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ABSTRACT

While YOLO models show promise in car fire detection, they remain insufficient
for real-world deployment in underground and indoor car parks due to dataset lim-
itations, evaluation gaps, and deployment constraints. We first fine-tune YOLO
on fire/smoke-augmented dataset, but analysis reveals that it struggles with am-
biguous fire-smoke boundaries, leading to false predictions. To address this, we
propose a real-time end-to-end framework integrating YOLOv8s with Florence2
VLM, combining object detection with contextual reasoning. While YOLOv8s
with VLM improves detection reliability, challenges are still ongoing. Our find-
ings highlight YOLO’s limitations in fire detection and the need for a more adap-
tive, environment-aware approach.

1 INTRODUCTION

A recent study (Meraner, 2023) highlights the growing risks of vehicle fires in underground/indoor
car parks, emphasizing how the reduced spacing between adjacent cars -resulting from larger vehi-
cle sizes and limited parking availability- leads to substantial property and environmental damage.
Furthermore, Brzezinska & Bryant (2022) provides an in-depth review of the increasing fire inci-
dents involving electric vehicles (EVs) powered by high-energy batteries, posing greater risks as the
battery pack continues to burn even after water extinguishment, spreading to nearby vehicles within
5 minutes. Despite this fact, existing fire detection research (Moradi et al., 2024; Seydi et al., 2022;
Shen et al., 2018; Gupta et al., 2021; Namozov & Im Cho, 2018; Son et al., 2018) primarily de-
pends on multi-sensor information or focuses on detection in environments such as outdoor settings
of wildland management to urban infrastructure (e.g., forest fires, building fires), or close-up fire
imagery, leaving a critical gap in addressing vehicles fire detection in confine car parks. As a result,
early fire suppression is crucial and only a few studies explored car fire detection in surveillance
videos. Zhang et al. (2022) used a handmade dataset with a modified YOLOv4, while Dilshad et al.
(2023) proposed an end-to-end system inspired by VGG16. However, both studies rely on custom
datasets focused on already-developed flames, neglecting early smoke detection and indoor car park
scenarios, where the risk of damage is highest.

First, we tune YOLOv8s capabilities by training it on our proposed dataset, handling the issue of data
scarcity in vehicle fire detection within car park zones. Building on AI-generated data augmentation
strategies (Rombach et al., 2022; Yang et al., 2023; He et al., 2022; Fang et al., 2024; Dunlap et al.,
2023; Tian et al., 2024), we use Stable Diffusion (Rombach et al., 2022) to generate synthetic yet
realistic images of vehicle fires set against car park backgrounds. This method pursues to address
the lack of annotated fire and smoke images in these environments and provide a robust and diverse
training dataset to effectively handle various real-world fire scenarios. However, through extensive
analysis, we notice this is insufficient for immediate on-the-scene application.

To tackle the drawbacks of previous studies and handle car fire detection in confined parking zones,
we further propose a novel End-to-End (E2E) fire detection framework specialized for challenging
indoor and underground settings, by incorporating VLM (Vision-Language Model) as an auxiliary
model to enhance the YOLO (You Only Look Once) (Redmon, 2016) object detection model. This
unified approach seeks to adopt YOLO’s real-time detection abilities and VLM’s overall contextual
scene understanding qualities.

In the end, we apply our framework to real-time CCTV footage of actual underground car parks.
This comprehensive system processes live surveillance feeds, promptly detects fire or smoke with
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minimal latency, and enables swift emergency responses to enhance safety and reduce potential
property damage in high-risk parking facilities.

In summary, contributions of this paper are as follows:

• We fine-tune YOLO model on custom smoke and fire detection dataset specifically created
for indoor/underground car park and conduct analysis on why it fails on real-world.

• We incorporate the VLM with the YOLO model and suggest a new metric as a unified
framework to overcome drawbacks of practical implications.

• Finally, we introduce an end-to-end framework operating real-time on CCTV footage, tar-
geting prompt response to fire incidents of the actual underground parking zones.

2 CUSTOMARY APPROACH: FINETUNING ON SPECIFIC DOMAIN

In this section, we first finetune the YOLO model on fire/smoke augemented dataset and provide
analysis of fundamental issues to facilitate real-world applications of previous approaches.

2.1 FIRE/SMOKE DATASET AUGMENTATION

To address the lack of annotated fire and smoke data, synthetic yet realistic images are generated
using Stable Diffusion (Rombach et al., 2022) on our custom-obtained underground car park CCTV
footage. These augmented images simulate fire and smoke in underground and indoor car park en-
vironments, providing diverse and representative data for training the detection model. An elaborate
flowchart of how we create fire and smoke in these images is explained further in the Appendix A.1.
In total, we train on 11.5K images of various indoor/outdoor scenarios targeting car park fire as well
as original flames and forest fires, where synthetic data comprises each 21% for training and both
12% for validation and test. Detailed information of the datatset can be found in Appendix A.2

2.2 YOLO FINETUNING

The YOLO object detection model is trained on both augmented and acquired datasets to improve
its detection ability, including specific circumstances of the enclosed parking zone. This finetuning
process equips the model to handle car park environments’ unique and challenging conditions.

2.3 ANALYSIS

Y
O
L
O

G
T

(a) (b)
Figure 1: Qualitative results of YOLO model, where YOLO prediction on top and GT on bottom.

We conduct a thorough analysis and explain why simply fine-tuning the YOLO model on bench-
mark and synthetic datasets is ineffective in real-world application. Qualitative results on Figure 1
focus on failure cases in our test set, with success cases in Appendix D. In Subfigure 1a we focus
on shortcomings of dataset annotations, which struggle with ambiguous smoke and fire boundaries,
leading to false predictions. In particular, since fire and smoke are part of the same combustion pro-
cess, it is difficult to pinpoint where fire ends and smoke begins, leading to inaccurate annotations,
false negatives, mislabeling, and low confidence scores.
While the traditional object detection metric is essential for evaluating object detection models, its
strict per-instance thresholds for localization and confidence often fail to reflect practical outcomes
in fire and smoke detection applications. When considering fire detection in real-world scenarios,
the primary goal should be to obtain at least one reliable detection rather than striving for perfect
bounding box alignment. Subfigure 1b demonstrates such cases, where detected bounding boxes
closely align with the ground truth but may still be penalized under instance-based evaluation cri-
teria. To manage this, we introduce a per-image binary detection evaluation metric in Section 3.2,
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which combines classification with spatial consideration, ensuring reliable detection system through
high-confidence detections with partial overlaps.
3 END-TO-END FIRE DETECTION FRAMEWORK
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CCTV Feed
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Figure 2: An End-to-End fire detection framework designed for detecting car fire/smoke events in
real-time CCTV footage of confined environments. The framework consists of four main stages:
data augmentation, training, real-time inference, and alerting security.

3.1 REAL-TIME INFERENCE WITH YOLO AND FLORENCE2 INTEGRATION

τ pred =

{τ mod, if VLM detects smoke or fire,
τ init, otherwise.

(eq1)

To develop an effective real-world fire detection system, we propose a novel end-to-end framework,
as illustrated in Figure 2. Beyond the previous domain adaptation stages, the trained YOLO model
collaborates with the Florence2 VLM during inference, analyzing CCTV frames to respond to the
contextual prompt, “Is there smoke or fire?”. If the VLM detects smoke or fire as shown in eq1,
τ pred, the confidence threshold of the YOLO model, is dynamically lowered to τ mod to enhance
detection sensitivity. Conversely, if the VLM does not identify smoke or fire, the YOLO model
maintains its initial confidence threshold, τ init, to reduce false positives. This unified approach
combines to take advantage of the strengths of both models: real-time object detection of YOLO
and language-based contextual understanding of VLM. We choose Florecne2 as our main VLM
due to its strong overall features among other VLMs, where performance comparison are given in
Appendix C.1.

3.2 PER-IMAGE DETECTION SUCCESS/FAILURE(BINARY CLASSIFICATION)
In the context of E2E fire detection, the priority should be securing at least one reliable detection
rather than striving for precise bounding box alignment. Therefore, we propose a modified evalua-
tion metric that prioritizes detecting the presence of fire or smoke in each frame.
For each image Ii, if there exists at least one predicted box whose IoU with the ground truth box is
≥ τ iou, we regard this image as having a “successful detection” (di = 1). Otherwise, we say the
detection failed (di = 0). Formally:

di = 1
(
max
bij∈Bτ

i

IoU(bij , b
∗
i ) ≥ τ iou

)
, (eq2)

where 1(·) is the indicator function, returning 1 if the condition is true, and 0 otherwise.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, F1 =

2 · Precision · Recall
Precision + Recall

.

Using eq2, we define precision and recall, where precision represents the proportion of correctly
predicted “object-present” instances, and recall measures the percentage of actual positives (images
containing the object) that are accurately detected. Refer to B.2 for detailed definitions.

3.3 ALERTING SECURITY

When the YOLO model predicts the presence of fire or smoke, simultaneously validated by the
VLM, an alert is immediately triggered to notify security. This facilitates a prompt response to
potential fire accidents, thereby reinforcing safety measures and minimizing property damage. The
algorithm outlining the process for the E2E framework is provided in Appendix C.4.
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4 EXPERIMENTS

This section breaks down the comprehensive experiments of our proposed framework, where in each
table VLM indicates Florence2 Model and best scores are indicated in bold.

model precision recall F1
score model precision recall F1

scorefire smoke fire smoke fire smoke fire smoke
YOLOv6s .861 .915 .853 .797 .855 +VLM .85 .901 .885 .847 .8707
YOLOv6m .86 .911 .872 .849 .873 +VLM .837 .904 .894 .879 .8784
YOLOv8s .843 .944 .835 .833 .863 +VLM .838 .931 .904 .885 .8895
YOLOv8m .843 .936 .839 .838 .863 +VLM .839 .918 .908 .89 .8886

Table 1: Automatic evaluation of YOLO models with and without the VLM integration on test set.
A complete comparison of different YOLO model versions can be found in Appendix C.3.

4.1 QUANTITATIVE RESULTS

To design our end-to-end system, we assess the models by using our per-image binary detection
metric, where its necessity mentioned above in Section 2.3. Since metrics for individual bounding
boxes are secondary to the system’s ability, we leave traditional evaluation in Appendix C.2 and
emphasize on accurately detecting the presence of the fire and smoke. As shown in Table 1, the
YOLO model with VLM, adjusting the confidence threshold from 0.5 to 0.3, outperforms all and
each standalone YOLO versions, despite the precision and recall trade-off.
We identify YOLOv8s as the most suitable model for our proposed system due to its lightweight de-
sign and superior F1 score across metrics. YOLOv8s achieves the highest F1-score, 0.8895, slightly
outperforming YOLOv8m, 0.8886, offering a more balanced trade-off between precision and recall.
Its slightly higher precision makes it the more reliable option when reducing false positives.

4.2 ABLATION STUDY

Model Settings precision recall F1 score ∆Training Dataset τmod fire smoke fire smoke
YOLOv8s * 0.5 0.843 0.944 0.835 0.833 0.863 -

+VLM * 0.4 0.839 0.935 0.885 0.863 0.8805 0.0175
+VLM * 0.3 0.838 0.931 0.904 0.885 0.8895 0.0265

YOLOv8s w/o syn data 0.5 0.843 0.897 0.843 0.702 0.8183 -0.045

Table 2: Ablation study on the impact of confidence threshold adjustments and the exclusion of
synthetic data.

To evaluate our proposed framework, we conduct ablation studies shown in Table 2. We first test
confidence thresholds τ mod of 0.5, 0.4, 0.3 to determine the optimal value for performance. The
results indicate that as the threshold decreases, recall for both fire and smoke detection improves sig-
nificantly, reaching the highest values of 0.904 and 0.885, respectively, at a threshold of 0.3. How-
ever, precision for both categories shows a slight decline, reflecting a trade-off between precision
and recall. The integration of VLM also consistently enhances overall performance, as evidenced
by the increase in the F1 score from 0.863 to 0.8895.
Moreover, we provide evaluations on the effect of synthetic fire and smoke data by training the
model with and without synthetic data. For fire, which had relatively fewer samples, the impact
was minimal, and in some cases, recall even increased. However, for smoke, which relied heavily
on synthetic data, both precision and recall dropped significantly. The model trained with synthetic
data achieved an F1 score that was 0.045 higher than the one trained without it.

5 DISCUSSION
Despite our novel approach to unify Florence 2 with YOLO as an end-to-end framework, some minor
considerations remain. Despite utilizing Using Stable Diffusion to synthesize specific fire patterns
remains challenging, as flames and smoke, despite their upward-rising characteristics, are restricted
to the car’s bounding box, limiting realism. Another attribute arises during the transition from offline
to online deployment, particularly in addressing site-specific environmental configurations. Notably,
reading frames from RTSP streams and uploading them to the AWS server takes approximately 1.6
times longer than offline processing, introducing additional latency. Consequently, to maintain real-
time inference, VLM is limited to operating at 4 FPS as a complementary module to YOLO, rather
than running at full capacity or independently. In the Appendix E, we outline the potential strategies
to further enhance both the real-world applicability and performance of our approach.
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Broader Impact Statement
This work highlights the challenges and limitations of applying deep learning to fire and smoke
detection in confined environments, such as indoor and underground parking facilities. While our
framework demonstrates significant improvements in synthetic-real data alignment and early detec-
tion capabilities, it also exposes the practical hurdles of domain adaptation, gap between real and
synthetic datasets. By addressing these gaps, we aim to bridge the divide between research ad-
vancements and real-world deployment, fostering discussions on the reliability and robustness of
AI systems in high-stakes scenarios. This work emphasizes the need for transparent evaluation and
practical solutions to ensure the effective application of deep learning where it matters most.
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A DATA EXPLORATION

A.1 SYNTHETIC IMAGE GENERATION VIA STABLE DIFFUSION
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Figure 3: An End-to-End fire detection framework designed for detecting fire/smoke events in real-
time CCTV footage of confined environments. The framework consists of four main stages: data
augmentation, training, real-time inference, and alerting security.

Figure 3 illustrates our fire/smoke object dataset generation workflow, specifically designed to gener-
ate realistic synthetic datasets for fire scenarios in underground parking zones. The pipeline consists
of three distinct stages: (1) identifying vehicle objects within the parking zones and determining the
location of the calamity, (2) synthesizing images of the target vehicle engulfed in smoke or fire using
a controllable diffusion model, and (3) applying blending-based post-processing to enhance visual
fidelity.

In the first stage, an input image without fire or smoke serves as the base. A pretrained
YOLOv5 model is utlized to detect objects of interest, such as vehicles. Subsequently, random
resizing and padding operations are applied to generate a mask that specifies irregular regions for
synthesizing fire or smoke effects.

In the second stage, synthetic fire or smoke images are generated using a controllable diffusion
model. Specifically, Canny edges(?) are extracted from the input image and fed into ControlNet ,
ensuring structural alignment and producing realistic fire- or smoke-engulfed scenes. The edge con-
dition is applied only during the initial two-thirds of the diffusion process to preserve the vehicle’s
structure, while the remaining steps allow greater flexibility in shaping the fire and smoke. For cases
requiring specific fire styles or flame patterns, an optional IPAdapter is incorporated, enabling to
customize the visual characteristics of the synthesized effects. The synthesis is performed using
inpainting Stable Diffusion (SDInpaint) to generate the fire or smoke effects within the designated
mask.

Finally, in the Image Refinement stage, Poisson blending is applied to seamlessly integrate the
synthetic images with the original image. This refinement step effectively removes artifacts and
ensures the final output is visually consistent with real-world scenes.
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Figure 4: Success case of fire/smoke image generation.

As shown in Figure 4, our pipeline successfully synthesizes realistic fire- and smoke-engulfed
scenes. However, due to the instability of SDInpaint, failure cases are discarded before entering the
training phase. As is well known, diffusion models sometimes fail to accurately reflect text prompts,
even when provided with the proper conditions. Therefore, at the final stage of the pipeline, users
sometimes manually remove unrealistic(failure) samples.

A.2 DATASET DETAILS

Dataset Name Train Val Test Total Scenario Target Label

Tau house 40 1782 200 200 2182 indoor car fire,smoke
CCTV-fire 50 1418 166 168 1752 indoor/outdoor diverse fire,smoke
fire and smoke 1607 159 159 1925 outdoor big fires fire,smoke
firecops 222 21 9 252 outdoor car fire
Synthetic Data - smoke 2354 130 130 2614 indoor car smoke
cctv-pano 50 4071 407 407 4885 indoor car
Synthetic Data - fire 100 9 8 117 indoor car fire

Total 11.5K 1K 1K

Table 3: Details of the datasets used for our experiment, including the total number of samples,
scenarios, targets, and labels for each dataset.

The dataset comprises a diverse collection of images designed to facilitate fire and smoke detection
tasks across varying environments and scenarios. It includes seven sub-datasets, totaling 13,727
images, with 11,554 for training, 1,092 for validation, and 1,081 for testing. These datasets span
multiple domains, including indoor, outdoor, and indoor/outdoor mixed environments, targeting spe-
cific objects such as cars or diverse items, and are annotated for fire, smoke, or both.
Real-world datasets, such as Tau house 40 and cctv-fire 50, provide annotated images for challeng-
ing indoor and mixed environments, whereas fire and smoke and firecops focus on outdoor settings
with big fires and car fires, respectively. Additionally, synthetic datasets, including Synthetic Data
- smoke and Synthetic Data - fire, simulate realistic indoor fire and smoke scenarios to address the
scarcity of annotated data in such confined environments. Notably, CCTV-pano 50, the largest sub-
set with 4,885 images, offers extensive data for indoor scenarios involving cars. This dataset ensures
a comprehensive representation of real-world and synthetic conditions, enabling robust model train-
ing for early fire and smoke detection across various domains, particularly in confined spaces like
indoor and underground parking facilities.

B EVALUATION METRICS

B.1 BASIC DEFINITIONS

Let D = {I1, I2, . . . , IN} be the set of all images to be evaluated, and let N = |D|. If the target
object exists in image Ii, then Gi = 1. Otherwise, Gi = 0. Let Bi = {bi1, bi2, . . . , biMi

} be the
set of bounding boxes predicted by the model for image Ii. Here, Mi is the number of predicted
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boxes for Ii. Each predicted bounding box bij is associated with a confidence score sij . Here, sij
represents the confidence score of the bounding box bij , and only boxes with scores exceeding a
predefined confidence threshold τpred are considered:

Bτi = {bij | sij ≥ τpred}.

This ensures that only bounding boxes with sufficient confidence are used for evaluation. The IoU
between a predicted bounding box bij and the ground truth bounding box b∗i (in image Ii) is defined
as:

IoU(bij , b
∗
i ) =

| bij ∩ b∗i |
| bij ∪ b∗i |

.

Let τiou be the minimum IoU threshold above which a predicted bounding box is considered a
valid detection (i.e., “matched” with the ground truth). If IoU is not considered at all, detections
in completely different locations may still be recognized as correct answers despite being false
positives.

B.2 PER-IMAGE DETECTION SUCCESS/FAILURE(BINARY CLASSIFICATION)

For each image Ii, if there exists at least one predicted box whose IoU with the ground truth box is
≥ τiou, we regard this image as having a “successful detection” (di = 1). Otherwise, we say the
detection failed (di = 0). Formally:

di = 1
(
max
bij∈Bτ

i

IoU(bij , b
∗
i ) ≥ τiou

)
,

where 1(·) is the indicator function, returning 1 if the condition is true, and 0 otherwise.

• di = 1 means “the model claims there is at least one instance of the object in image Ii.”

• di = 0 means “the model claims no object is found in image Ii.”

We can interpret (Gi, di) as a binary classification scenario. Thus, the standard definitions of TP,
FP, FN, and TN apply:

TP =

N∑
i=1

[Gi · di ],
True Positive (TP): The total count of images in which the
object exists (Gi = 1) and the model detects it (di = 1).

(1)

FP =

N∑
i=1

[(1−Gi) · di],
False Positive (FP): The total count of images in which the
object does not exist (Gi = 0) but the model claims detec-
tion (di = 1).

(2)

FN =

N∑
i=1

[Gi · (1− di)],
False Negative (FN) The total count of images in which
the object exists (Gi = 1), but the model fails to detect it
(di = 0).

(3)

TN =

N∑
i=1

[(1−Gi) · (1− di)],
True Negative (TN) The total count of images in which the
object does not exist (Gi = 0), and the model also does not
detect it (di = 0).

(4)

Using the TP, FP, and FN values defined above, we can compute Precision and Recall for the entire
dataset:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
.

Precision indicates the fraction of “object-present” predictions that are correct, while recall indicates
the fraction of actual positives (images with the object) that are correctly identified.
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In summary, if an image Ii contains at least one instance of the target object, then Gi = 1; otherwise,
Gi = 0. If there is at least one predicted box with IoU ≥ τiou against the ground truth box, then
di = 1; otherwise, di = 0. After computing di for each image Ii ∈ D, we sum up to get TP, FP, FN,
and TN. Finally, we calculate the Precision and Recall values using the definitions above.

B.3 PER-IMAGE AVERAGE PRECISION CALCULATION WITH CONFIDENCE THRESHOLDS

To evaluate model performance across different confidence levels, we compute Precision-Recall
(PR) curves by varying the confidence threshold τpred from 0 to 1 with a step size of 0.01. The
Average Precision (AP) is then computed as the area under the PR curve. For each confidence
threshold τpred , we compute the precision and recall using the previously defined formulas. The
Precision-Recall Curve is constructed by plotting Precision against Recall at different confidence
levels τpred. The AP is then computed as the area under this curve:

AP =

∫ 1

0

Precision(Recall) d(Recall).

In practice, we approximate this integral using discrete summation:

AP ≈
K∑

k=1

(
Rk −Rk−1

)
Pk.

wherePk and Rk are precision and recall at different confidence thresholds and K is the total number
of evaluated thresholds.

C MODEL COMPARISON
C.1 VISION-LANGUAGE-MODEL COMPARISON

Model Initial Detection Time Detection Params Latency Memory
BLIP - IC - base 17.58 s smoke/fire 253M 0.164 s 3 GB
BLIP - IC - large 8.00 s smoke/firee 580M 0.211 s 3.8 GB
BLIP2 - OTP - COCO - - 2.7 B - 17 GB
BLIP2 - FLAN T5 8.87 s fire 3B 0.43 s 17.5GB
LLAVA 7B (fp16) 8.1 s fire 7B 0.85 s 16.3 GB
Florence 2 - base (fp16) unclear smoke/fire 0.23B 0.18s 1.2GB
Florence 2 - large (fp16) 3.03s smoke/fire 0.77B 0.28s 2.3 GB

Table 4: Comparison of Vision-Language Models (VLMs) based on initial detection time, detected
labels, number of parameters, frame latency, and GPU memory usage in a real underground cark
park fire CCTV footage.

Table 4 presents a comparison of Vision-Language Models (VLMs) for detecting smoke and fire
on a real underground car park fire CCTV footage, evaluating them based on initial detection time,
detected labels, number of parameters, frame latency, and GPU memory usage. Across the models,
Florence 2 - large (fp16) stands out with the best overall performance, featuring the fastest initial
detection time of 3.03 seconds, the ability to detect both fire and smoke, a moderate latency of
0.28 seconds, and efficient GPU memory usage of 2.3GB, making it highly suitable for real-time
application.
In contrast, BLIP - IC base exhibits the slowest detection time at 17.58 seconds, while LLAVA 7B
consumes the most GPU memory (16.3GB) and has the highest latency (0.85 seconds), indicating
limitations for deployment in low-resource environments and real-time. Although Florence 2 - base
(fp16) offers the smallest parameter size (0.23B) and the lowest memory usage (1.2GB), its unclear
detection capability makes it less reliable for this specific task. Similarly, models like BLIP2 - FLAN
T5 and LLAVA 7B is only able to identify fire detection, reducing their versatility.

Overall, this analysis highlights the trade-offs between detection speed, computational requirements,
and model versatility across different VLMs, providing evidence as to why we chose Florence 2 as
our main VLM when merging with the YOLO model.
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model name Precision Recall mAP50 mAP50:95
YOLOv5s 0.651 0.62 0.641 0.377
YOLOv5m 0.664 0.634 0.65 0.377
YOLOv6s 0.645 0.662 0.645 0.37
YOLOv6m 0.679 0.654 0.669 0.377
YOLOv8s 0.681 0.634 0.649 0.377
YOLOv8m 0.634 0.639 0.643 0.38
YOLOv10s 0.676 0.62 0.637 0.368
YOLOv10m 0.647 0.617 0.625 0.356

Table 5: Performance comparison of YOLO models with and without VLM integration.

C.2 YOLO MODEL COMPARISON

Table 5 presents a performance comparison of various YOLO models with and without VLM inte-
gration, using standard object detection evaluation metrics including precision, recall, mAP50, and
mAP50:95. Among the models, YOLOv8s achieves the highest precision (0.681), highlighting its
accuracy in correctly identifying objects. YOLOv6m stands out as the most balanced model, achiev-
ing the highest mAP50 (0.669) and AP per-image (0.9227), showcasing its strong object detection
and classification capabilities. YOLOv8m outperforms all models in mAP50:95 (0.38), making it
the most robust under stricter IoU thresholds. YOLOv6s leads in recall (0.662), demonstrating its
effectiveness in minimizing missed detections. YOLOv6m stands out in classification and detection
accuracy, while YOLOv8m performs well under stricter IoU conditions. Considering general perfor-
mance, YOLOv6m and YOLOv8s exhibit competitive results in all metrics, making them versatile
choices for general-purpose tasks when the object detection model is used independently.

C.3 FULL YOLO MODEL COMPARISON WITH AND WITHOUT VLM
Model precision recall F1

Score
Model precision recall F1

Scorefire smoke fire smoke fire smoke fire smoke
yolov5s 0.835 0.894 0.766 0.811 0.8248 5s+VLM 0.838 0.883 0.881 0.885 0.8716
yolov5m 0.842 0.919 0.784 0.811 0.8369 5m+VLM 0.839 0.905 0.885 0.89 0.8797
yolov6s 0.861 0.915 0.853 0.797 0.8553 6s+VLM 0.85 0.901 0.885 0.847 0.8707
yolov6m 0.86 0.911 0.872 0.849 0.8728 6m+VLM 0.837 0.904 0.894 0.879 0.8784
yolov8s 0.843 0.944 0.835 0.833 0.8627 8s+VLM 0.838 0.931 0.904 0.885 0.8895
yolov8m 0.843 0.936 0.839 0.838 0.8632 8m+VLM 0.839 0.918 0.908 0.89 0.8886
yolov10s 0.851 0.934 0.789 0.814 0.8446 10s+VLM 0.85 0.912 0.858 0.882 0.8755
yolov10m 0.841 0.943 0.803 0.822 0.8504 10m+VLM 0.842 0.919 0.881 0.866 0.8770

C.4 ALGORITHM OF INFERENCE ON REAL-TIME CCTV FEED

Algorithm 1 Real-Time Inference with YOLO and Florence2 Integration
Input: Trained YOLO model, Florence2 VLM, CCTV feed, initial threshold τinit, modified thresh-
old τmod

Output: Alert trigger for fire/smoke detection
Initialize τpred ← τinit
for each frame in CCTV feed do

Pass frame to Florence2 VLM with prompt: “Is there smoke or fire?”
if VLM detects smoke or fire then
τpred ← τmod {Lower threshold for enhanced sensitivity}

else
τpred ← τinit {Maintain initial threshold to reduce false positives}

end if
Perform object detection using YOLO model with confidence threshold τpred
if YOLO predicts fire or smoke then

if Validated by VLM then
Trigger alert to notify security

end if
end if

end for
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D QUALITATIVE RESULTS
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Figure 5: Qualitative results on our constructed test set. The first row presents the YOLOv8s pre-
dictions, while the second row displays the corresponding ground truth annotations. We present
examples of successful cases, where the predicted bounding boxes closely match the ground truth,
achieving an IoU exceeding the threshold τ iou and demonstrating high confidence scores.
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Figure 6: Qualitative results on real-world fire comparing on VLM only, YOLO only, and our pro-
posed approach of VLM and YOLO integration.

As shown in 6, the VLM-only model detects three out of four smoke or fire incidents, whereas
YOLO alone fails in all cases. However, when integrated with the VLM at a threshold of 0.3, YOLO
successfully detects smoke and fire in two instances. Despite the higher detection performance
offered by the VLM, it also leads to an increased number of false alarms.

E FUTURE WORKS

While the unified end-to-end fire detection framework combining YOLOv8s and Florence2 VLM
improves performance and reliability of previous approaches, challenges remain, including ambigu-
ous annotations, the synthetic-real data gap, and real-time deployment issues. Future work will focus
on enhancing dataset quality, bridging the synthetic-real data gap, and optimizing the framework for
seamless real-time deployment to further improve its practical performance.

12


	Introduction
	Customary Approach: Finetuning on Specific Domain
	Fire/Smoke Dataset Augmentation
	YOLO Finetuning
	Analysis

	END-TO-END Fire Detection Framework
	Real-Time Inference with YOLO and Florence2 Integration
	Per-Image Detection Success/Failure(Binary Classification)
	Alerting Security

	Experiments
	Quantitative Results
	Ablation Study

	Discussion
	Data Exploration
	Synthetic Image Generation via Stable Diffusion
	Dataset Details

	Evaluation Metrics
	Basic Definitions
	Per-Image Detection Success/Failure(Binary Classification)
	Per-Image Average Precision Calculation with Confidence Thresholds

	Model Comparison
	Vision-Language-Model Comparison
	YOLO Model Comparison
	Full YOLO model comparison with and without VLM
	Algorithm of Inference on Real-Time CCTV Feed

	Qualitative Results
	Future Works

