B). Intra-patch complexity is further reflected in the215

proportional area each class occupies per patch (Fig. 2C), with many units contributing small but216
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Figure 2: EarthScape dataset characteristics (A–D) and SGMap-Net architecture (E). A. Choropleth
map of Warren County showing the number of classes per patch, illustrating spatial heterogeneity and
multilabel complexity. B. Dataset-wide class distribution, highlighting significant class imbalance.
C. Proportional area of each class per patch, showing that many patches include low-exposure
classes, increasing classification difficulty. D. Histogram of class counts per patch, further illustrating
multilabel and intra-patch complexity. E. SGMap-Net architecture comprising a standardization
module, shared encoder, and multilabel classification head. Fusion is implemented via early channel
stacking and intermediate attention-based strategies.

meaningful fractions to the total label. These properties make EarthScape well-suited for evaluating217

multilabel models under realistic geological class imbalance and spatial heterogeneity.218

4 Experiments219

4.1 Methods220

Task Definition: We formulate SG mapping as a multilabel classification task over multimodal221

geospatial inputs. Each input sample corresponds to a 256 × 256 image patch with co-registered222

modalities and a label vector indicating the presence or absence of each of the SG units. Let223

D = (xi, yi)
N
i=1 denote the dataset, where each xi = m1,m2, . . . ,mn is a collection of n modality-224

specific input tensors (e.g., DEM, EP , PlC, etc.) and each modality mi can have multiple scaled225

images that we consider as channels Ci. The yi ∈ 0, 1K is a binary label vector over K = 7 classes.226

The model learns a mapping f : X → [0, 1]K to predict per-class probabilities, enabling multi-class227

label assignment for each patch. This formulation allows us to systematically evaluate how different228

modality combinations contribute to geologic feature recognition and serves as a tractable benchmark229

for future tasks such as semantic segmentation.230

Surficial Geologic Mapping Network (SGMap-Net): Our dataset comprises multiple geospatial231

image modalities with varying channel dimensionalities (e.g., RGB, DEM, terrain derivatives), which232

we aim to classify into seven geologic classes. To effectively integrate the complementary information233

across modalities, we propose a fusion-based model, SGMap-Net, which incorporates both early234

and intermediate fusion mechanisms to capture fine-grained spatial cues and high-level semantic235

relationships. Figure 2 (E) illustrates the overall architecture of SGMap-Net, which consists of236

three key components: a standardization module, a feature extractor, and a classification head. As237

part of our early fusion strategy, we first stack all channels of each modality mi and then apply a238
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1 × 1 convolution followed by batch normalization and ReLU activation to standardize the input239

to a common channel dimension C = 3. This ensures compatibility with a shared encoder while240

preserving modality-specific spatial patterns through independent convolutions.241

m̂i = ReLU(BN(Conv1× 1(mi))). (1)

Each standardized modality m̂i is passed through a shared encoder to extract feature maps242

fmi
= Encoder(m̂i). The shared encoder is initialized with ImageNet-pretrained weights, and we243

experiment with ResNeXt-50 [Xie et al., 2017] and Vision Transformer (ViT-B/16) [Dosovitskiy,244

2020] architectures. Next, each feature vector fmi
is projected into a common latent space of di-245

mension d using a fully connected layer and augmented with a learnable modality embedding ei to246

get the final representaions zi = fmi
+ ei. Then we apply modality-specific multi-head attention247

(MHA) [Vaswani et al., 2017] mechanisms to enable intermediate fusion across modalities. For each248

modality mi, attention is computed using zi as the query (Q), and the embeddings from all other249

modalities as keys (K) and values (V ).250

ai = MHA(Q = zi,K = [zj ]j ̸=i, V = [zj ]j ̸=i). (2)

Next, we perform attention-weighted aggregation over the set of modality-specific attention outputs251

a. We begin by concatenating all outputs A = [ai]. To determine the relative importance of252

each modality, we apply a learnable linear projection vi followed by a softmax operation to obtain253

attention weights w = Softmax(vTA). The final fused representation is then computed using254

these weights, zfused =
∑N

i=1 wiai. This attention-weighted aggregation adaptively emphasizes the255

most informative modalities for each sample. The fused embedding zfused is then passed through256

a classification head consisting of two fully connected layers to predict the geologic class logits ŷ.257

In addition to our proposed attention-based fusion strategy, we evaluate two alternative approaches,258

cross-modality channel stacking and concatenation. We stack selected channels from different259

modalities, extract a joint representation using the encoder, and feed it into the classification head. In260

another approach, we concatenate the modality embeddings from the encoder and pass them directly261

to the classification head. These variants serve as comparative baselines to assess the impact of262

modality-aware attention in our fusion framework.263

Data Splits and Selection: We define training, validation, and in-domain test splits using the Warren264

County subset. A total of 1,536 patch locations were randomly selected for the in-domain test set.265

Next, 768 non-intersecting locations were randomly sampled for validation. All remaining patches266

that did not intersect the in-domain test patches or validation patches were used for training (8,416).267

To evaluate geographic generalization to a geologically similar, but previously unseen region, we268

sampled an additional cross-domain test set of 1,536 patches from the Hardin County subset. While269

this split uses less than half of the available EarthScape patches, it was chosen to balance typical270

dataset proportions and maintain spatial independence between training and evaluation regions.271

Training Procedure: All patches were normalized using modality-specific means and standard272

deviations computed over the in-domain dataset to ensure consistent input scaling. Data augmentation273

included random horizontal and vertical flips and 90◦ rotations, reflecting that geologic features are274

not orientation-dependent. Restricting rotations to right angles preserves label accuracy by preventing275

small classes along edges from being cropped due to padding. To address class imbalance, we adopted276

focal loss [Lin, 2017] with α = 0.25 and γ = 2.0 for all experiments. Oversampling was tested but277

degraded performance, so training used the original distribution. Models were trained for 15 epochs278

using the Adam optimizer, a fixed learning rate of 0.001, and batch size of 16. The model with the279

lowest validation loss was used for testing. After training, label-wise thresholds were optimized for280

F1 on the validation set and applied to both in-domain (Warren) and cross-domain (Hardin) test sets.281

Performance was evaluated using per-class and macro-averaged accuracy, precision, recall, F1 score,282

average precision (AP), and area under the ROC curve (AUC). See the supplemental material for283

focal loss tuning, training time, and compute details.284

4.2 Results and Discussion285

Single Modality Benchmarks: We first evaluated single-modality models using SGMap-Net with286

both ResNeXt-50 and ViT-B/16 backbones (Table 1; also see supplemental material). Among the287

ResNeXt-50 models, the best in-domain performance was achieved using EP 51× 51, EP 5× 5,288

and EP 21 × 21, all of which outperformed the top ViT models. Most classes benefited from289

the relative elevation signal captured by EP , except for Qc, which performed best with slope (S),290
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Table 1: Macro-averaged F1 scores, precision, AUC, and accuracy on in-domain (Warren County,
WC) and cross-domain (Hardin County, HC) test sets, along with differences between WC and HC
(∆) for each metric. Results are reported for the top three models in each experimental setting:
single-modality, multi-scale fusion, and multimodal. Parentheses indicate the spatial scales used for
fusion—ms: all spatial scales; s: smallest only; l: largest only. All models use a ResNeXt backbone
and fusion with early channel stacking. The best and second-best scores in each column are indicated
in bold and underlined, respectively. Additional results are provided in the supplemental material.

Model F1 Precision AUC Accuracy

WC HC ∆ WC HC ∆ WC HC ∆ WC HC ∆

EP 51× 51 0.651 0.380 0.271 0.612 0.382 0.230 0.876 0.663 0.213 0.862 0.818 0.044
EP 5× 5 0.648 0.357 0.291 0.617 0.450 0.167 0.872 0.582 0.290 0.858 0.831 0.027
EP 21× 21 0.645 0.384 0.261 0.629 0.455 0.174 0.877 0.695 0.182 0.860 0.828 0.032

EP (ms) 0.640 0.425 0.215 0.606 0.556 0.050 0.862 0.717 0.145 0.865 0.828 0.037
S (ms) 0.637 0.594 0.043 0.607 0.535 0.072 0.864 0.804 0.060 0.856 0.860 -0.004
SDS (ms) 0.636 0.588 0.048 0.588 0.509 0.079 0.878 0.792 0.086 0.846 0.839 0.007

EP+S+SDS (ms) 0.657 0.598 0.059 0.626 0.546 0.080 0.882 0.806 0.076 0.875 0.867 0.008
EP+S+SDS (s) 0.641 0.568 0.073 0.606 0.531 0.075 0.848 0.812 0.036 0.865 0.856 0.009
EP+S+SDS (l) 0.626 0.582 0.044 0.588 0.529 0.059 0.885 0.812 0.073 0.858 0.852 0.006

aligning with its gravity-driven depositional process. Rare classes such as Qaf and Qat remained291

poorly identified across all experiments, suggesting the need for targeted loss strategies, additional292

training data, or synthetic augmentation Across all modalities, DEM-derived features EP , S, and293

SDS consistently outperformed raw DEM inputs, reinforcing the value of domain-specific terrain294

derivatives over implicit feature learning. Additionally, no single spatial kernel was optimal across all295

classes (e.g., af1 performed best with EP 11 × 11, while Qal favored EP 51 × 51), highlighting296

the importance of multi-scale inputs. Model performance declined under cross-domain testing in297

Hardin County. However, the ViT backbone showed better generalization (∆F1V iT = 0.018 vs.298

∆F1ResNeXt = 0.043). S and SDS exhibited the best cross-region transfer, while raw DEM inputs299

underperformed, likely due to overfitting region-specific topography.300

Multi-scale Fusion: Unimodal experiments showed that no single spatial scale consistently per-301

formed best across all classes, with each SG map unit exhibiting distinct preferences for both modality302

and resolution. To explore whether combining spatial scales could improve performance, we evalu-303

ated the effects of fusing all six spatial resolutions for terrain features. Models were trained using both304

ResNeXt-50 and ViT-B/16 backbones (Table 1; also see supplemental material). Early fusion with305

channel stacking and ResNeXt yielded the most reliable results. For SDS, fusion slightly improved306

in-domain F1 (from 0.633 to 0.636) and enhanced cross-domain generalization (∆F1 decreased307

from 0.060 to 0.048). EP experienced a modest drop in in-domain F1 (0.651 to 0.640), but showed308

a substantial improvement in generalization (∆F1 decreased from 0.271 to 0.215), indicating that309

multi-scale fusion can mitigate its sensitivity to regional relief variation. Mid-level attention-based310

fusion underperformed in all cases, suggesting that early fusion is both more effective and more311

stable for combining spatial scales.312

Multimodal Fusion: We evaluated multimodal fusion using both ResNeXt-50 and ViT-B/16313

backbones, testing three fusion strategies: early fusion via channel stacking, mid-level attention-based314

fusion, and mid-level fusion via feature concatenation. We tested three modality configurations: (1)315

RGB + DEM, a common baseline in geospatial literature; (2) EP + S + SDS, selected based on316

unimodal performance; and (3) a full configuration combining DEM, RGB, EP , S, and SDS. For317

the EP + S + SDS configuration, we tested three variants: one using all six spatial scales for each318

modality, one with three representative scales, and one with a single scale per modality (Table 1; also319

see supplemental material).320

The best-performing model, according to both in-domain and cross-domain F1, was the EP + S +321

SDS configuration using three selected spatial scales. While the in-domain macro-F1 improved322

only modestly (from 0.651 to 0.657), the cross-domain F1 increased dramatically from 0.380 to323

0.598, reducing the generalization gap (∆F1) from 0.271 to just 0.059. This result underscores324

the strength of terrain-based, multi-scale inputs for learning region-invariant surface structure. Two325

reduced variants of the same modality set, using single scales per modality, ranked second and third,326

confirming the robustness of shape-centric features and the benefit of multi-scale representations.327

The next best performers were the EP + S + SDS models using mid-level concatenation, followed328

by the full model (DEM+RGB+S + SDS + EP ) with the same fusion strategy. In contrast, the329
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RGB+DEM configuration performed worst across all fusion methods and backbone combinations,330

reinforcing the limited generalizability of location-sensitive visual and elevation inputs. Despite331

its architectural sophistication, the attention-based fusion strategy consistently underperformed,332

suggesting that early fusion, and even simpler mid-level concatenation, can be more effective than333

complex attention mechanisms for integrating geospatial modalities in this domain.334

5 Challenges and Limitations335

Geographic Scope and Extensibility: EarthScape is currently limited to two regions in Kentucky,336

USA, reflecting both the availability of high-resolution SG maps and the natural variability of337

geological processes. While this constraint is typical of geospatial datasets, EarthScape was designed338

with a modular, patch-based architecture to support expansion. Kentucky is the only state in the region339

with SG maps of this terrain type available in standardized GIS formats, but the dataset curation340

workflow is broadly applicable. Ongoing efforts aim to incorporate additional regions and globally341

available features to improve geographic coverage and enable cross-domain model development.342

Class Imbalance: The dataset includes seven SG units with highly imbalanced distributions that343

reflect real-world conditions. At the patch level, the number of co-occurring classes ranges from344

one to six, and many units occupy only a small fraction of a given patch. This results in both345

inter-class imbalance and intra-patch heterogeneity, offering a challenging testbed for multilabel and346

segmentation models that must handle sparse and noisy labels.347

Geographic Generalization: SG varies significantly across regions due to localized geomorphic and348

depositional processes. Unlike many AI benchmarks that assume spatial homogeneity, EarthScape349

explicitly supports the evaluation of cross-region generalization. The inclusion of two distinct350

geographic subsets allows for benchmarking spatial transfer and domain adaptation performance351

under realistic conditions.352

Multi-scale Complexity: SG features are scale-dependent, with different processes operating at353

distinct spatial resolutions. EarthScape includes terrain derivatives computed at six spatial scales,354

enabling models to learn both local and regional landform patterns. This supports research in355

multi-scale fusion, resolution-aware architectures, and feature relevance across spatial hierarchies.356

Interpretation Variability: Although EarthScape relies on expert-labeled SG maps, geological357

interpretation is inherently uncertain, particularly in regions with limited field validation or ambiguous358

unit boundaries. This introduces structured label noise, which poses a challenge for supervised359

learning but also provides an opportunity to develop models that are robust to real-world uncertainty.360

Temporal Inconsistency: The DEM, imagery, and vector layers were acquired between 2019361

and 2024, introducing potential temporal mismatches across modalities. While this may reduce362

fine-grained alignment in some patches, it offers an opportunity to evaluate model resilience to363

asynchronous data and supports future work in temporal generalization.364

6 Conclusions365

We introduced EarthScape, a new AI-ready, multimodal benchmark dataset for SG mapping and ES366

analysis. EarthScape integrates aerial imagery, DEMs, multi-scale terrain derivatives, and GIS vector367

data, offering a unique resource for multimodal geospatial learning. The dataset presents real-world368

challenges like class imbalance, spatial heterogeneity, and geographic variability, making it a robust369

testbed for developing and evaluating AI models. Through baseline experiments, we established370

performance benchmarks across individual modalities, multi-scale fusion, and multimodal inputs,371

highlighting both the predictive value of terrain-based features and the difficulty of cross-region372

generalization in geologic settings. Designed as a living dataset, EarthScape is extensible in both373

geographic and modality space. Ongoing work includes expanding regional coverage, incorporating374

globally available features, and improving fusion strategies. Future directions include high-resolution375

segmentation tasks, pretraining pipelines, and region-specific fine-tuning to support applied geological376

workflows. By releasing data, code, and benchmarks, we aim to foster reproducible research, cross-377

disciplinary collaboration, and the development of generalizable models for geospatial AI.378
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NA answer to this question will not be perceived well by the reviewers.582
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Question: For each theoretical result, does the paper provide the full set of assumptions and622

a complete (and correct) proof?623

Answer: [NA]624

Justification: The paper includes standard mathematical formulations to define the task625

and model, but it does not present new theoretical results or proofs.626

Guidelines:627

• The answer NA means that the paper does not include theoretical results.628

• All the theorems, formulas, and proofs in the paper should be numbered and cross-629

referenced.630
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proof sketch to provide intuition.634
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4. Experimental result reproducibility638
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of the paper (regardless of whether the code and data are provided or not)?641

Answer: [Yes]642

Justification: The paper provides a detailed description of the model architecture, loss643

functions, training setup, and data split methodology, including spatial constraints644

for training, validation, and cross-domain testing. The dataset is publicly available,645

along with all patch IDs, target labels, and 38 input channels for each patch. Baseline646

model implementations, training scripts, and evaluation code are provided in the647

accompanying GitHub repository. All experiments were run with fixed seeds and648

reported using standardized metrics, ensuring full reproducibility of the main results.649

Guidelines:650

• The answer NA means that the paper does not include experiments.651

• If the paper includes experiments, a No answer to this question will not be perceived652

well by the reviewers: Making the paper reproducible is important, regardless of653

whether the code and data are provided or not.654

• If the contribution is a dataset and/or model, the authors should describe the steps taken655

to make their results reproducible or verifiable.656

• Depending on the contribution, reproducibility can be accomplished in various ways.657

For example, if the contribution is a novel architecture, describing the architecture fully658

might suffice, or if the contribution is a specific model and empirical evaluation, it may659

be necessary to either make it possible for others to replicate the model with the same660

dataset, or provide access to the model. In general. releasing code and data is often661

one good way to accomplish this, but reproducibility can also be provided via detailed662

instructions for how to replicate the results, access to a hosted model (e.g., in the case663

of a large language model), releasing of a model checkpoint, or other means that are664

appropriate to the research performed.665

• While NeurIPS does not require releasing code, the conference does require all submis-666

sions to provide some reasonable avenue for reproducibility, which may depend on the667

nature of the contribution. For example668

(a) If the contribution is primarily a new algorithm, the paper should make it clear how669

to reproduce that algorithm.670

(b) If the contribution is primarily a new model architecture, the paper should describe671

the architecture clearly and fully.672

(c) If the contribution is a new model (e.g., a large language model), then there should673

either be a way to access this model for reproducing the results or a way to reproduce674

the model (e.g., with an open-source dataset or instructions for how to construct675

the dataset).676
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(d) We recognize that reproducibility may be tricky in some cases, in which case677

authors are welcome to describe the particular way they provide for reproducibility.678

In the case of closed-source models, it may be that access to the model is limited in679

some way (e.g., to registered users), but it should be possible for other researchers680

to have some path to reproducing or verifying the results.681

5. Open access to data and code682

Question: Does the paper provide open access to the data and code, with sufficient instruc-683

tions to faithfully reproduce the main experimental results, as described in supplemental684

material?685

Answer: [Yes]686

Justification: The paper provides public access to both the dataset and code, with links687

and documentation for data access, preprocessing, and benchmark experiments; we688

have temporarily held out one of our test sets for possible challenge competitions.689

Guidelines:690

• The answer NA means that paper does not include experiments requiring code.691

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/692

public/guides/CodeSubmissionPolicy) for more details.693

• While we encourage the release of code and data, we understand that this might not be694

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not695

including code, unless this is central to the contribution (e.g., for a new open-source696

benchmark).697

• The instructions should contain the exact command and environment needed to run to698

reproduce the results. See the NeurIPS code and data submission guidelines (https:699

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.700

• The authors should provide instructions on data access and preparation, including how701

to access the raw data, preprocessed data, intermediate data, and generated data, etc.702

• The authors should provide scripts to reproduce all experimental results for the new703

proposed method and baselines. If only a subset of experiments are reproducible, they704

should state which ones are omitted from the script and why.705

• At submission time, to preserve anonymity, the authors should release anonymized706

versions (if applicable).707

• Providing as much information as possible in supplemental material (appended to the708

paper) is recommended, but including URLs to data and code is permitted.709

6. Experimental setting/details710

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-711

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the712

results?713

Answer: [Yes]714

Justification: The paper describes all training and evaluation settings, including data715

splits, loss functions, hyperparameters, optimizer, and augmentation strategy.716

Guidelines:717

• The answer NA means that the paper does not include experiments.718

• The experimental setting should be presented in the core of the paper to a level of detail719

that is necessary to appreciate the results and make sense of them.720

• The full details can be provided either with the code, in appendix, or as supplemental721

material.722

7. Experiment statistical significance723

Question: Does the paper report error bars suitably and correctly defined or other appropriate724

information about the statistical significance of the experiments?725

Answer: [No]726
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Justification: The paper reports aggregate performance metrics for all experiments, but727

does not include error bars or statistical significance testing. All models were trained728

and evaluated using fixed seeds and deterministic splits to ensure reproducibility. While729

we do not report variance across multiple runs, the primary goal of this work is to730

establish benchmark results for a new dataset, and the experimental setup is designed731

to support consistent replication and future extension.732

Guidelines:733

• The answer NA means that the paper does not include experiments.734

• The authors should answer "Yes" if the results are accompanied by error bars, confi-735

dence intervals, or statistical significance tests, at least for the experiments that support736

the main claims of the paper.737

• The factors of variability that the error bars are capturing should be clearly stated (for738

example, train/test split, initialization, random drawing of some parameter, or overall739

run with given experimental conditions).740

• The method for calculating the error bars should be explained (closed form formula,741

call to a library function, bootstrap, etc.)742

• The assumptions made should be given (e.g., Normally distributed errors).743

• It should be clear whether the error bar is the standard deviation or the standard error744

of the mean.745

• It is OK to report 1-sigma error bars, but one should state it. The authors should746

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis747

of Normality of errors is not verified.748

• For asymmetric distributions, the authors should be careful not to show in tables or749

figures symmetric error bars that would yield results that are out of range (e.g. negative750

error rates).751

• If error bars are reported in tables or plots, The authors should explain in the text how752

they were calculated and reference the corresponding figures or tables in the text.753

8. Experiments compute resources754

Question: For each experiment, does the paper provide sufficient information on the com-755

puter resources (type of compute workers, memory, time of execution) needed to reproduce756

the experiments?757

Answer: [No]758

Justification: The main paper does not report detailed compute environment informa-759

tion such as hardware specifications, memory, or runtime, but these details will be760

included in the Supplementary Material. While this information is not in the main text,761

all experiments were conducted on reproducible infrastructure, and model training762

scripts are available to ensure replicability.763

Guidelines:764

• The answer NA means that the paper does not include experiments.765

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,766

or cloud provider, including relevant memory and storage.767

• The paper should provide the amount of compute required for each of the individual768

experimental runs as well as estimate the total compute.769

• The paper should disclose whether the full research project required more compute770

than the experiments reported in the paper (e.g., preliminary or failed experiments that771

didn’t make it into the paper).772

9. Code of ethics773

Question: Does the research conducted in the paper conform, in every respect, with the774

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?775

Answer: [Yes]776

Justification: This work adheres to the NeurIPS Code of Ethics. All data sources used777

in the EarthScape dataset are publicly available and government-released, including778

aerial imagery, DEMs, SG maps, and vector GIS data. No personal or private data779
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were used, and no human or animal subjects were involved. The dataset is designed780

to support scientific understanding of Earth surface processes and does not pose781

foreseeable risks to individuals, communities, or the environment. Additionally, we782

emphasize transparency and reproducibility through open dataset access and detailed783

documentation.784

Guidelines:785

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.786

• If the authors answer No, they should explain the special circumstances that require a787

deviation from the Code of Ethics.788

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-789

eration due to laws or regulations in their jurisdiction).790

10. Broader impacts791

Question: Does the paper discuss both potential positive societal impacts and negative792

societal impacts of the work performed?793

Answer: [Yes]794

Justification: The Introduction 1 highlights positive societal applications of surficial795

geologic mapping, while the Challenges and Limitations section 5 discusses risks related796

to model generalization, interpretation variability, and temporal discrepancies among797

the data sources.798

Guidelines:799

• The answer NA means that there is no societal impact of the work performed.800

• If the authors answer NA or No, they should explain why their work has no societal801

impact or why the paper does not address societal impact.802

• Examples of negative societal impacts include potential malicious or unintended uses803

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations804

(e.g., deployment of technologies that could make decisions that unfairly impact specific805

groups), privacy considerations, and security considerations.806

• The conference expects that many papers will be foundational research and not tied807

to particular applications, let alone deployments. However, if there is a direct path to808

any negative applications, the authors should point it out. For example, it is legitimate809

to point out that an improvement in the quality of generative models could be used to810

generate deepfakes for disinformation. On the other hand, it is not needed to point out811

that a generic algorithm for optimizing neural networks could enable people to train812

models that generate Deepfakes faster.813

• The authors should consider possible harms that could arise when the technology is814

being used as intended and functioning correctly, harms that could arise when the815

technology is being used as intended but gives incorrect results, and harms following816

from (intentional or unintentional) misuse of the technology.817

• If there are negative societal impacts, the authors could also discuss possible mitigation818

strategies (e.g., gated release of models, providing defenses in addition to attacks,819

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from820

feedback over time, improving the efficiency and accessibility of ML).821

11. Safeguards822

Question: Does the paper describe safeguards that have been put in place for responsible823

release of data or models that have a high risk for misuse (e.g., pretrained language models,824

image generators, or scraped datasets)?825

Answer: [NA]826

Justification: The dataset is derived from publicly available, government-provided827

geospatial data and does not pose high risk for misuse.828

Guidelines:829

• The answer NA means that the paper poses no such risks.830
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• Released models that have a high risk for misuse or dual-use should be released with831

necessary safeguards to allow for controlled use of the model, for example by requiring832

that users adhere to usage guidelines or restrictions to access the model or implementing833

safety filters.834

• Datasets that have been scraped from the Internet could pose safety risks. The authors835

should describe how they avoided releasing unsafe images.836

• We recognize that providing effective safeguards is challenging, and many papers do837

not require this, but we encourage authors to take this into account and make a best838

faith effort.839

12. Licenses for existing assets840

Question: Are the creators or original owners of assets (e.g., code, data, models), used in841

the paper, properly credited and are the license and terms of use explicitly mentioned and842

properly respected?843

Answer: [Yes]844

Justification: All third-party assets (e.g., NHD, OSM, KyFromAbove) are properly cited845

and credited.846

Guidelines:847

• The answer NA means that the paper does not use existing assets.848

• The authors should cite the original paper that produced the code package or dataset.849

• The authors should state which version of the asset is used and, if possible, include a850

URL.851

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.852

• For scraped data from a particular source (e.g., website), the copyright and terms of853

service of that source should be provided.854

• If assets are released, the license, copyright information, and terms of use in the855

package should be provided. For popular datasets, paperswithcode.com/datasets856

has curated licenses for some datasets. Their licensing guide can help determine the857

license of a dataset.858

• For existing datasets that are re-packaged, both the original license and the license of859

the derived asset (if it has changed) should be provided.860

• If this information is not available online, the authors are encouraged to reach out to861

the asset’s creators.862

13. New assets863

Question: Are new assets introduced in the paper well documented and is the documentation864

provided alongside the assets?865

Answer: [Yes]866

Justification: The EarthScape dataset and code are publicly released with detailed867

documentation on data structure, processing, and usage in both the paper and linked868

repositories.869

Guidelines:870

• The answer NA means that the paper does not release new assets.871

• Researchers should communicate the details of the dataset/code/model as part of their872

submissions via structured templates. This includes details about training, license,873

limitations, etc.874

• The paper should discuss whether and how consent was obtained from people whose875

asset is used.876

• At submission time, remember to anonymize your assets (if applicable). You can either877

create an anonymized URL or include an anonymized zip file.878

14. Crowdsourcing and research with human subjects879

Question: For crowdsourcing experiments and research with human subjects, does the paper880

include the full text of instructions given to participants and screenshots, if applicable, as881

well as details about compensation (if any)?882
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Answer: [NA]883

Justification: The paper does not involve any crowdsourcing or research involving884

human subjects.885

Guidelines:886

• The answer NA means that the paper does not involve crowdsourcing nor research with887

human subjects.888

• Including this information in the supplemental material is fine, but if the main contribu-889

tion of the paper involves human subjects, then as much detail as possible should be890

included in the main paper.891

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,892

or other labor should be paid at least the minimum wage in the country of the data893

collector.894

15. Institutional review board (IRB) approvals or equivalent for research with human895

subjects896

Question: Does the paper describe potential risks incurred by study participants, whether897

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)898

approvals (or an equivalent approval/review based on the requirements of your country or899

institution) were obtained?900

Answer: [NA]901

Justification: The paper does not involve research with human subjects and therefore902

does not require IRB approval.903

Guidelines:904

• The answer NA means that the paper does not involve crowdsourcing nor research with905

human subjects.906

• Depending on the country in which research is conducted, IRB approval (or equivalent)907

may be required for any human subjects research. If you obtained IRB approval, you908

should clearly state this in the paper.909

• We recognize that the procedures for this may vary significantly between institutions910

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the911

guidelines for their institution.912

• For initial submissions, do not include any information that would break anonymity (if913

applicable), such as the institution conducting the review.914

16. Declaration of LLM usage915

Question: Does the paper describe the usage of LLMs if it is an important, original, or916

non-standard component of the core methods in this research? Note that if the LLM is used917

only for writing, editing, or formatting purposes and does not impact the core methodology,918

scientific rigorousness, or originality of the research, declaration is not required.919

Answer: [NA]920

Justification: The research does not involve the use of large language models in any core921

methodological or experimental component.922

Guidelines:923

• The answer NA means that the core method development in this research does not924

involve LLMs as any important, original, or non-standard components.925

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)926

for what should or should not be described.927
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