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Abstract

Visual illusions have long been considered perceptual mistakes, highlighting a
perceived gap between biological and artificial vision. Here, we challenge this
view by revealing that robust deep neural networks (DNNs) trained for object
recognition implicitly contain a generative model capable of representing illusory
contours and shapes. This finding suggests that illusions are not errors, but emer-
gent properties of efficient visual processing. We uncover a mathematical corre-
spondence between optimization for robust pattern recognition and optimization
for pattern generation. This insight provides a potential explanation for how vi-
sual systems, primarily tuned for pattern recognition, can flexibly generate inter-
nal representations, including illusory percepts. Using a robust object recognition
model (ResNet50) trained on ImageNet, we demonstrate that the propagated errors
during inference approximate the gradient of log conditional probability p(x|y),
directly linking recognition error to learned priors. By repurposing the compu-
tational graph conventionally used for learning, we query this implicit generative
model without additional optimization. When presented with classical illusion
stimuli, our model generates representations that mirror perceptual experiences in
biological vision. For a Kanizsa square input, edge-like patterns emerge in the per-
ceived ’white square’ area. With Rubin’s vase, the network produces face-like or
vase-like patterns depending on its training (VGGFace vs. ImageNet). These in-
duced activities in early layers capture experimental findings of illusory contours
and shapes in early visual areas across species. Our work reconciles the views of
the visual cortex as both a pattern recognition and a generative model in a unified
framework and clarifies the theoretical basis supporting the effectiveness of robust
classifiers in producing stimuli that are perceptually-aligned, a method extensively
employed in neuroscience. By demonstrating that robust pattern recognition net-
works inherently embody generative capabilities, we provide insights into how the
brain might integrate prior knowledge with sensory input. This suggests that vi-
sual illusions, far from being mistakes, are indicators of the visual system’s ability
to generate and manipulate internal representations—a feature crucial for efficient
visual processing in complex, ambiguous environments.

1 Introduction

Illusions are widely believed to be perceptual mistakes, and illusions strike a remarkable gap be-
tween humans and AI. Intriguingly, neurons actually elicited activity in response to induced activity
very reliably in superficial cortical layers of early visual areas, between species, pointing to a shared
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Figure 1: A Illusions highlight a striking gap between biological and artificial intelligence [1, 15] B
Research in animals and humans suggests that activity in early visual areas represents the perceptual
state when viewing a visual illusion, and these activities build up over time [9, 13] C Training
network: Parameters of the feedforward DNN are tuned for robust object classification, e.g. 1000-
way classification on Imagenet. Feedback network shown in gray is the error propagation network
used in BackPropagation (BP). C Neural activation updates according to GPI in the same DNN.
Activations xψt in the network are iteratively updated by the integrating the adjusted propagated
error eψt through the feedback WFB . Error can be computed as mean square difference to the pure
sensory activation, or a target value in last layer both denoted by y. For simplicity, the normalizations
for adjustment of the values are not included. α is the learning rate for activation updates

preserved neural mechanism between different brains at different scales and levels of intelligence
(Figure 1).

On the other hand, it has long been hypothesized that the integration of perceptual priors with sen-
sory inputs, known as perceptual inference, facilitates the brain’s interpretation of ambiguous or
complex stimuli by leveraging previously acquired knowledge, stored as internal models, to enhance
current sensory processing. However, the neural mechanisms that implement such a generative in-
ternal model remain elusive. In contrast, the view of the brain as a pattern recognition system has
been successful in predicting neural activity patterns using DNNs, offering a mechanistic mapping
to the stage of processing along the ventral pathway [18]. However, these models struggle with
degraded stimuli or visual illusions [5, 1]. Thus, although there exists models proposed to explain
illusions [12], object recognition abilities [18], or integration of priors, there is no single model that
explains all of them in a single framework backed by theory. Here, we show that viewing illusions
as out-of-distribution stimuli, and perceptual integration of priors as a variant of solving the inverse
problem in the score-based generative model embedded in robust classifier offers a unified image
computable model explaining all three hallmarks of sensory processing in a unified framework.

We hypothesize that the network, during pattern recognition training, constructs an implicit genera-
tive internal model about the data distribution (e.g., natural image prior when trained on ImageNet).
Using this internal model, the network can be queried for priors to aid perception when encountering
degraded or unusual stimuli. Previous work empirically showed using the gradients in an adversar-
ially trained DNNs, one can generate images [10]. Here, first we show the theory behind the link
between recognition errors (gradients) and the score function (used to accumulate perceptual pri-
ors) and then show that using a simple variant of Langevin dynamics, illusory contours and shapes
appear in early layers of a robust DNN.

2 Generative Inference in Pattern Recognition Networks

Theory: The Duality of Adversarial Training and Score-Based Generation We establish a fun-
damental connection between adversarial training of classifiers, as introduced by [10], and genera-
tive modeling through the lens of the Hyvärinen score [7]. We consider adversarial training as an
effective way to arrive at a robust to input noise solution, as adversarial training optimizes to be
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robust to worst-case input noise. We posit that adversarial training implicitly minimizes an ana-
logue of the first term in the Hyvärinen score, effectively encouraging the model to learn a smoother
probability distribution over the input space. Previously, [10, 14] empirically showed that a network
trained for adversarial robustness exhibits properties often attributed to generative models; here, we
provide the theoretical framework offering insights and extensions to the previous empirical results.

The Hyvärinen score [7], also known as the Hyvärinen loss function used in score-based generative
modeling, is defined as:

H(p) =

∫ (
1

2
∥∇ log p(x)∥2 +∆ log p(x)

)
dx (1)

where p(x) is the probability density function, ∇ is the gradient operator, and ∆ is the Laplacian
operator. Our focus is on the first term, that encourages the score function ∇ log p(x) to have small
magnitude.

Adversarial training [10] aims to solve the following min-max problem:

min
θ

E
[
max
δ∈S

L(θ, x+ δ, y)

]
(2)

where θ are the model parameters, x is the input, y is the true label, δ is the adversarial perturbation,
S is the set of allowed perturbations, and L is the loss function.

The PGD adversarial training involves K iterative steps:

xt+1 = ΠS(xt + α∇xL(θ, xt, y)) (3)

where ΠS is projection onto the allowed perturbation set S, and α is the step size. After K steps,
the model parameters are updated to minimize the loss at the adversarial point:

min
θ

L(θ, xK , y) (4)

Using Taylor expansion for each PGD step:

L(θ, xt + α∇xL(θ, xt, y), y) = L(θ, xt, y) + α∥∇xL(θ, xt, y)∥2 +O(α2) (5)

The cumulative effect over K steps, ignoring higher-order terms, is:

L(θ, xK , y) ≈ L(θ, x0, y) + α

K−1∑
t=0

∥∇xL(θ, xt, y)∥2 (6)

where x0 is the original input. Therefore, adversarial training implicitly minimizes:

min
θ

(
L(θ, x0, y) + α

K−1∑
t=0

∥∇xL(θ, xt, y)∥2
)

(7)

For a well-trained classifier, the negative log-likelihood of the true class should approximate the
loss:

L(θ, x, y) ≈ − log pθ(y|x) (8)

By Bayes’ rule:

log pθ(y|x) = log pθ(x|y) + log p(y)− log p(x) (9)

Therefore:

L(θ, x, y) ≈ − log pθ(x|y)− log p(y) + log p(x) (10)
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Figure 2: Generated inferred activity by GPI in response to Kanizsa square illusion in ResNet50,
adversarially trained on 1000-way classification on ImageNet [10]. The generated activity mirrors
the finding on animal studies in (Figure 1)

Taking the gradient with respect to x:

∇xL(θ, x, y) ≈ −∇x log pθ(x|y) +∇x log p(x) (11)

Since log p(y) is independent of x, its gradient is zero. For a robust classifier trained on natural
images, we expect ∇x log p(x) to be small in regions of high data density. Therefore:

∇xL(θ, x, y) ≈ −∇x log pθ(x|y) (12)

Substituting this back into the adversarial training objective:

min
θ

(
L(θ, x0, y) + α

K−1∑
t=0

∥∇x log pθ(xt|y)∥2
)

(13)

The second term now directly parallels the first term of the Hyvärinen score:

1

2
∥∇x log p(x)∥2 (14)

This reveals that adversarial training implicitly learns the score function of the conditional data
distribution p(x|y). When averaged over classes, this approximates learning the score of the full
data distribution:

Ey[∥∇x log p(x|y)∥2] ≈ ∥∇x log p(x)∥2 (15)

This shows that adversarial training implicitly minimizes an analogue of the first term in the
Hyvärinen score. The second term that involves the divergence of the model’s core function is
computationally intensive and has been eliminated or approximated in the practical settings for
high-dimensional data [17, 16]. The formal analogy we established to generative models explains
perceptually aligned gradients in robust neural networks [14, 8, 3] and the subsequent widespread
use of these networks in neuroscience to generate stimuli for human and animal experiments [6, 4, 2].

Generative perceptual inference Generative Perceptual Inference (GPI) is an instantiation of
Langevian dynamics that leverages the implicit generative model within robust deep neural net-
works (DNNs) trained for object recognition. GPI operates by iteratively updating activations in
the network’s early layers, integrating sensory input with learned priors. One variant of GPI goes
as follows: The process begins by presenting an input image x to the network, along with a noisy
version x′. The difference between their latent representations, (r′ − r), is then propagated through
the network’s feedback connections to the input level. This propagated error is added back to x′,
and the process is repeated. Mathematically, this can be expressed as xt+1 = xt + αWFB(r

′
t − rt),

where WFB represents the feedback weights and α is a learning rate (Fig. 1). By repurposing the
computational graph typically used for backpropagation during training, GPI enables the network
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Figure 3: A Generated inferred activity by GPI in response to Rubin’s vase illusion in two
ResNet50, one trained for 1000-way robust classification on ImageNet, the other for 500-way robust
face recognition on VGGface2. B The distinct generated activities in early visual layers replicate
the finding in human brain imaging study [13]. Please note that the same architecture undergoing
the same training but without robust training does not show these effects (results not shown here).

to query its learned priors without additional optimization. This mechanism allows robust DNNs to
generate representations that mirror perceptual experiences in biological vision, particularly when
presented with ambiguous or illusory stimuli such as the Kanizsa square or Rubin’s vase. Induced
activity in the early layers captured experimental findings on visual illusion representation in early
visual areas [9, 11]. GPI confirms the critical role of feedback in integrating priors and inducing
illusions.

3 Results

We tested our model on classic visual illusions, such as Kanizsa’s square and Rubin’s face-vase
illusion. For the Kanizsa square, our model generated inferred activity that closely resembled the
illusory contours observed in biological visual systems (Figure 2). The model’s behavior mirrored
the laminar-specific induced patterns observed in mice and monkeys, with distinct activation patterns
in different cortical layers (L2/3, L4). In the case of the Rubin’s face-vase illusion, we observed that
the model’s perception could be biased towards either faces or vases, depending on its training
(Figure 3). When trained on a dataset of objects (e.g., ImageNet), the model tended to perceive
the vase. Conversely, when trained on faces (e.g., VGGFace), it was more likely to perceive faces.
This demonstrates how the model’s learned priors influence its interpretation of ambiguous stimuli,
similar to what is observed in human perception. The ability of robust neural networks in fast
recognition was previously known activation by illusory contours and shapes in cortical lamina
across species. This aligns with observations in biological visual systems, where prior knowledge
and expectations help to maintain stable perception in the face of noisy or ambiguous sensory input.

4 Conclusion

We demonstrated that a pattern recognition model embodies a generative model that can be queried
using GPI. This framework offers insights into how perceptual priors induce illusory contours and
shapes in neural networks optimized for object recognition. Our work has several important impli-
cations for neuroscience and artificial intelligence. First, it provides a mechanistic explanation for
how the brain might implement both fast recognition and flexible cognitive control within the same
neural architecture. Second, it offers a new approach to building more brain-like AI systems that
can seamlessly integrate bottom-up and top-down information processing. Finally, it suggests new
avenues for investigating the neural basis of visual perception, potentially leading to more targeted
experiments and interventions in future neuroscientific studies. By bridging the gap between fast
pattern recognition and flexible integration of priors, it provides a more complete model of visual
processing that aligns closely with observed phenomena in biological systems.
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[13] L. Parkkonen, J. Andersson, M. Hämäläinen, and R. Hari. Early visual brain areas reflect the
percept of an ambiguous scene. Proceedings of the National Academy of Sciences, 105(51):
20500–20504, 2008. doi: 10.1073/pnas.0810966105.

[14] S. Santurkar, D. Tsipras, B. Tran, A. Ilyas, L. Engstrom, and A. Madry. Image synthesis with
a single (robust) classifier. 2019.

[15] H. S. Shahgir, K. S. Sayeed, A. Bhattacharjee, W. U. Ahmad, Y. Dong, and R. Shahriyar.
IllusionVQA: A challenging optical illusion dataset for vision language models. 2024.

6

https://www.nature.com/articles/s41593-023-01442-0
https://www.nature.com/articles/s41593-023-01442-0
https://proceedings.mlr.press/v202/ganz23a.html
https://proceedings.mlr.press/v202/ganz23a.html
https://arxiv.org/abs/2308.06887
https://arxiv.org/abs/2308.06887
http://jmlr.org/papers/v6/hyvarinen05a.html
http://jmlr.org/papers/v6/hyvarinen05a.html


[16] Y. Song, S. Garg, J. Shi, and S. Ermon. Sliced score matching: A scalable approach to den-
sity and score estimation. In Proceedings of The 35th Uncertainty in Artificial Intelligence
Conference, pages 574–584. PMLR, 2019.

[17] P. Vincent. A connection between score matching and denoising autoencoders. Neural Com-
putation, 23(7):1661–1674, 2011.

[18] D. L. K. Yamins, H. Hong, C. F. Cadieu, E. A. Solomon, D. Seibert, and J. J. DiCarlo.
Performance-optimized hierarchical models predict neural responses in higher visual cortex.
Proceedings of the National Academy of Sciences, 111(23):8619–8624, May 2014. ISSN 1091-
6490. doi: 10.1073/pnas.1403112111.

7


	Introduction
	Generative Inference in Pattern Recognition Networks
	Results
	Conclusion

