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ABSTRACT

Training self-driving systems to be robust to the long-tail of driving scenarios is a
critical problem. Model-based approaches leverage simulation to emulate a wide
range of scenarios without putting users at risk in the real world. One promis-
ing path to faithful simulation is to train a forward model of the world to predict
the future states of both the environment and the ego-vehicle given past states
and a sequence of actions. In this paper, we argue that it is beneficial to model
the state of the ego-vehicle, which often has simple, predictable and deterministic
behavior, separately from the rest of the environment, which is much more com-
plex and highly multimodal. We propose to model the ego-vehicle using a simple
and differentiable kinematic model, while training a stochastic convolutional for-
ward model on raster representations of the state to predict the behavior of the rest
of the environment. We explore several configurations of such decoupled mod-
els, and evaluate their performance both with Model Predictive Control (MPC)
and direct policy learning. We test our methods on the task of highway driving
and demonstrate lower crash rates and better stability. The code is available at
https://github.com/vladisai/pytorch-PPUU/tree/ICLR2022.

1 INTRODUCTION

Models of the world have proven to be useful for various tasks (Hafner et al., 2020; Ebert et al.,
2018; Kaiser et al., 2020), including self-driving (Henaff et al., 2019; Ha & Schmidhuber, 2018).

In their work, Henaff et al. (2019) develop a model-based approach to policy learning for highway
driving. The world model in the proposed system is trained to predict semantic rasterization of the
top-down view of a section of a highway around the ego-vehicle, as well as the position and velocity
of the ego-vehicle. The policy model interacts with this world model and gets updated by following
the gradient calculated by backpropagation from a handcrafted cost through the world model and
into the policy parameters. This approach allows for training policies without needing additional
on-policy data, which is a very important advantage for self-driving.

However, the proposed world model has a few important limitations. The world model needs to
predict both the image of the top-down view and the vehicle state. The two tasks are very different:
ego-vehicle state prediction is deterministic and can be computed using a few kinematic equations,
while the environment has to be represented by a more complex model capable of representing mul-
timodal predictions to capture the variety of behaviors of other traffic participants. This difference
suggests the need for two distinct models, not one. Another limitation of the method proposed by
Henaff et al. (2019) is the cost function that is non-differentiable with respect to the position of
the vehicle. The gradients flow only through the prediction of the top-down image while omitting
important learning signal that can be obtained from the position of the car.

In the present work, we claim that problems that require modeling of agents’ motions in a complex
stochastic environment should be addressed with two distinct models: a simple and deterministic
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kinematic model that predicts ego-agents’ state in the environment, and a complex model of the
environment that is capable of addressing the problem’s stochasticity and multimodality. Separating
these models provides several advantages. First, we can leverage the knowledge of kinematics to
build an exact ego model. Second, when the context allows, we can even make the two models
completely independent of each other, making model-predictive control simpler and more efficient.

We build on top of the work of Henaff et al. (2019) and make the following contributions:

• we introduce a way to split a world model for self-driving into an environment model and
an ego model, and compare different ways of integrating them into one system;

• we propose a novel approach that makes the two models independent. We demonstrate that
such an approach is faster in certain settings while achieving better performance on the task
of highway driving;

• we design a cost function that is differentiable with respect to the position and velocity of
the ego vehicle;

2 PROBLEM DESCRIPTION

We consider the problem of autonomous highway driving in this paper, although our approach is
applicable to controlling any (similar) autonomous system. We consider three variables at each
time step t. They are the self-state sself

t ∈ Sself , the self-action aself
t ∈ Aself and the envi-

ronment state senv
t ∈ Senv. As the names suggest, the first two are the state of and action

taken by the autonomous vehicle under control (ego-car), while the environment state includes
everything except the ego-car, such as other cars and any other objects and agents. In our setup
sself
t ∈ R5, sself

t = (xt, yt, u
x
t , u

y
t , st), where (xt, yt) are coordinates of the center of the rear

axle (approximated as the center of the rear end of the car), (uxt , u
y
t ) is a unit direction vector,

and st is a scalar denoting the speed. aself
t ∈ R2 is the action taken by the controlled agent

at time t, with at,0 and at,1 denoting the applied acceleration and rotation strength respectively.
senv
t is a rasterized mid-level representation of a portion of the highway around the ego-vehicle.

An example of such representation is provided in the top row of figure 2. We also assume the
availability of a cost function C : Senv × Sself × Aself → R+ that, given states and actions at
step t, calculates the cost. In this work, C has been handcrafted and includes components to ac-
count for proximity of other vehicles, driving off the road and closeness to the lane center. Hav-
ing all these components, the goal is then to find a policy π that minimizes the cumulative cost
J(π) = E(senv

1 ,...,,senv
T ),(sself

1 ,...,sself
T )∼π

[∑T
t=1 C

(
senv
t , sself

t , π(senv
t−1, s

self
t−1)

)]
, where T is episode

length.

Dependencies To create a world model for this problem, we must consider the dependencies
among these state and action variables. We start by exhaustively enumerating these dependencies.
State components depend on the state information at the previous time step and the action, while the
action depends on the state information:

• sself
t+1 ← aself

t , sself
t , senv

t

• senv
t+1 ← aself

t , sself
t , senv

t

• aself
t ← sself

t , senv
t

The goal of creating a world model then boils down to building a function approximator that pre-
dicts sself

t+1 and senv
t+1 variables given their dependencies. Once we have the models for the states

(sself
t , senv

t ), we can minimize the cost, or the sum of it over time, w.r.t. the action sequence
(aself

1 , . . . ,aself
T ), on which we can train a policy π for driving the autonomous vehicle.

3 WORLD MODELING

In this section, we present the kinematics model and three possible ways of integrating it with
the environment model. In section 4 we present two ways of obtaining a policy using the world
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model. We then choose 4 combinations of environment model and policy learning set-ups and show
experimental results in section 5. The 4 combinations we use are shown in figure 1. We review
related work in section 6, and conclude with section 7.

Kinematics model We propose to simplify the dependency pattern of sself
t : sself

t+1 ←
aself
t , sself

t ,��senv
t . If we assume that the state of the environment senv

t does not affect the ego ve-
hicle’s state sself

t+1, we can resort to a simple bicycle kinematics model for state prediction. This
assumption holds unless there is a collision between the ego car and an object in the environment.

We use the following formulation of the kinematic bicycle model:

xt+1 = xt + stu
x
t∆t (1)

yt+1 = yt + stu
y
t∆t (2)

st+1 = st + at,0∆t (3)

(uxt+1, u
y
t+1) = unit[(uxt , u

y
t ) + at,1∆t(uyt ,−uxt )] (4)

Where ∆t is the time step (we use ∆t = 0.1 s), unit(v) = v
|v| . Equation 4 can be intuitively

understood as adding to the current direction vector an orthogonal unit vector multiplied by the
turning command and the time step.

Environment model The environment model f env
θ is directly inspired by the work of Henaff et al.

(2019). We use the same architecture in all our experiments with slight changes to the input. In all
cases, the model f env

θ takes as input senv
t and outputs senv

t+1. Depending on the set-up, the f env
θ may

have other inputs and/or outputs. An example of the prediction of a sequence senv
t is shown in the

top row of figure 2. To find the best way of integrating the kinematic model into the system, we
experiment with three configurations of the environment model:

1. Coupled Forward Model (CFM) is directly taken from Henaff et al. (2019). In this config-
uration f env

θ : Senv × Sself × Aself → Senv × Sself , (senv
t , sself

t ,aself
t ) 7→ (senv

t+1, s
self
t+1). There is

no explicit f self model, instead the world model f env
θ is trained to predict both senv

t+1 and sself
t+1. The

diagram of a set-up using this model is shown in figure 1a. This approach models all dependencies
described in section 2 with a single model f env

θ .

2. Coupled Forward Model with Kinematics (CFM-KM) extends the CFM model, but utilizes
the proposed kinematic model and the associated independence assumption to better model sself

t .
We have f env

θ : Senv × Sself → Senv, (senv
t , sself

t+1) 7→ senv
t+1. The model of the environment f env

θ ,
instead of taking aself

t as input, takes the prediction of sself
t+1 provided by f self(sself

t ,aself
t ). Thus,

f env
θ does not need to learn the kinematics. Diagrams of two methods using such set-up are shown

in figures 1b and 1c.

3. Decoupled Forward Model with Kinematics (DFM-KM) In this case, to make the ap-
proximation more efficient, we introduce another change to the dependency pattern: senv

t+1 ←
���aself
t ,�

�sself
t , senv

t . This severs the dependency between the environment and the state of the ego-
vehicle. Now, we can run the environment model f env separately from f self . We then have
f env
θ : Senv → Senv, senv

t 7→ senv
t+1. As before, sself

t+1 is predicted using f self(sself
t ,aself

t ). A
diagram of a set-up using such pattern is shown in figure 1d.

4 POLICY

Cost function CFM PL uses the same cost function as Henaff et al. (2019). CFM-KM and CFM-
KM MPC add one modification: the off-road component. Adding that cost component to CFM PL
cost function does not change performance by much, we show results in appendix C. The result-
ing cost function C(senv

t , sself
t ) contains components to account for proximity to other road users,

crossing lane demarcations and driving off the road. For the DFM-KM set-up, we implementCkm, a
modification of the original cost function C that is differentiable with respect to sself . In its original
version, the cost is used for backpropagation through senv

t and the forward model f env
θ (see figure

1a). With the decoupled model, we no longer require the forward model to be differentiable and
instead perform backpropagation through sself . To calculate the cost of taking a sequence of actions
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(a) CFM Policy method as proposed by Henaff et al.
(2019). There’s no kinematics model f self . Instead,
the forward model fenv

θ is tasked with learning the
kinematics as well as the predicting the trajectories of
other agents.

(b) CFM-KM Policy. Here, the forward model does
not predict sself

t+1. The exact kinematics model f self

predicts it instead and passes to fenv
θ as input.

(c) CFM-KM MPC. Like in CFM-KM Policy, we use
the kinematics model f self to help fenv. Additionally,
instead of learning a policy, we minimize C by directly
optimizing the action aself

t with a few steps of gradient
descent.

(d) DFM-KM MPC. Here we assume independence
of fenv

θ from sself
t . The gradients are only propagated

through f self . We do not require fenv
θ to be differen-

tiable.

Figure 1: Diagrams of the compared methods The circles represent values, while the half ellipses
represent functions. Arrows represent information flow, and the red color denotes the flow of the
gradients. Grayed out areas depict the flow into the prediction of next time step. Dashed lines depict
non-differentiable paths. In, CFM-based methods, the cost C is not differentiable w.r.t. sself .

of length T (aself
1 , . . . ,aself

T ), we first run f env
θ to obtain the predictions of (senv

1 , . . . , senv
T ) (see the

top row of figure 2). Then, we use f self to predict (sself
1 , . . . , sself

T ), which are then used to create
masks shifted to locations that match the sequence of sself (see the bottom row of figure 2). The
mask is shifted in a differentiable manner to allow gradient propagation to sself . The masks are then
multiplied with individual channels of the predicted senv to obtain different components of the cost,
which are then combined into one scalar with corresponding weighting coefficients. For a more in-
detail explanation of the cost calculation, see appendix D. With this method, we can backpropagate
into the action sequence (aself

1 , . . . ,aself
T ), update it following the negative direction of the gradients,

and repeat the whole process until the cost is low enough. Note that since we do not backpropagate
through senv

t or f env
θ , we do not need to re-run the forward model at each optimization step.

Policy We utilize two approaches for obtaining the driving policy.

1. Model Predictive Control (MPC) At step t = 0, having a sequence of planned actions of
length T (aself

0 , . . . ,aself
T−1), we want to minimize the cost associated with that plan. We first use

forward models f env
θ and f self to predict (senv

1 , . . . , senv
T ) and (sself

1 , . . . , sself
T ), and then use the

cost C to obtain the total cost of the predicted trajectory J =
∑T
t=1 C(senv

t , sself
t ,aself

t−1) · γt, where
γ is the discounting factor that is set to 0.99. Assuming that the cost C calculation is differentiable
w.r.t. the actions, we can backpropagate the gradients into the sequence of actions (see figure 1c
and 1d). We then do several steps of gradient descent to update the action sequence to minimize the
cost. Having the optimized sequence of actions, we then take the first action aself

1 in the sequence
and discard the rest, only to re-plan again at the next time step. For more details, see the pseudocode
of DFM-KM MPC and CFM-KM MPC in figure 4 in the appendix.

2. Policy Learning (PL) This approach is inspired by the method proposed by Henaff et al.
(2019). aself

t can be modeled using a model of the policy πφ(senv
t , sself

t ). We train a policy to
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Figure 2: Cost calculation. The top row shows f env
θ predictions for senv across the time steps.

Red, green, and blue denote lane demarcations, road users, and off-road regions respectively. The
bottom row shows masks used for calculating cost components. The masks’ location is differentiably
adjusted based on f self prediction of sself

1:10. · represents dot product. The bottom row masks are
multiplied with individual channels of the corresponding top row images to obtain the values of
C1:10.

minimize the sum of the costs J =
∑T
t=1 C(senv

t , sself
t , πφ(senv

t−1, s
self
t−1))·γt over a roll-out trajectory

of T steps. This can be done by computing the negative gradient of the sum of the costs w.r.t. the
policy’s parameters φ and repeatedly taking the step towards it (see figure 1a).

In the case of both MPC and PL, the proposed sparse dependency pattern simplifies backpropagation.
Gradients flow only through the self-states sself

t , as we have severed the dependency between the
environment state and the self-state. This dramatically lowers the number of interactions involved
in the backward pass. This should alleviate the issue of vanishing gradients and improve the quality
of the gradients flowing to actions aself

t .

Expected benefits We expect the methods proposed in section 3 to improve the obtained policies
in the following ways:

1. We expect the policies to have improved generalization and lower variance of predicted ac-
tions when using the kinematics model and/or decoupled forward model. Backpropagating
through a simpler and more exact model should enable us to train a more robust policy.

2. Decoupled forward model simplifies the model that connects the action to the cost. There-
fore, we expect each backward pass to take less time, making MPC faster than in the cou-
pled approach.

We test both the existence and degree of these benefits in our experiments.

A potential drawback The obvious drawback of the sparsification in the proposed DFM-KM
is that the environment state and self-state may eventually become incompatible with each other.
Because objects in the environment are not aware of the ego-car, some of them may eventually
overlap with the ego-car, resulting in an unrealistic situation, such as squeezing in a traffic jam.
To avoid such unrealistic situations from impacting the policy, we only use a limited roll-out when
using the proposed sparse dependency pattern. We argue that this is fine from two perspectives.
First, even with the conventional dense dependency pattern, learning a policy by backpropagating
through a recurrent network, which is how a world model is often implemented, is challenging
because of vanishing or exploding gradients. Therefore, the effective horizon of backpropagation
does not decrease much by using a limited roll-out with the sparse dependency pattern. Second, our
task of lane following does not require long-range planning by construction. The policy only needs
to repeat short-term goals, i.e. to maintain speed and distance from other objects on the road, over
and over.
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Table 1: Crash rates comparison. We compare episode failure rates in two simulation setups:
replay, where other cars are following the trajectories from the recorded dataset; and interactive
simulation, where other cars are controlled either by CFM-KM PL or CFM PL methods. Lower
crash rates are better.

Interaction Policy
Method Fixed Replay CFM-KM PL CFM PL

CFM PL 25.2± 3.0 9.5± 1.0 5.7± 2.6
CFM-KM PL 15.1± 1.9 1.0± 0.1 1.1± 0.3
CFM-KM MPC 25.4± 1.4 4.2± 1.1 3.3± 0.9
DFM-KM MPC 13.2± 1.2 1.5± 0.5 1.7± 0.6

5 EXPERIMENTS

Dataset We test our methods on the task of highway driving on the NGSIM I-80 dataset (Halkias
& Colyar, 2006). The dataset consists of highway driving scenarios recorded from multiple cameras
mounted above a section of Highway I-80 in California. The recordings take place at different times
of day to maximize the diversity of traffic densities. We follow the pre-processing steps of Henaff
et al. (2019) and obtain cars’ dimensions and trajectories on the highway. We use the same dataset
split of 80%, 10%, 10% for training, validation, and testing respectively.

Crash rates comparison We compare the selected combinations of approaches to policy learning
and forward modeling proposed in section 3. The components used by the methods are encoded in
the names. For implementation details, refer to appendix B. The compared methods are:

(a) CFM PL See figure 1a. This is the approach proposed by Henaff et al. (2019).

(b) CFM-KM PL See figure 1b. This augments CFM PL by adding the exact kinematic model
following the method described in section 3.

(c) CFM-KM MPC See figure 1c. Same as CFM-KM PL, but it uses MPC to find the best action.

(d) DFM-KM MPC See figure 1d. As described in section 3, this combines MPC with exact
kinematic model, decoupled forward model, and the modified cost function.

We test all methods in two settings: replay simulation and interactive simulation. Replay simulation
simply replays the trajectories of all cars except one, which is controlled by the method we are eval-
uating. This is the same evaluation protocol as was used by Henaff et al. (2019). This evaluation
method has a severe limitation: other cars’ actions are simply replayed from the dataset, and there-
fore are independent of the ego car’s actions. Some unrealistic situations may happen, for example,
the ego-car can be squeezed by other cars in a traffic jam if the ego car picks a different trajectory
from the one that the original vehicle followed during data recording. Since the proposed DFM-
KM MPC method assumes exactly such independence, replay evaluation results may be biased in
its favor. To address this problem, we also show the results of interactive simulation. Inspired by
(Bergamini et al., 2021), we implement interactive simulation by controlling the ego-car with the
selected method and controlling all other cars with either the CFM-KM PL or the CFM PL. We do
not experiment with controlling other cars with MPC because it is orders of magnitude slower than
doing one forward pass with a policy model (see table 2), rendering such evaluation setup too slow
to be practical. The results are shown in table 1. DFM-KM MPC that uses the decoupled forward
model with kinematics achieves the best performance in replay setting, closely trailed by the CFM-
KM PL policy learned with the enhanced coupled forward model. This suggests that augmenting
the forward model with exact kinematics equations gives a great boost in performance compared to
the model that has to learn the kinematics from data. In the interactive setting, the CFM-KM PL per-
forms slightly better, meaning that the independence assumption indeed biases the results somewhat
in the replay evaluation in favor of DFM-KM MPC. However, DFM-KM MPC outperforms CFM-
KM MPC by a big margin in all settings, showing that propagating the gradients through sself and
decoupling the forward model indeed improves the gradients’ quality, allowing MPC to efficiently
find better actions.
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Table 2: Time performance and output variance. To measure agreement among policies using
the same method but different seeds, we run the policies on the same input and calculate standard
deviation of the produced actions.

Standard deviation across seeds

Method Milliseconds per
simulation step

Acceleration Turning Average

CFM PL 1.2± 00.0 1.08 1.00 1.04
CFM-KM PL 1.2± 00.0 1.07 0.70 0.88
CFM-KM MPC 1162.6± 34.9 1.05 0.77 0.91
DFM-KM MPC 509.5± 18.5 0.78 0.83 0.80

(a) CFM PL (b) CFM-KM PL (c) CFM-KM MPC (d) DFM-KM MPC

Figure 3: Stress-testing the proposed methods. The controlled car (white, in the center) is cruising
between two other cars (green) when the car directly in front brakes suddenly. DFM-KM MPC
manages to react in time, while other methods fail.

Time performance Another benefit of the decoupled approach is the improved speed performance
of MPC. To demonstrate that, we measure the average time needed to evaluate one time step, and
show the results in table 2. DFM-KM MPC needs about half the amount of time needed for the
CFM-KM MPC. However, it is still orders of magnitude slower than running a trained policy.

Variance of actions We also test if the sparse dependency pattern facilitates more robust predic-
tions by the policies. We show results in table 2. We observe that introducing the kinematic model
helps to make the behavior more robust with respect to random initialization, with additional im-
provement gained from applying the proposed DFM-KM method. For an in-detail explanation of
how these variances were computed, see appendix A.

Stress-testing We test the proposed methods on a hand-designed scenario — controlling an agent
on a highway while cruising between two cars, when the car directly in the front brakes suddenly. We
show the results in figure 3. We observe that only DFM-KM MPC method manages to successfully
complete the scenario. CFM-KM MPC fails, showing that backpropagating through f env

θ is not as
efficient as backpropagating through f self in DFM-KM MPC approach. We hypothesize that two
factors help DFM-KM MPC here. First, in such extreme scenarios the decoupled model has an
advantage since it is unreasonable to expect that the car in the front will react to the ego-agent.
The independence assumption is justified, and helps the optimization process to find the best action.
Second, a learned policy, trained to solve multiple different scenarios, likely becomes a smooth
function that cannot take extreme values, while MPC is not restrained by model capacity and can
find the minimum of the cost function C better in such extreme cases.

6 RELATED WORK

Our work is related to the research on model-predictive control and motion planning methods.
These are areas with decades of research; for comprehensive overviews of these topics we refer
the reader to the books on optimal control (Bryson et al., 1979; Bertsekas, 2005), and motion plan-
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ning (LaValle, 2006). In this section, we mainly focus on the recent methods that combine the
existing approaches with deep neural networks.

Motion planning and Trajectory following Paden et al. (2016) provide a survey of the existing
methods for self-driving. Approaches range from graph-search methods, such as A* (Ziegler et al.,
2008), to dynamic programming (Montemerlo et al., 2008). In our work, trajectory following is
simplified as we are acting in a simulator with a perfectly controllable car, and we focus on motion
planning instead.

World modeling has proved to be a great approach to many tasks due to superior sample com-
plexity in policy learning (Nagabandi et al., 2017), although it comes with some caveats, such as
the danger of compounding errors (Asadi et al., 2019), and stochasticity (Denton & Fergus, 2018).
World model used in our work combines ideas of action-conditioned model (Oh et al., 2015), and
stochastic video prediction (Babaeizadeh et al., 2018). Such models have also been used in (Hafner
et al., 2020) and (Henaff et al., 2017).

Model Predictive Control has been used widely for self-driving. Zhang et al. (2018) use MPC for
planning and collision avoidance, Drews et al. (2018) use MPC to build an impressive system that
drives a scaled-down vehicle at high speeds around a track. Our approach can be viewed as a type
of Stochastic MPC (Heirung et al., 2018), or Scenario-based MPC (Schildbach et al., 2014; Cesari
et al., 2017), where the trajectory is optimized for a limited number of future scenarios (in our case
this number is 1, but it can easily be increased).

Kinematic models have been used extensively in self-driving applications. Often, cars are ap-
proximated by simplified models, such as unicycle (Kamenev et al., 2021) or bicycle models (Cesari
et al., 2017). These models are particularly useful when adding inductive bias to models to produce
realistic trajectories in path planning or behavior prediction (Salzmann et al., 2020). Kong et al.
(2015) provide an overview of kinematics and dynamics models used for self-driving and apply
them to path-following. The work of Scheel et al. (2021) is particularly close to ours as they also
propose a differentiable kinematic model for training a self-driving policy. However, there is no
trained environment model, and the predictions of the other road users are replaced with log replay.

Interactive simulation is a long-standing problem in self-driving cars development. Bergamini
et al. (2021) proposed a method that uses GANs (Goodfellow et al., 2014) to generate the initial
state, and then sequentially apply a learned policy to each of the generated agents. Suo et al. (2021)
propose a system that models the agents’ behavior jointly, making more consistent predictions.

7 DISCUSSION & CONCLUSION

We presented a novel design of a world model for an agent with known kinematics in a complex
stochastic environment. The conducted experiments show that the separation of the world model into
an ego model and a model of the environment helps obtain policies that reach better performance
in our experiments with highway driving. Decoupling these two models completely makes MPC
perform faster and better, and helps to solve a stress-test scenario that requires quick reaction from
the policy. We believe that our proposed approach can be applied to any problem that involves an
agent with easily predictable kinematics acting in a complex stochastic environment, e.g. controlling
robots in the real world, such as delivery carts or drones; or some Atari games, such as Space
Invaders, or Freeway. We also believe that for the suggested separation to work, it is not strictly
necessary to have the exact kinematic equations, the ego model can also be learned.

There is still more to explore about the proposed approaches. First, although DFM-KM MPC per-
forms better than CFM-KM MPC, it is yet unclear if that is because of the modified cost function
Ckm, or because of the decoupled forward model. Experiments with a method that integrates Ckm
with CFM-KM PL would resolve this ambiguity. Second, comparing the results of CFM-KM PL
and CFM-KM MPC, we see that policy learning performs much better, suggesting that DFM-KM
PL is an approach worth investigating. Third, hand-designing the cost function is only possible for
simple contexts, such as highway driving. For applications to more complex scenarios like urban
driving, we would need to learn the cost function, which is highly non-trivial (Ng & Russell, 2000).
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A CALCULATING THE POLICY OUTPUT AGREEMENT ACROSS SEEDS

To measure the agreement across seeds in Table 2, we first take three policies that use the same
method but different seeds and run them on 1000 examples from the dataset. We follow the pro-
cedure of Henaff et al. (2019) and, before unnormalizing models’ output, clamp the values to the
range [−3, 3]. For each method separately, we then calculate the mean and variance for the actions
taken across seeds and data examples to obtain µ and σ2. We then normalize the actions using
these values. Now, for the normalized values, we calculate the standard deviation across outputs for
different seeds for each dataset example separately. The values are then averaged across the entire
1000 examples to obtain the values reported in Table 2. Such a procedure accounts for the fact
different methods output values of different magnitudes and avoids skewing the standard deviation
comparison.

B IMPLEMENTATION DETAILS

Forward models To train updated forward models, we follow the procedure proposed by Henaff
et al. (2019). The only change to the forward models is the change to the input dimension. The
training method was unchanged.

CFM-KM Policy Training We use the same model as was proposed by Henaff et al. (2019), and
train for 70 k steps, with batch size 10, and learning rate of 0.0001. We decrease the learning rate by
a factor of 10 after 70% of training.

CFM-KM MPC To find the optimal action, we perform gradient descent for 11 iterations, with
learning rate of 0.31. The cost function is calculated as: C = Cproximity+0.32·Clane+0.32·Coffroad.
The uncertainty cost proposed in Henaff et al. (2019) was not used for CFM-KM MPC as it made
each iteration impractically slow. We used the plan length of 20 frames, which corresponds to 2
seconds. The hyperparameters were found with random search. We provide pseudo-code in figure
4b.

DFM-KM MPC To find the optimal action, we perform gradient descent for 27 iterations, with
learning rate of 0.48. The cost function is calculated as: C = 91.2 · Cproximity + 2.88 · Coffroad +
3.06 · Clane + 0.1 · Cjerk + 0.001 · Cdestination. We use the plan size of 30. The hyperparameters
were found with random search. We provide pseudo-code in figure 4a.

We do not re-train the forward model for this setup, we simply use the CFM-KM, but we always run
it with 0-actions — we get predictions senv

t+1 that correspond to what the world would have looked
like if the ego-vehicle kept going at current speed and did not turn. We then assume that changing
the actions would not have changed senv

t+1.

C OFFROAD COST

Another important difference between CFM PL and the other methods is that it does not use offroad
costCoffroad. The offroad cost component was introduced to prevent the ego-car from driving off the
road. Without it, the cost of driving off the highway is the same as the cost of simply crossing a lane
marker. To understand how much the offroad cost contributed to the improvement in performance,
we test the CFM PL method with offroad cost. The results are presented in table 3. We see some
improvement with adding offroad cost, particularly in interactive evaluation, but the performance
does not reach the results of CFM-KM PL and DFM-KM MPC.
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Input: Models f self and f env
θ

cost function Ckm
states sself

t and senv
t

planning horizon T
learning rate α
number of iterations N

Output: Action to be taken at time t
aself
t:t+T−1 ← 0;

for k ← 1 to T do
senv
t+k ← f env

θ (senv
t+k−1);

end
for i← 1 to N do

for k ← 1 to T do
sself
t+k ← f self(sself

t+k−1,a
self
t+k−1);

end
J ←

∑T
k=1 γ

kCkm(senv
t+k, s

self
t+k,a

self
t+k−1) ;

aself
t:t+T−1 ← aself − α ∂J

∂aself
t:t+T−1

;

end
return aself

t ;

(a) DFM-KM MPC
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cost function C
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t and senv
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learning rate α
number of iterations N

Output: Action to be taken at time t
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t:t+T−1 ← 0;

for i← 1 to N do
for k ← 1 to T do

sself
t+k ← f self(sself

t+k−1,a
self
t+k−1);

senv
t+k ← f env

θ (senv
t+k−1, s

self
t+k−1);

end
J ←

∑T
k=1 γ

kCkm(senv
t+k, s

self
t+k,a

self
t+k−1) ;

aself
t:t+T−1 ← aself − α ∂J

∂aself
t:t+T−1

;

end
return aself

t ;

(b) CFM-KM MPC

Figure 4: Algorithms of the proposed MPC methods. Note that DFM-KM-MPC runs f env
θ outside

the main optimization loop, while CFM-KM-MPC runs it inside, causing it to take more time per
iteration.

Table 3: Comparison of CFM PL with and without offroad cost component.

Interaction Policy
Method Fixed Replay CFM-KM Policy CFM Policy

CFM Policy 25.2± 3.0 7.3± 2.1 4.8± 2.3
CFM Policy with Coffroad 25.4± 1.6 2.1± 0.8 3.3± 0.2

D DFM-KM MPC COST

The cost calculation consists of two stages, as described in Section 4: mask creation and cost calcu-
lation.

Mask creation We create two kinds of masks: one for proximity cost, and the other for offroad
and lane costs. The masks are created in a way to align with the predicted center of the car and
face the direction of the car’s heading. To create masks given the position relative to the center of
the image, direction, speed, width, and length of the agent (x, y, ux, uy, s, w, l) we follow the steps
below:

1. Create a mesh grid of coordinates. The rasterized image resolution we use is 117 by 24,
and the size of the corresponding area is 72.2 by 14.8 meters. We first create a matrix
of coordinates of each of the cells in the image with respect to the center of the image.
A : R117×24×2, Ai,j = [(72.2/117 · i− 36.1)), (14.8/24 · j − 12.4)].

2. In order to align the coordinates with the ego-car, we shift and rotate them: Bi,j =
Rux,uy [Ai,j,1 − x,Ai,j,2 − y], where Rux,uy is the rotation matrix for the angle specified
by (ux, uy).

3. Construct the masks. First, we define the safety distance along the direction of movement:
dx = 1.5 · (max(10, s) + l) + 1, and in the orthogonal direction: dy = w/2 + 3.7. 3.7
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Table 4: Comparison of characteristics of the tested methods.

Method Decoupled
Forward

Model

Kinematics
Model

Learned
Policy

Modified
cost

CFM Policy 7 7 3 7
CFM-KM Policy 7 3 3 7
CFM-KM MPC 7 3 7 7
DFM-KM MPC 3 3 7 3

here is the lane width. These are the distances beyond which the objects are not taken into
account in the cost. Then, we want to build a mask that reaches 0 at dx in the front and
behind, at dy at the sides, and reaches 1 at the car edges. The masks are:

M car
i,j =

[(
dx − |Bi,j,1|
dx − l/2

)+

·min

((
dy − |Bi,j,2|
dy − w/2

)+

, 1

)]α
(5)

M side
i,j =

[(
dx − |Bi,j,1|
dx − l/2

)+

·
(
dy − |Bi,j,2|
dy − w/2

)+
]α

(6)

The difference between M side and M car are in the clamping values above 1: when calcu-
lating the cost component accounting for proximity to other vehicles, we would like the
mask profile to have a “flat nose”. α is a hyperparameter used to make the mask non-linear.
Higher values make the cost grow more rapidly as objects come closer to the ego-vehicle.

Note that all operations are differentiable with respect to (x, y, ux, uy, s), allowing us to backprop-
agate through sself .

Calculating cost components Having the masks, we simply perform element-wise multiplication
with the corresponding channels of the senv, see figure 5.

Clane = 〈senv
lanes,M

side〉 (7)

Coffroad = 〈senv
offroad,M

side〉 (8)
Cproximity = 〈senv

car ,M
car〉 (9)

(10)

The new cost also introduces two new cost components: destination cost, and jerk cost. Destination
cost is simply a term that pushes the car to go forward. This prevents cases where MPC fails to
drive forward because there are no cars behind. The cost is calculated as Cdestination = −x. Jerk
cost is responsible for making the actions more smooth. Intuitively, this is a cost that penalizes the
derivative of the actions w.r.t. time. Cjerk = 1

T

∑T
t=2(aself

t − aself
t−1)>(aself

t − aself
t−1).

The components are then combined into a single scalar with the corresponding weights α:

C =αlaneClane+

αoffroadCoffroad+

αproximityCproximity+

αdestinationCdestination+

αjerkCjerk

(11)

E COMPARISON OF METHODS

In table 4 we show the proposed methods and the comparison of the used components.
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(a) senv (b) senv
lanes (c) senv

cars (d) senv
offroad (e) Mcar (f) M side

Figure 5: Components used for calulating costs. Figure 5a depicts the original image, and 5b, 5c,
5d depict channels used for cost calculation. 5e shows the mask used for car proximity cost, while
5f is used for offroad and lane costs respectively.
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