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ABSTRACT

Haze removal seeks to restore clear images from hazy inputs. Previous research
demonstrates that short-range dependencies are effective for preserving local de-
tails, while long-range dependencies capture global context. Because both are
essential to dehazing and complement each other, many approaches explicitly in-
tegrate them within dual-stream frameworks. However, the trustworthy aggrega-
tion of these dependencies remains underexplored. In this paper, to optimize the
contributions of dependencies at varying ranges, we first conduct comprehensive
quantitative and qualitative experiments to identify the key influencing factors.
Our findings indicate that an effective aggregation strategy should jointly consider
haze density and semantic information. Building on these insights, we introduce a
CLIP-enhanced Dual-Path Aggregator for the class of dual-stream dehazing meth-
ods. This module first employs a shared backbone to generate fine-grained haze
density and semantic maps in a computationally efficient manner, and then uses
them to instruct the integration process. Extensive experiments show that the pro-
posed aggregator significantly improves the performance of existing dual-stream
methods, and our custom-built model, DehazeMatic, achieves state-of-the-art re-
sults across multiple benchmarks. As an additional contribution, we also address,
for the first time, the challenge of accurately estimating haze density maps.

1 INTRODUCTION

Image dehazing serves as an essential pre-processing step for high-level vision tasks in hazy envi-
ronments, such as object detection Li et al. (2023) and semantic segmentation Ren et al. (2024).

Recent data-driven approaches can be broadly divided according to the receptive field size of their
feature extractors: (i) using convolution Bai et al. (2022); Cai et al. (2016); Dong et al. (2020); Li
et al. (2017); Ren et al. (2018; 2020); Zhang & Patel (2018) or window-based self-attention Kulka-
rni et al. (2022); Kulkarni & Murala (2023); Song et al. (2023); Wang et al. (2023), which cap-
ture fine-grained local structures but struggle with holistic reasoning Kim et al. (2023); Veit et al.
(2016); De & Smith (2020); and (ii) using linear self-attention Qiu et al. (2023) or state-space mod-
els (SSMs) Shen et al. (2023); Zhou et al. (2024); Zhang et al. (2024a), which excel at modeling
long-range dependencies yet often sacrifice 2D inductive biases Huang et al. (2024).

Motivated by the fact that both types of methods have shown strong performance and their respective
strengths can offset each other’s weaknesses, recent work has explored dual-stream architectures that
explicitly integrate short- and long-range cues Zamir et al. (2022); Chen et al. (2024a); Jiang et al.
(2024); Liu et al. (2024a). However, rationally aggregating information from these two streams
remains a non-trivial task, as tokens with different characteristics in an image vary in their need for
local detail versus global semantics (i.e., the trade-off between short- and long-range dependencies).
Existing methods typically rely on simple operations, such as addition, concatenation, or self-learned
gating network, which hinder the optimal utilization of both dependency types, thereby creating
performance bottlenecks. Ultimately, this stems from the lack of clear guidance on how to assign
appropriate importance to short- and long-range dependencies on a per-token basis.

To fill this gap, we begin with a quantitative and qualitative analysis of the key factors governing
this trade-off and ultimately find that haze density and semantic information play decisive roles. The
subsequent objective is to accurately estimate a haze density map and a semantic information map
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Prompts: [‘A hazy image.’, ‘A clear image.’]

Ground Truth

24.00/0.95 15.58/0.78 13.03/0.68

Thin Haze Thick Haze

75.7 24.3 5.294.8 0.899.2

20.25/0.90

82.2 17.8

Figure 1: Illustration of CLIP Radford et al. (2021)’s potential to perceive haze and its density. We
use the ViT-B/32 OpenCLIP Ilharco et al. (2021) model pre-trained on the LAION dataset. Values
above images are PSNR/SSIM (quantifying haze density), and values below are CLIP similarity
scores with paired prompts. As density increases, similarity with haze-describing prompt also rises.

to instruct the integration process. Moreover, to enhance model efficiency, we further aim to derive
both maps from a shared backbone.

However, this objective remains challenging: not only is there no method capable of accurately
estimating haze density map, but extracting two types of information with substantial modality
differences from a single backbone remains inherently difficult. Inspired by recent advances in
CLIP Radford et al. (2021), pretrained on web-scale datasets and capable of encoding rich semantic
priors that support strong zero-shot semantic segmentation performance Zhou et al. (2023); Zhang
et al. (2024c), we further observe that CLIP has the potential to perceive haze and its density, as illus-
trated in Figure 1. Building on this insight, we propose the CLIP-enhanced Dual-path Aggregator
(CedA), a plug-and-play module designed to replace the naı̈ve aggregators used in existing dual-
stream dehazing methods. By freezing the CLIP image encoder and training only a set of learnable
prompt tokens, CedA simultaneously extracts accurate patch-wise haze density maps and semantic
maps from image embeddings. These two maps only need to be passed through a lightweight lin-
ear layer to generate aggregation weights, thereby enabling the model to efficiently and adaptively
integrate short- and long-range dependencies and achieve substantial performance gains. Finally,
to demonstrate that the proposed CedA module can enhance dual-stream dehazing networks and
achieve promising results, we develop a benchmark model, DehazeMatic, and conduct extensive
experiments. Our contributions are threefold:

• We are the first to identify the key factors governing the relative importance of short- and
long-range dependencies in image dehazing. Building on this insight, we present a plug-
and-play, trustworthy, and general aggregation module for existing dual-stream dehazing
methods, enabling more effective utilization of both short- and long-range cues.

• We introduce DehazeMatic, a benchmark dual-stream dehazing model that achieves state-
of-the-art performance across multiple datasets and showcases the untapped potential of
dual-stream designs for haze removal.

• We further explore the potential of CLIP in haze removal and, for the first time, achieve
accurate estimation of haze density maps, without any fine-tuning of the encoder.

2 RELATED WORK

2.1 SINGLE IMAGE DEHAZING

Image dehazing is an ill-posed problem due to spatially variant transmission and atmospheric light.
Early prior-based methods He et al. (2016); Fattal (2008); Kim et al. (2019); Tan (2008); Zhu et al.
(2015); Berman et al. (2018) relied on assumptions to estimate parameters in the Atmospheric Scat-
tering Model Narasimhan & Nayar (2002), but often failed when images deviated from these priors.

With the rapid advancement of deep learning Krizhevsky et al. (2012), various learning-based meth-
ods have been proposed, resulting in improved performance. Early methods Cai et al. (2016); Li
et al. (2017) employ neural networks to estimate key parameters in the ASM and subsequently re-
store the haze-free images. Later, ASM-independent deep networks Ren et al. (2016; 2018); Liu
et al. (2019); Li et al. (2019); Shao et al. (2020); Dong et al. (2020); Zhang et al. (2020); Qin et al.
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(a) Haze Density (b) Semantic Information
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Figure 2: Illustration of factors influencing the relative importance between short-range and
long-range dependencies. The left panel shows how quantitative results vary with different char-
acteristics of the hypothesized factors. The horizontal axis denotes the Euclidean distance between
a token and all others (i.e., the dependency range), while the vertical axis indicates the average im-
portance of dependencies at that distance, averaged over all tokens in the test set. The right panel
visualizes the importance of other tokens for selected ones (marked with pentagrams). In (a), the
tokens occupy the same location in the same ground-truth image but differ in haze density. In (b),
they share a uniform haze level but differ in semantics within the same image.

(2020); Li et al. (2020); Wu et al. (2021); Ye et al. (2022); Song et al. (2023); Feng et al. (2024); Yang
et al. (2024b); Zhang et al. (2024b); Chen et al. (2024b); Fang et al. (2024b); Cong et al. (2024);
Wang et al. (2024b); Yang et al. (2025); Cui et al. (2025) directly estimate clear images or haze
residuals. DehazeFormer Song et al. (2023) is a representative method that achieves efficient feature
extraction through window-based self-attention and several key modifications. However, its inher-
ently limited receptive field constrains its performance potential. To obtain a global receptive field
with low computational cost, several approaches introduce linear self-attention Qiu et al. (2023),
frequency-domain information Shen et al. (2023); Yu et al. (2022), or the Mamba Zheng & Wu
(2024); Zhang et al. (2024a) architecture into image dehazing. Many methods Zamir et al. (2022);
Chen et al. (2024a); Jiang et al. (2024); Zhang et al. (2025); Liu et al. (2024a) design dual-stream
networks that explicitly integrate short- and long-range dependencies, harnessing their complemen-
tary strengths to achieve high performance. However, they often overlook the need for effective
aggregation across different ranges, resulting in suboptimal outcomes.

2.2 CLIP FOR LOW-LEVEL VISION TASKS

Classic vision-language models like CLIP Radford et al. (2021), aim to learn aligned features in
the embedding space from image-text pairs using contrastive learning. Some studies have explored
leveraging the rich prior knowledge encapsulated in CLIP to assist with low-level vision tasks.

In All-in-One image restoration, some researchers Luo et al. (2023); Ai et al. (2024); Jiang et al.
(2025) use degradation embeddings from the CLIP image encoder to implicitly guide networks
in making adaptive responses. For monocular depth estimation, recent studies Zhang et al. (2022);
Auty & Mikolajczyk (2023); Hu et al. (2024) employ CLIP to map input patches to specific semantic
distance tokens, which are then projected onto a quantified depth bin for estimation. In low-light
enhancement, some methods Liang et al. (2023); Morawski et al. (2024) use text-image similarity
between the enhanced results and learnable prompt pairs to train the enhancement network.

Some works also integrate CLIP into image Wang et al. (2024a) and video Ren et al. (2024) dehaz-
ing, but mainly use text-image similarity between dehazed results and contrastive prompt sets as a
regularizer. In contrast, our method further exploits the potential of CLIP by directly incorporating
its latent embeddings into the main network to guide the dehazing process.

3 MOTIVATIONAL EXPERIMENT

Optimal aggregation of dependencies is essential for a dual-stream network to fully leverage short-
and long-range cues for dehazing. To this end, we empirically investigate the key factors that govern
their relative importance, thereby enabling more reasonable and effective aggregation.
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3.1 QUANTIFYING THE IMPORTANCE OF DEPENDENCIES

Dependency denotes the influence exerted by other tokens on the current token Bengio et al. (1994);
Hochreiter & Schmidhuber (1997). For the experiment presented in this section, we train a Trans-
former model with a global receptive field, and define the importance of a dependency as the atten-
tion weight that another token assigns to the current token in the self-attention mechanism, while its
range is measured by the Euclidean distance between the two tokens.

3.2 EXPERIMENTAL DESIGN

Our experiment adopts a hypothesis-driven approach, in which we first identify potential key factors
and then verify their validity through both quantitative and qualitative analyses. Specifically, we
sample image tokens exhibiting diverse characteristics with respect to the hypothesized factors and
examine whether the importance of dependencies at a fixed distance varies accordingly; the results
are presented in Figure 2. The quantitative measure used for each point on the curve is defined as:

I(r; c) =
1

|S(I)|
∑

(u,v)∈S(I)

 1

|B(u,v)(r)|
∑

(p,q): d(u,v),(p,q)∈r

Ã(u,v),(p,q)


where Ã(u,v),(p,q) =

A(u,v),(p,q)∑
(p̂,q̂)

A(u,v),(p̂,q̂)

.

(1)

Here, I(r; c) denotes the mean importance of dependencies at distance r under condition c, where
c represents the dataset characteristic associated with each curve (e.g., haze level or semantic
category). A(u,v),(p,q) is the L1-normalized attention weight of the token at (p, q) with respect
to the token at (u, v). d(u,v),(p,q) denotes the Euclidean distance between these tokens, and
B(u,v)(r) is the set of tokens (p, q) whose distance from (u, v) satisfies d(u,v),(p,q) ∈ r. Finally,
S(I) = {(u, v) | u = 1, . . . , H; v = 1, . . . ,W} is the set of all token coordinates in an image,
where H and W denote the image height and width, respectively. The qualitative results in Figure 2
visualize Ã(u,v),(p,q) over all possible locations (p, q) with respect to the anchor token (u, v).

3.3 EXPERIMENTAL OBSERVATIONS

Haze density is intuitively regarded as a key contributing factor. To validate this, we synthesize
hazy images with varying density levels using the Atmospheric Scattering Model Narasimhan &
Nayar (2002) and conduct corresponding experiments. As illustrated in Figure 2(a), as the haze
becomes denser, the relative importance of long-range dependencies increases, while that of short-
range dependencies decreases—and vice versa. Quantitative results further confirm this observation.

Semantic information is also hypothesized to be an influential factor, as prior work Huang et al.
(2020) indicates that scenes with different levels of complexity require dependencies at varying
ranges. To examine this, we conduct experiments on indoor and outdoor images from the RESIDE
dataset Li et al. (2018), which generally exhibit distinct semantic characteristics. As shown in Fig-
ure 2(b), the quantitative results support our hypothesis, while qualitative results further demonstrate
that for tokens with different semantic content within the same image, the relative importance of de-
pendencies at different ranges also differs.

Based on these findings, we are the first to propose that, in dehazing, the relative importance of short-
and long-range dependencies is jointly influenced by both haze density and semantic information.

4 METHOD

4.1 OVERVIEW OF CLIP-ENHANCED DUAL-PATH AGGREGATOR

The proposed CedA is designed to replace the naı̈ve aggregators in existing dual-stream dehazing
networks and thereby elevate their performance. Inspired by the observations in Section 3, CedA

4
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Figure 3: We present a plug-and-play, trustworthy dual-path aggregator, termed CLIP-enhanced
Dual-path Aggregator (CedA), designed for dual-stream image dehazing networks.

first generates fine-grained haze density and semantic maps, and then produces pixel-level weights
accordingly to adaptively aggregate the outputs from the two paths. Its formulation is given by:

Fout = W
(
H,S

)
⊙ Dlong(Fin) +

(
1−W

(
H,S

))
⊙ Dshort(Fin) (2)

Here, Fin,Fout ∈ RH×W×C denote the input and output of the core building block, respectively,
which consists of a long-range dependency extractor Dlong and a short-range dependency extractor
Dshort. H and S represent the estimated haze density map and semantic information map, respec-
tively. W denotes the Aggregation Weight Generator, which produces pixel-wise weights with shape
RH×W . The next focus lies in exploring how to effectively estimate H and S via a shared backbone.

4.2 ESTIMATION OF THE SEMANTIC INFORMATION MAP

Inspired by Figure 1, we leverage CLIP Radford et al. (2021) to jointly extract haze density and se-
mantic information maps. Considering that the pretrained CLIP image encoder is optimized through
a classification pretext task, each location in its feature map before pooling captures regional seman-
tic cues Zhang et al. (2022). We therefore directly treat the latent embedding produced by feeding
the input image into the encoder as the semantic inf ormation map:

Fimg = Φimg︸︷︷︸
without final pooling

(
Ihaze

)
∈ RHp×Wp×de (3)

Here, Φimg denotes the CLIP image encoder without its final pooling layer, enabling the generation
of a patch-wise embedding. Ihaze is the input image to the dehazing network. Hp and Wp denote
the height and width of the encoded embedding, and de is the hidden dimension.

Using only Fimg yields suboptimal performance because CLIP provides mainly high-level repre-
sentations that lack low-level semantic details. To address this limitation, we incorporate the input
features of the current block, Fin, to complement Fimg, and introduce a bidirectional cross-attention
mechanism to align their semantic information across scales, producing a refined semantic map S:

S = W
[
Attn(Qimg,Kin, Vin)︸ ︷︷ ︸

high-level query on low-level

∥ Attn(Qin,Kimg, Vimg)︸ ︷︷ ︸
low-level query on high-level

]
(4)

Here, Qi, Ki and Vi are the query, key, and value derived from Fi (with i ∈ {img, in}) after channel
reduction or adaptive pooling, and Attn(·) denotes the attention operation. W is a projection matrix.

4.3 ESTIMATION OF THE HAZE DENSITY MAP

4.3.1 WORKFLOW OF THE PROPOSED METHOD

As shown in Figure 1, the similarity between an image embedding and a haze-describing prompt
grows monotonically with haze density. Building on this observation, we design a streamlined

5
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estimation pipeline. The input image is first mapped to a latent representation by the pretrained
CLIP image encoder (Eq. 3). We then construct a prompt set T = [Thaze, Tclear] (e.g., [“hazy
image”, “clear image”]) and project it into the same space through the CLIP text encoder. Finally,
we interpret the similarity between the image embedding and the haze-oriented text embedding as
the predicted haze density map.

H = Softmax
(
sim

(
Fimg, Φtxt(T )︸ ︷︷ ︸

Ftxt ∈ R2×dc

))
[:, :, 0] ∈ RHp×Wp (5)

Here, Φtext denotes the CLIP text encoder, and sim(·, ·) is the similarity function.

4.3.2 LEARNABLE PROMPT OPTIMIZATION

H
az

y 
Im

ag
e
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ti

m
at

e
d

 M
ap

Non-Homogeneous Haze Homogeneous Haze

Figure 4: Illustration of estimated haze density
maps. The proposed method can identify the rela-
tive haze density not only in different regions of non-
homogeneous haze images but also between two ho-
mogeneous haze images.

To improve estimation accuracy and alle-
viate the burden of laborious prompt engi-
neering, we employ learnable prompt tokens
rather than manually defined prompts to rep-
resent abstract haze and clear conditions.

Our training procedure comprises two
stages. Stage 1 optimizes learnable paired
prompts via a cross-entropy objective, al-
lowing them to preliminarily distinguish
between hazy and clear images. During
training, a hazy image and a clear image,
Ihaze, Iclear ∈ RH×W×3, are used, and the
first-stage loss L1 is defined as:

L1 = −
[
y log ŷ + (1−y) log

(
1− ŷ

)]
,

where ŷ =
exp

(
cos

(
Φimg(I),Φtxt(Tclear)

))
∑

i∈{haze, clear}

exp
(
cos

(
Φimg(I),Φtxt(Ti)

)) . (6)

where I ∈ {Ihaze, Iclear}, and y is the corresponding label, with 0 indicating a hazy image and 1
indicating a clear image.

Stage 2 aims to predict haze density more accurately. The most straightforward and effec-
tive optimization approach is regression, yet existing datasets lack ground-truth density maps.
To address this, we construct triplets {Ihaze, Iclear, Idensity} using the Atmospheric Scattering
Model Narasimhan & Nayar (2002). The second-stage loss is formulated as:

L2 =

{
α1 MSE

(
Ĥ, Idensity

)
+ α2L1, y = 0,

L1, y = 1,
(7)

where MSE(·) denotes the mean squared error, and Ĥ is obtained from Ihaze and the learnable
paired prompts T = [Thaze, Tclear] according to Equation 5. α1 and α2 are the weights of different
loss functions. Training remains lightweight because the CLIP image encoder is not fine-tuned.

Finally, we apply the learned paired prompts to generate the estimated patch-wise haze density map
H. As shown in Figure 4, our method provides an effective and general solution applicable to both
homogeneous and non-homogeneous haze. Please refer Appendix A for more training details.

4.4 IDEALIZED DUAL-STREAM DEHAZING FRAMEWORK WITH AGGREGATOR INTEGRATION

Finally, based on the proposed CLIP-enhanced Dual-path Aggregator, we develop a baseline model,
DehazaMatic, for the dual-stream dehazing network to further investigate the potential of this class
of approaches and to assess their ability to achieve state-of-the-art performance. The detailed archi-
tecture of DehazaMatic is presented in Appendix B.

6
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Table 1: Quantitative results after replacing the naı̈ve aggregator with the proposed CedA. The
extra runtime introduced by CedA was measured on an NVIDIA A100 GPU with 256×256 inputs.

Methods
SOTS-Outdoor SOTS-Indoor NH-Haze Dense-Haze RTTS Extra

Runtime
(ms)PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ FADE↓ BRISQUE↓

FSDGN 36.95 0.986 40.12 0.990 19.51 0.712 16.42 0.556 1.492 36.218
5.1

→ CedA +0.67 +0.002 +1.03 +0.001 +0.51 +0.019 +0.56 +0.038 -0.035 -0.327

HyLoG-ViT 36.28 0.990 39.95 0.992 21.02 0.775 16.68 0.608 1.685 37.539
4.6

→ CedA +0.81 +0.002 +0.50 +0.002 +0.11 +0.003 +0.34 +0.012 -0.047 -0.237

Dual-Former 36.33 0.988 40.04 0.991 19.68 0.682 16.09 0.512 1.357 34.726
3.7

→ CedA +1.12 +0.003 +0.88 +0.002 +0.49 +0.020 +0.62 +0.025 +0.003 -0.684

5 EXPERIMENTS

5.1 DATASETS

We evaluate our method on both synthetic and real-world benchmarks. For synthetic experiments,
we consider homogeneous and non-homogeneous haze conditions. For homogeneous haze, we
adopt the RESIDE dataset Li et al. (2018), which provides two training partitions: the Indoor Train-
ing Set (ITS) with 13,990 paired indoor samples, and the Outdoor Training Set (OTS) with 313,950
paired outdoor samples. Evaluation is carried out on the corresponding splits of the Synthetic Ob-
jective Testing Set (SOTS). For non-homogeneous haze, we employ NH-HAZE Ancuti et al. (2020)
and Dense-Haze Ancuti et al. (2019), both produced using a professional haze generator to mimic
complex real-world scattering. Each dataset contains 55 image pairs, where the final 5 pairs are
reserved for testing and the remaining 50 for training. To assess generalization in real scenarios, we
use the RTTS dataset Li et al. (2018), comprising 4,322 unpaired hazy images captured in the wild.

5.2 EMPIRICAL EVALUATION OF THE CLIP-ENHANCED DUAL-PATH AGGREGATOR

To evaluate its broader applicability, we replace the naı̈ve aggregator in representative dual-stream
dehazing networks with the proposed CLIP-enhanced Dual-path Aggregator (CedA) and investigate
whether this substitution improves the overall performance of this family of models. We experiment
with three methods, each capturing both long- and short-range dependencies: FSDGN Yu et al.
(2022) uses frequency-domain modeling and convolution; HyLoG-ViT Zhao et al. (2021) combines
pooled self-attention with window-based self-attention; and Dual-Former Chen et al. (2024a) in-
tegrates channel attention with window-based self-attention. For fairness, we retrain all models
following their original configurations and keep the training settings identical before and after re-
placing the aggregator with CedA.

As shown in Table 1, substituting the current dual-path aggregator with CedA yields substantial
performance gains across multiple datasets, while the additional inference cost introduced by CedA
is negligible. This is because, although the integrated CLIP Radford et al. (2021) model contains a
large number of parameters, the inference time for a single image is only about 3 ms.

Haze GridDehazeNet FFA-Net DeHamer SRDefog MITNet

DehazeFormer SCANet DEANet OKNet Ours GT

Figure 5: Visual comparisons on non-homogeneous haze. The bottom shows enlarged error maps
of selected regions, where darker blue indicates larger restoration errors. Please zoom in to view.
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Table 2: Quantitative results on synthetic dehazing benchmarks. Best results are shown in bold.

Methods
Homogeneous Haze Non-homogeneous Haze Overhead

SOTS-Outdoor SOTS-Indoor Avg NH-Haze Dense-Haze Avg Params MACs
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

DCP He et al. (2010) 19.14 0.861 16.61 0.855 17.88 0.858 10.57 0.520 10.06 0.385 10.32 0.453 - -
AOD-Net Li et al. (2017) 24.14 0.920 20.51 0.816 22.33 0.868 15.40 0.569 13.14 0.414 14.27 0.492 1.76K 0.12G
GridDehazeNet Liu et al. (2019) 30.86 0.982 32.16 0.984 31.51 0.983 18.33 0.667 14.96 0.533 16.65 0.600 0.96M 21.55G
FFA-Net Qin et al. (2020) 33.57 0.984 36.39 0.989 34.98 0.987 19.87 0.692 16.09 0.503 17.98 0.598 4.46M 288.86G
DeHamer Guo et al. (2022) 35.18 0.986 36.63 0.988 35.91 0.987 20.66 0.684 16.62 0.560 18.64 0.622 132.45M 59.25G
SRDefog Jin et al. (2022) - - - - - - 20.99 0.610 16.67 0.500 18.83 0.555 12.56M 24.18M
MAXIM-2S Tu et al. (2022) 34.19 0.985 38.11 0.991 36.15 0.988 - - - - - - 14.10M 216.00G
SGID-PFF Bai et al. (2022) 30.20 0.975 38.52 0.991 34.36 0.983 - - - - - - 13.87M 156.67G
PMNet Ye et al. (2022) 34.74 0.985 38.41 0.990 36.58 0.988 20.42 0.730 16.79 0.510 18.61 0.620 18.90M 81.13G
MB-TaylorFormer-B Qiu et al. (2023) 37.42 0.989 40.71 0.992 39.07 0.991 - - 16.66 0.560 - - 2.68M 38.50G
MITNet Shen et al. (2023) 35.18 0.988 40.23 0.992 37.71 0.990 21.26 0.712 16.97 0.606 19.12 0.659 2.73M 16.42G
DehazeFormer Song et al. (2023) 34.29 0.983 38.46 0.994 36.38 0.989 20.31 0.761 16.66 0.595 18.49 0.595 4.63M 48.64G
SCANet Guo et al. (2023) - - - - - - 19.52 0.649 15.35 0.508 17.44 0.579 2.39M 258.63G
DEANet Chen et al. (2024b) 36.03 0.989 40.20 0.993 38.12 0.991 20.84 0.801 16.73 0.602 18.79 0.702 3.65M 32.23G
UVM-Net Zheng & Wu (2024) 34.92 0.984 40.17 0.996 37.55 0.990 - - - - - - 19.25M 173.55G
OKNet Cui et al. (2024) 35.45 0.992 37.59 0.994 36.52 0.993 20.29 0.800 16.85 0.620 18.57 0.710 4.42M 39.54G
DCMPNet Zhang et al. (2024b) 36.56 0.993 42.18 0.996 39.37 0.995 - - - - - - 18.59M 80.42G

DehazeMatic 38.21 0.995 41.50 0.996 39.86 0.996 21.47 0.806 17.28 0.629 19.38 0.718 4.58M 35.50G

Table 3: Quantitative results on real haze.

Methods FADE BRISQUE NIMA
PSD 0.920 27.713 4.598
D4 1.358 33.210 4.484
DGUN 1.111 27.968 4.653
RIDCP 0.944 17.293 4.965
CORUN 0.824 11.956 5.342
SGDN 0.873 11.549 5.128
DehazeMatic 0.796 11.435 5.510

(a) Homogeneous Haze (b) Non-homogeneous Haze

Figure 6: Performance–runtime trade-off. Effi-
ciency rises as green bars exceed blue.

5.3 EMPIRICAL EVALUATION OF DEHAZEMATIC

We empirically assess whether the proposed CedA module can enable dual-stream dehazing methods
to achieve SOTA performance by comparing DehazeMatic with various existing approaches.

Training Details. DehazeMatic is implemented with PyTorch on NVIDIA A100 GPUs. We use
Adam Kingma & Ba (2014) optimizer with default parameters (β1 = 0.9, β2 = 0.99) and a cosine
annealing strategy Loshchilov & Hutter (2016) with restarts. The initial learning rate is set to 2 ×
10−4, gradually decreasing to 2×10−6. We train the homogeneous haze dataset for 200 epochs and
the non-homogeneous haze dataset for 400 epochs. The images are randomly cropped to a size of
256×256 and augmented with flipping. We use L1 loss and perceptual loss Johnson et al. (2016) to
supervise dehazing process.

5.3.1 PERFORMANCE ON SYNTHETIC HAZE

As shown in Table 2, both DCMPNet Zhang et al. (2024b) and MB-TaylorFormer Qiu et al. (2023)
are competitive approaches on synthetic homogeneous haze; however, our DehazeMatic achieves
the best overall performance. DCMPNet leverages depth information as guidance, whereas MB-
TaylorFormer only employs linear self-attention for feature extraction. These findings highlight
the advantage of jointly exploiting haze density and semantic maps for guidance while capturing
both short- and long-range dependencies. For synthetic non-homogeneous haze, MITNet Shen et al.
(2023) and OKNet Cui et al. (2024) achieve competitive PSNR and SSIM, respectively; nevertheless,
DehazeMatic consistently surpasses them, delivering state-of-the-art results across all metrics.

The visual comparison, as shown in Figure 5, further reveals that our approach best preserves fine
structures in the blue-boxed tree region and yields the smallest errors along object boundaries in the
red-boxed target area.

5.3.2 PERFORMANCE ON REAL-WORLD HAZE

To assess the practicality and generalization capability of our model in real-world scenarios, we
conduct experiments on the RTTS dataset Li et al. (2018). For fairness, the experimental settings
follow those of CORUN Fang et al. (2024a). As shown in Table 3, our approach surpasses all
competing methods on no-reference metrics, highlighting its effectiveness.
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5.3.3 TRADE-OFF BETWEEN PERFORMANCE AND RUNTIME

We further assess efficiency by measuring the runtime on an NVIDIA A100 GPU and comparing
the performance–runtime trade-off with the three strongest baselines (Figure 6). Our model runs in
only 30.03 ms and achieves 33 frames per second (FPS), meeting real-time processing requirements
while offering the best balance between accuracy and speed.

5.4 ABLATION STUDIES

We perform ablation studies to validate the contribution of each component. For fairness, we tune the
hyperparameters of all variants so that their computational overhead matches that of DehazeMatic.

Table 4: Ablation experiments of various components
of DehazeMatic.

Setting SOTS-Indoor NH-Haze
PSNR↑ SSIM↑ PSNR↑ SSIM↑

(a) Dual-Dependencies w/o Short-range 39.78 0.994 20.56 0.779
w/o Long-range 38.41 0.992 20.40 0.771

(b) Remove CedA Addition 39.55 0.993 20.71 0.781
Concatenation 39.80 0.994 20.74 0.784

(c) Overall Design W/o Density Map 40.88 0.995 20.91 0.792
W/o Semantic Map 41.02 0.995 21.23 0.794

Transmission Map 40.97 0.995 21.27 0.797
(d) Density Map Depth Map 41.16 0.996 21.28 0.795

Predefined Prompts 40.24 0.994 20.82 0.789

(e) Semantic Map w/o High-level 41.12 0.995 21.30 0.800
w/o Low-level 41.19 0.996 21.34 0.802

DehazeMatic 41.50 0.996 21.47 0.806

Hazy Input Learnable Prompts Predefined  Prompts

Figure 7: Visual comparison of density maps estimated
by learned prompts and manually predefined prompts.

(a) Dual-Dependencies. To assess the
effectiveness of the dual-stream design,
we build variants that remove either the
long-range or short-range path. Re-
sults in Table 4 show that combin-
ing these complementary dependencies
markedly enhances image dehazing.

(b) Remove CedA. We replace CedA
with simple addition and concatenation
to verify the necessity of adaptively in-
tegrating short- and long-range depen-
dencies in the dual paths.

(c) Overall Design. We further assess
the benefit of jointly leveraging haze
density and semantic maps for aggrega-
tion guidance by removing each com-
ponent in turn.

(d) Density Map. Next, we examine
the estimated haze density map. We
first evaluate the rationale for using
haze density rather than other common
guidance signals in dehazing (e.g., the transmission map from DCP He et al. (2010) or the depth
map from Depth Anything Yang et al. (2024a)) for aggregation. Results show that haze density is a
more appropriate cue. We then replace learnable prompts with manually predefined ones to assess
their effectiveness. As shown in Table 4, predefined prompts cause a marked performance decline,
even falling below the variant that relies solely on semantic maps. Moreover, Figure 7 shows that
predefined prompts fail to produce valid patch-wise haze density maps.

(e) Semantic Map. Finally, we validate the necessity of each type of information in the refined
semantic map by ablating either high-level semantic information (i.e., from CLIP) or low-level se-
mantic information (i.e., input of Tramba blocks).

6 CONCLUSION

In this paper, we first highlight the limitations of existing dual-stream dehazing methods, namely the
lack of clear guidance on how to balance the relative importance of short- and long-range dependen-
cies. Through extensive quantitative and qualitative analyses, we identify haze density and semantic
information as critical factors. Then, we propose the CLIP-enhanced Dual-path Aggregator (CedA),
a plug-and-play module designed to replace naı̈ve aggregators in existing networks. CedA leverages
a shared backbone to efficiently estimate haze density and semantic maps, subsequently generating
reliable aggregation weights. This framework also enables, for the first time, accurate estimation of
haze density maps. Finally, building on CedA, we present DehazeMatic, a benchmark dual-stream
dehazing network, and demonstrate that it achieves SOTA performance in multiple datasets, under-
scoring the untapped potential of dual-stream architectures for haze removal.
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protocols are provided in Section 4, Section 5, and Appendix B. Additional implementation de-
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researchers to reproduce our results, and we will make the code publicly available upon acceptance.

THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we employed a large language model (ChatGPT, OpenAI) solely as
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scientific content, methodologies, and conclusions were developed entirely by the authors. The
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REFERENCES

Yuang Ai, Huaibo Huang, Xiaoqiang Zhou, Jiexiang Wang, and Ran He. Multimodal prompt
perceiver: Empower adaptiveness generalizability and fidelity for all-in-one image restoration.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
25432–25444, 2024.

Codruta O Ancuti, Cosmin Ancuti, Mateu Sbert, and Radu Timofte. Dense-haze: A benchmark for
image dehazing with dense-haze and haze-free images. In 2019 IEEE international conference
on image processing (ICIP), pp. 1014–1018. IEEE, 2019.

Codruta O Ancuti, Cosmin Ancuti, and Radu Timofte. Nh-haze: An image dehazing benchmark
with non-homogeneous hazy and haze-free images. In Proc. Conf. Comput. Vis. Pattern Recognit.
workshops, pp. 444–445, 2020.

Dylan Auty and Krystian Mikolajczyk. Learning to prompt clip for monocular depth estimation: Ex-
ploring the limits of human language. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 2039–2047, 2023.

Haoran Bai, Jinshan Pan, Xinguang Xiang, and Jinhui Tang. Self-guided image dehazing using
progressive feature fusion. IEEE Trans. Image Process., 31:1217–1229, 2022.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

Dana Berman, Tali Treibitz, and Shai Avidan. Single image dehazing using haze-lines. IEEE
transactions on pattern analysis and machine intelligence, 42(3):720–734, 2018.

Bolun Cai, Xiangmin Xu, Kui Jia, Chunmei Qing, and Dacheng Tao. Dehazenet: An end-to-end
system for single image haze removal. IEEE Trans. Image Process., 25(11):5187–5198, 2016.

Sixiang Chen, Tian Ye, Yun Liu, and Erkang Chen. Dual-former: Hybrid self-attention transformer
for efficient image restoration. Digital Signal Processing, 149:104485, 2024a.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zixuan Chen, Zewei He, and Zhe-Ming Lu. Dea-net: Single image dehazing based on detail-
enhanced convolution and content-guided attention. IEEE Transactions on Image Processing,
2024b.

Xiaofeng Cong, Jie Gui, Jing Zhang, Junming Hou, and Hao Shen. A semi-supervised nighttime
dehazing baseline with spatial-frequency aware and realistic brightness constraint. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2631–2640, 2024.

Yuning Cui, Wenqi Ren, and Alois Knoll. Omni-kernel network for image restoration. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 1426–1434, 2024.

Yuning Cui, Qiang Wang, Chaopeng Li, Wenqi Ren, and Alois Knoll. Eenet: An effective and
efficient network for single image dehazing. Pattern Recognition, 158:111074, 2025.

Soham De and Sam Smith. Batch normalization biases residual blocks towards the identity function
in deep networks. Advances in Neural Information Processing Systems, 33:19964–19975, 2020.

Hang Dong, Jinshan Pan, Lei Xiang, Zhe Hu, Xinyi Zhang, Fei Wang, and Ming-Hsuan Yang.
Multi-scale boosted dehazing network with dense feature fusion. In Proc. Conf. Comput. Vis.
Pattern Recognit., pp. 2157–2167, 2020.

Chengyu Fang, Chunming He, Fengyang Xiao, Yulun Zhang, Longxiang Tang, Yuelin Zhang, Kai
Li, and Xiu Li. Real-world image dehazing with coherence-based pseudo labeling and cooperative
unfolding network. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024a.

Wenxuan Fang, Jankai Fan, Yu Zheng, Jiangwei Weng, Ying Tai, and Jun Li. Guided real image
dehazing using ycbcr color space. arXiv preprint arXiv:2412.17496, 2024b.

Raanan Fattal. Single image dehazing. ACM transactions on graphics (TOG), 27(3):1–9, 2008.

Yuxin Feng, Long Ma, Xiaozhe Meng, Fan Zhou, Risheng Liu, and Zhuo Su. Advancing real-world
image dehazing: Perspective, modules, and training. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Chun-Le Guo, Qixin Yan, Saeed Anwar, Runmin Cong, Wenqi Ren, and Chongyi Li. Image dehaz-
ing transformer with transmission-aware 3d position embedding. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 5812–5820, 2022.

Yu Guo, Yuan Gao, Wen Liu, Yuxu Lu, Jingxiang Qu, Shengfeng He, and Wenqi Ren. Scanet: Self-
paced semi-curricular attention network for non-homogeneous image dehazing. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1885–1894, 2023.

Kaiming He, Jian Sun, and Xiaoou Tang. Single image haze removal using dark channel prior. IEEE
transactions on pattern analysis and machine intelligence, 33(12):2341–2353, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Xueting Hu, Ce Zhang, Yi Zhang, Bowen Hai, Ke Yu, and Zhihai He. Learning to adapt clip for
few-shot monocular depth estimation. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 5594–5603, 2024.

Shaofei Huang, Si Liu, Tianrui Hui, Jizhong Han, Bo Li, Jiashi Feng, and Shuicheng Yan. Ordnet:
Capturing omni-range dependencies for scene parsing. IEEE Transactions on Image Processing,
29:8251–8263, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tao Huang, Xiaohuan Pei, Shan You, Fei Wang, Chen Qian, and Chang Xu. Localmamba: Visual
state space model with windowed selective scan. arXiv preprint arXiv:2403.09338, 2024.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL https://doi.org/10.5281/
zenodo.5143773. If you use this software, please cite it as below.

Xingyu Jiang, Xiuhui Zhang, Ning Gao, and Yue Deng. When fast fourier transform meets
transformer for image restoration. In European Conference on Computer Vision, pp. 381–402.
Springer, 2024.

Yitong Jiang, Zhaoyang Zhang, Tianfan Xue, and Jinwei Gu. Autodir: Automatic all-in-one image
restoration with latent diffusion. In European Conference on Computer Vision, pp. 340–359.
Springer, 2025.

Yeying Jin, Wending Yan, Wenhan Yang, and Robby T Tan. Structure representation network and
uncertainty feedback learning for dense non-uniform fog removal. In Asian Conference on Com-
puter Vision, pp. 155–172. Springer, 2022.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part II 14, pp. 694–711. Springer, 2016.

Bum Jun Kim, Hyeyeon Choi, Hyeonah Jang, Dong Gu Lee, Wonseok Jeong, and Sang Woo Kim.
Dead pixel test using effective receptive field. Pattern Recognition Letters, 167:149–156, 2023.

Se Eun Kim, Tae Hee Park, and Il Kyu Eom. Fast single image dehazing using saturation based
transmission map estimation. IEEE Transactions on Image Processing, 29:1985–1998, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Ashutosh Kulkarni and Subrahmanyam Murala. Aerial image dehazing with attentive deformable
transformers. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 6305–6314, 2023.

Ashutosh Kulkarni, Shruti S Phutke, and Subrahmanyam Murala. Unified transformer network for
multi-weather image restoration. In European Conference on Computer Vision, pp. 344–360.
Springer, 2022.

Boyi Li, Xiulian Peng, Zhangyang Wang, Jizheng Xu, and Dan Feng. Aod-net: All-in-one dehazing
network. In Proc. IEEE. Int. Conf. Comput. Vis., pp. 4770–4778, 2017.

Boyi Li, Wenqi Ren, Dengpan Fu, Dacheng Tao, Dan Feng, Wenjun Zeng, and Zhangyang Wang.
Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process., 28(1):492–505,
2018.

Boyun Li, Yuanbiao Gou, Jerry Zitao Liu, Hongyuan Zhu, Joey Tianyi Zhou, and Xi Peng. Zero-shot
image dehazing. IEEE Transactions on Image Processing, 29:8457–8466, 2020.

Chengyang Li, Heng Zhou, Yang Liu, Caidong Yang, Yongqiang Xie, Zhongbo Li, and Liping Zhu.
Detection-friendly dehazing: Object detection in real-world hazy scenes. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(7):8284–8295, 2023.

Lerenhan Li, Yunlong Dong, Wenqi Ren, Jinshan Pan, Changxin Gao, Nong Sang, and Ming-Hsuan
Yang. Semi-supervised image dehazing. IEEE Transactions on Image Processing, 29:2766–2779,
2019.

Zhexin Liang, Chongyi Li, Shangchen Zhou, Ruicheng Feng, and Chen Change Loy. Iterative
prompt learning for unsupervised backlit image enhancement. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 8094–8103, 2023.

12

https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Huichun Liu, Xiaosong Li, and Tianshu Tan. Interaction-guided two-branch image dehazing net-
work. In Proceedings of the Asian Conference on Computer Vision, pp. 4069–4084, 2024a.

Xiaohong Liu, Yongrui Ma, Zhihao Shi, and Jun Chen. Griddehazenet: Attention-based multi-
scale network for image dehazing. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 7314–7323, 2019.

Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and
Yunfan Liu. Vmamba: Visual state space model. arXiv preprint arXiv:2401.10166, 2024b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund, and Thomas B Schön. Controlling
vision-language models for universal image restoration. arXiv preprint arXiv:2310.01018, 2023.

Igor Morawski, Kai He, Shusil Dangi, and Winston H Hsu. Unsupervised image prior via prompt
learning and clip semantic guidance for low-light image enhancement. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5971–5981, 2024.

Srinivasa G Narasimhan and Shree K Nayar. Vision and the atmosphere. International journal of
computer vision, 48:233–254, 2002.

Xu Qin, Zhilin Wang, Yuanchao Bai, Xiaodong Xie, and Huizhu Jia. Ffa-net: Feature fusion at-
tention network for single image dehazing. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 11908–11915, 2020.

Yuwei Qiu, Kaihao Zhang, Chenxi Wang, Wenhan Luo, Hongdong Li, and Zhi Jin. Mb-
taylorformer: Multi-branch efficient transformer expanded by taylor formula for image dehaz-
ing. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12802–
12813, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Jingjing Ren, Haoyu Chen, Tian Ye, Hongtao Wu, and Lei Zhu. Triplane-smoothed video dehazing
with clip-enhanced generalization. International Journal of Computer Vision, pp. 1–14, 2024.

Wenqi Ren, Si Liu, Hua Zhang, Jinshan Pan, Xiaochun Cao, and Ming-Hsuan Yang. Single image
dehazing via multi-scale convolutional neural networks. In Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II
14, pp. 154–169. Springer, 2016.

Wenqi Ren, Lin Ma, Jiawei Zhang, Jinshan Pan, Xiaochun Cao, Wei Liu, and Ming-Hsuan Yang.
Gated fusion network for single image dehazing. In Proc. Conf. Comput. Vis. Pattern Recognit.,
pp. 3253–3261, 2018.

Wenqi Ren, Jinshan Pan, Hua Zhang, Xiaochun Cao, and Ming-Hsuan Yang. Single image dehazing
via multi-scale convolutional neural networks with holistic edges. Int. J. Comput. Vis., 128(1):
240–259, 2020.

Yuanjie Shao, Lerenhan Li, Wenqi Ren, Changxin Gao, and Nong Sang. Domain adaptation for
image dehazing. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 2808–2817, 2020.

Hao Shen, Zhong-Qiu Zhao, Yulun Zhang, and Zhao Zhang. Mutual information-driven triple in-
teraction network for efficient image dehazing. In Proceedings of the 31st ACM International
Conference on Multimedia, pp. 7–16, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yuda Song, Zhuqing He, Hui Qian, and Xin Du. Vision transformers for single image dehazing.
IEEE Transactions on Image Processing, 32:1927–1941, 2023.

Robby T Tan. Visibility in bad weather from a single image. In 2008 IEEE conference on computer
vision and pattern recognition, pp. 1–8. IEEE, 2008.

Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao
Li. Maxim: Multi-axis mlp for image processing. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 5769–5780, 2022.

Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of
relatively shallow networks. Advances in neural information processing systems, 29, 2016.

Ruiyi Wang, Wenhao Li, Xiaohong Liu, Chunyi Li, Zicheng Zhang, Xiongkuo Min, and Guang-
tao Zhai. Hazeclip: Towards language guided real-world image dehazing. arXiv preprint
arXiv:2407.13719, 2024a.

Yongzhen Wang, Jiamei Xiong, Xuefeng Yan, and Mingqiang Wei. Uscformer: unified transformer
with semantically contrastive learning for image dehazing. IEEE Transactions on Intelligent
Transportation Systems, 2023.

Zhongze Wang, Haitao Zhao, Jingchao Peng, Lujian Yao, and Kaijie Zhao. Odcr: Orthogonal de-
coupling contrastive regularization for unpaired image dehazing. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 25479–25489, 2024b.

Haiyan Wu, Yanyun Qu, Shaohui Lin, Jian Zhou, Ruizhi Qiao, Zhizhong Zhang, Yuan Xie, and
Lizhuang Ma. Contrastive learning for compact single image dehazing. In Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., pp. 10551–10560, 2021.

Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth
anything: Unleashing the power of large-scale unlabeled data. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10371–10381, 2024a.

Yang Yang, Chaoyue Wang, Xiaojie Guo, and Dacheng Tao. Robust unpaired image dehazing via
density and depth decomposition. International Journal of Computer Vision, 132(5):1557–1577,
2024b.

Zizheng Yang, Hu Yu, Bing Li, Jinghao Zhang, Jie Huang, and Feng Zhao. Unleashing the potential
of the semantic latent space in diffusion models for image dehazing. In European Conference on
Computer Vision, pp. 371–389. Springer, 2025.

Tian Ye, Yunchen Zhang, Mingchao Jiang, Liang Chen, Yun Liu, Sixiang Chen, and Erkang Chen.
Perceiving and modeling density for image dehazing. In European conference on computer vision,
pp. 130–145. Springer, 2022.

Hu Yu, Naishan Zheng, Man Zhou, Jie Huang, Zeyu Xiao, and Feng Zhao. Frequency and spatial
dual guidance for image dehazing. In European Conference on Computer Vision, pp. 181–198.
Springer, 2022.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-
Hsuan Yang, and Ling Shao. Learning enriched features for fast image restoration and enhance-
ment. IEEE transactions on pattern analysis and machine intelligence, 45(2):1934–1948, 2022.

He Zhang and Vishal M Patel. Densely connected pyramid dehazing network. In Proc. Conf.
Comput. Vis. Pattern Recognit., pp. 3194–3203, 2018.

Renrui Zhang, Ziyao Zeng, Ziyu Guo, and Yafeng Li. Can language understand depth? In Proceed-
ings of the 30th ACM International Conference on Multimedia, pp. 6868–6874, 2022.

Ruikun Zhang, Hao Yang, Yan Yang, Ying Fu, and Liyuan Pan. Lmhaze: Intensity-aware image
dehazing with a large-scale multi-intensity real haze dataset. In Proceedings of the 6th ACM
International Conference on Multimedia in Asia, pp. 1–1, 2024a.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Xiaoqin Zhang, Tao Wang, Jinxin Wang, Guiying Tang, and Li Zhao. Pyramid channel-based feature
attention network for image dehazing. Comput. Vis. Image Understanding, 197:103003, 2020.

Xiaozhe Zhang, Haidong Ding, Fengying Xie, Linpeng Pan, Yue Zi, Ke Wang, and Haopeng Zhang.
Beyond spatial domain: Cross-domain promoted fourier convolution helps single image dehazing.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 10221–10229,
2025.

Yafei Zhang, Shen Zhou, and Huafeng Li. Depth information assisted collaborative mutual pro-
motion network for single image dehazing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2846–2855, 2024b.

Yi Zhang, Meng-Hao Guo, Miao Wang, and Shi-Min Hu. Exploring regional clues in clip for zero-
shot semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 3270–3280, 2024c.

Dong Zhao, Jia Li, Hongyu Li, and Long Xu. Complementary feature enhanced network with vision
transformer for image dehazing. arXiv preprint arXiv:2109.07100, 2021.

Zhuoran Zheng and Chen Wu. U-shaped vision mamba for single image dehazing. arXiv preprint
arXiv:2402.04139, 2024.

Huiling Zhou, Xianhao Wu, Hongming Chen, Xiang Chen, and Xin He. Rsdehamba: Lightweight
vision mamba for remote sensing satellite image dehazing. arXiv preprint arXiv:2405.10030,
2024.

Ziqin Zhou, Yinjie Lei, Bowen Zhang, Lingqiao Liu, and Yifan Liu. Zegclip: Towards adapting clip
for zero-shot semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11175–11185, 2023.

Qingsong Zhu, Jiaming Mai, and Ling Shao. A fast single image haze removal algorithm using
color attenuation prior. IEEE transactions on image processing, 24(11):3522–3533, 2015.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

APPENDIX

A LEARNABLE HAZE/CLEAR PROMPTS

A.1 DEFINITION OF HAZE DENSITY MAP

The Atmospheric Scattering Model (ASM) Narasimhan & Nayar (2002) is defined as:

I(x) = J(x)t(x) +A(1− t(x)),

t(x) = e−βd(x).
(8)

Here, x = (x, y) is a 2D vector representing the pixel coordinates in the image. I denotes the
observed hazy image, while J represents the scene radiance image, typically regarded as the clear
image. A is the global atmospheric light, often considered to approximate the color of the sky,
atmosphere, or horizon. t is the transmission map, which is a scalar within the range [0, 1].

According to Equation 8, transmission map t depends on the atmospheric scattering coefficient β
and the scene depth d. β is typically defined as a global constant to characterize homogeneous haze
scene. However, in reality, particularly in outdoor environments, most haze is non-homogeneous
(e.g., haze on highways), the scattering coefficient β should also be treated as non-homogeneous.
Therefore, t(x) in Equation 8 can be rewritten as:

t(x) = e−β(x)d(x). (9)

The scattering coefficient β is determined by the physical properties of the atmosphere (e.g., partic-
ulate matter, size, shape, and concentration) and most directly reflects the haze density, so we treat
spatial variables β as the haze density map.

A.2 TRAINING PROCESS

A.2.1 GENERATION OF TRAINING DATA

To directly constrain the estimated haze density map in a regression manner and thereby train
the learnable haze/clear prompts, we first need triplet data {Ihaze, Iclear, Idensity} that includes the
ground truth haze density map Idensity. We implement this based on the ASM.

We use the clear images from the training set of the RESIDE dataset Li et al. (2018) as Iclear and
given Idensity, then generate Ihaze by utilizing these two to construct triplet data. The depth map d
required by ASM is obtained by inputting Iclear into the Depth Anything Yang et al. (2024a) model.
To ensure the learned prompts are applicable to both homogeneous and non-homogeneous haze,
the generated dataset should include both types of haze, equivalent to providing homogeneous and
non-homogeneous density maps.

Providing homogeneous density maps is easy. We simply assign a global constant to β. However,
it is difficult to obtain the non-homogeneous density maps required to synthesize non-homogeneous
hazy images. We propose obtaining these density maps from remote sensing (RS) non-homogeneous
hazy images, as the scene depth of each pixel in RS images can be approximately considered con-
sistent. In this case, the transmission map derived from a prior (such as the dark channel prior) can
be treated as an approximate density map. However, this method still introduces minor interference
from scene textures. To mitigate this, we apply smoothing techniques for post-processing. Using
this approach, we generate 20,000 non-homogeneous haze density maps and randomly sample from
them when synthesizing hazy images. For each clear image, we generate three images with different
haze density.

A.2.2 IMPLEMENTATION DETAILS

For both training stages we use the Adam Kingma & Ba (2014) optimizer with its default parameters
(β1 = 0.9, β2 = 0.99) and the cosine annealing strategy Loshchilov & Hutter (2016). The initial
learning rate of the first stage is set 2× 10−5, gradually decreasing to 2× 10−6. The batch size is 4,
and it only lasts for 1 epoch.
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In the second stage of training, the input data is divided into two types: [Iclear] and [Ihaze, Idensity],
which appear randomly within each batch. The initial learning rate of the first stage is set 1× 10−5,
gradually decreasing to 1× 10−6. The batch size is 4, and training lasts for 30 epochs.

B ARCHITECTURE OF DEHAZAMATIC
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Figure 8: (a) Overall architecture of DehazeMatic. (b) Internal design of the Transformer–Mamba
Dual Aggregation (TrambaDA) block.

The overall architecture of DehazeMatic is illustrated in Figure 8. Starting from a hazy input, shal-
low features are extracted and subsequently processed by a symmetric encoder–decoder framework.
Each encoder and decoder stage is composed of several Transformer–Mamba Dual Aggregation
(TrambaDA) blocks together with appropriate downsampling or upsampling layers. Skip connec-
tions are introduced at every resolution level to facilitate gradient propagation and feature reuse.
The output from the final decoding stage is fused with the original hazy image through a residual
pathway, producing the haze-free image.

B.1 CAPTURING SHORT-RANGE DEPENDENCIES

We construct this path using window-based self-attention Liu et al. (2021), which offers stronger fit-
ting capability through dynamic weights. Given an input feature map Fin ∈ RH×W×C , we partition
it into N = HW/M2 non-overlapping windows of size M×M . For window i, the flattened feature
is denoted as F (i)

in ∈ RM2×C . Assuming a single attention head, self-attention is computed as:

Q(i) = F
(i)
in WQ, K(i) = F

(i)
in WK , V (i) = F

(i)
in WV ,

F
(i)
out = Softmax

(
Q(i)K(i)⊤

√
dk

)
V (i),

F short
out =

{
F

(1)
out , F

(2)
out , . . . , F

(N)
out

}
,

(10)

where WQ,WK ,WV ∈ RC×dk are learnable projection matrices.

B.2 CAPTURING LONG-RANGE DEPENDENCIES

To capture global interactions with linear complexity, we incorporate Mamba’s S6 block Gu & Dao
(2023). Because visual data are non-causal, directly applying S6 on a flattened feature map can
introduce directional bias Liu et al. (2024b). Following Vmamba Liu et al. (2024b), we unfold the
feature map along four scanning directions to form sequences {F d

in}4d=1. Each sequence is processed

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

by an S6 operator, and the results are merged:

F d
in = Expand(Fin, d), d ∈ {1, 2, 3, 4},

F̄ d = S6
(
F d

in

)
,

F long
out = Merge

(
F̄ 1, F̄ 2, F̄ 3, F̄ 4

)
.

(11)

Here, Expand(·) and Merge(·) denote the scan-expand and scan-merge procedures.

C MORE VISUAL COMPARISONS

C.1 VISUAL COMPARISONS ON RESIDE

Visual comparisons on the RESIDE Li et al. (2018) SOTS Indoor and Outdoor datasets are shown
in Figures 9 and 10.

C.2 VISUAL COMPARISONS ON NH-HAZE

Figure 11 shows the visual comparisons on the NH-Haze Ancuti et al. (2020) dataset.

C.3 VISUAL COMPARISONS ON DENSE-HAZE

Visual comparisons on the Dense-Haze Ancuti et al. (2019) dataset are shown in Figure 12. It is
evident that our method greatly outperforms all compared methods, achieving the greatest detail
restoration, the highest visual quality improvement, and the least haze residual.
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Haze Dehamer
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Figure 9: The qualitative comparison on the RESIDE SOTS-Indoor Li et al. (2018) dataset.
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Figure 10: The qualitative comparison on the RESIDE SOTS-Outdoor Li et al. (2018) dataset.
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Figure 11: The qualitative comparison on the NH-HAZE Ancuti et al. (2020) dataset.
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Figure 12: The qualitative comparison on the Dense-Haze Ancuti et al. (2019) dataset.
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