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ABSTRACT

Smart homes are enhanced with the convenience offered by Inter-
net of Things (IoT) devices. However, the interconnected behaviors
of devices can lead to unexpected interactions, commonly referred
to as interactive threats. This paper addresses the analysis of poten-
tial interactive threats in the IoT domain and introduces FedINT, a
federated IoT interactive threat detection system. Building upon pre-
vious research, we represent device interactions in smart homes as
interactive graphs. These graphs are then encoded using graph neu-
ral networks (GNNs). Considering the privacy concerns associated
with smart home data, which is closely tied to users’ daily lives, we
propose a layer-wise clustering-based federated GNN framework.
This framework allows collaborative training of the GNN model
without sharing raw data and addresses statistical heterogeneity
and concept drift issues specific to graph data. To evaluate our
approach, we employ datasets collected from five IoT automation
platforms. The results show that our prototype, FedINT, achieves
an average accuracy exceeding 90% in detecting interactive threats,
surpassing the performance of existing methods.

1 INTRODUCTION

In modern households, an increasing number of smart devices are
deployed with the aim of achieving home automation. These devices
operate based on rules that adhere to the trigger-action paradigm.
For instance, a SmartThings app [30] exemplifies an automation
rule (R1) that states: "If smoke is detected (trigger), turn on the water
valve and activate the alarm (action)." Based on a recent survey [5],
it is revealed that 82.4% of smart homes employ multiple rules to
control a single device. These rules enable interactions between
devices, commonly known as IoT interactions.

However, unforeseen interactions among IoT devices can give
rise to interactive threats, such as action conflicts, which pose
significant security and privacy risks. To illustrate, consider the
SmartThings rule, R1. In an unexpected scenario, when the water
valve is turned on due to a water leak detection in the kitchen, an-
other SmartThings rule, R2, instructs the system to close the water
valve upon detecting a water leak. Consequently, the combination
of these two rules creates a vulnerable interaction, resulting in the
exposure of an interactive threat: "failing to turn on the water valve
when smoke is detected" due to the conflicting actions of "water
valve opening and closing" These interactive threats can arise from
user errors [11, 27, 32] as well as physical attacks [10, 37, 41, 45].

To mitigate the risks associated with interactive threats, effective
management of IoT automation rules and monitoring the flow of
trigger-action information becomes paramount. The automation
rules in IoT systems typically adhere to the standard trigger-action
paradigm, and the interplay between these rules can be visualized
as an interaction graph [34]. In this representation, the automation
rules are denoted as nodes, while the connections between different
rules, depicting the trigger-action relationships, are represented
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as edges. In the context of an interaction graph, the features of
nodes can be represented using semantic-aware word or sentence
embeddings. When examining vulnerable interaction graphs, dis-
tinct graph patterns may emerge, indicating anomalous behaviors
compared to benign graphs.

Based on Glint [34], FedINT employs a GNN model to acquire
insights into the interaction patterns. Simultaneously, since the
event logs originate from diverse platforms and households, the
utilization of federated learning enables the collaborative develop-
ment of a more generalized model while preserving the local data of
individual users. The reason behind this is that a single household
possesses a restricted number of devices, rendering it impractical
to train a customized and resilient GNN model. Federated learning
(FL) enables the collaborative training of a model while maintaining
the privacy of raw data.

However, households may utilize different types of devices and
exhibit distinct usage patterns across various smart home plat-
forms. As a result, the generated data becomes heterogeneous.
This data heterogeneity poses challenges in federated learning (FL)
training paradigms, such as slow convergence and low accuracy,
as highlighted in studies [1, 8, 31]. These challenges are particu-
larly pronounced when the data distribution is time-varying or un-
evenly distributed among different clients. To address this issue, we
propose a layer-wise clustering-based federated graph contrastive
learning framework. In this framework, we train a shared threat
detection model by distinguishing between normal and vulnera-
ble graphs using non-i.i.d. (not identically and independently dis-
tributed) datasets. Specifically, we introduce a layer-wise clustering-
based federated contrastive GNN model tailored for non-iid graph
datasets. This model is designed to learn contrastive representa-
tions of graphs, resulting in a threat detection accuracy exceeding
90% on average. This approach enhances the model’s generalization
capability while preserving users’ data privacy.

The rest of the paper is organized as follows. Section 2 defines
the interaction graph and federated interactive threat detection. We
present the designed model in Section 3 and evaluate in Section 4.
We discuss the related work in Section 5 and conclude in Section 6.

2 PROBLEM DEFINITION

We first introduce the IoT interaction graph, and then formally
define the problem of federated IoT interactive threat detection.
Definition 1 (Interaction Graph). Consider G as the represen-
tation of an interaction graph, comprising a collection of nodes V,
edges &, and node features X. In this context, each node v € V cor-
responds to an automation rule originating from an IoT automation
control app, such as a SmartThings app. For example, the rule R1
"If smoke is detected (trigger), activate the alarm, turn on the water
valve and unlock the door (action)." is represented as a node. Each
edge e € & represents the correlation between two rules. As an
example, consider the rules R1 and R2 depicted in Figure 1. These
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Figure 1: An example of interaction graph.

rules collectively form an interaction graph where they jointly con-
trol the "water valve" device. Each node v € V is linked to feature
information X,, which represents a word or sentence embedding
of a rule. Furthermore, each graph G is assigned a graph label y
indicating the presence or absence of threats within the interaction
graph. Homogenous graphs contain rules from the same platform
where the node features are from the same feature space, while the
node features in heterogeneous graphs are from different feature
spaces to better characterize rules from heterogeneous platforms.
Definition 2 (Federated IoT interactive threat detection).
Interactive threats encompass the risks arising from interactions
between devices and the environment. In our study, we designate
a graph as containing threats if it meets at least one of the six
threat categories identified in prior research [36]: condition bypass,
condition block, action revert, action loop, action conflict, and ac-
tion duplicate. Internal graph threats pertain to threats inherent
within the interaction graphs, whereas external graph threats refer
to threats stemming from external attacks. Rather than exhaus-
tively searching all potential interactive threats in an interaction
graph, our approach entails developing a federated graph neural
network (GNN) model to discern patterns of threats. The objective
is to collaboratively learn the graph embedding Z* for a given inter-
action graph G at each time ¢, which will subsequently be utilized
for predicting interactive threats. Since a graph can encompass
multiple threat types, the use of multi-class classification is not
appropriate. Consequently, we formulate the prediction task as a
binary classification problem, where the function f(Z?) maps the
interaction graph embedding Z? to a binary label y? indicating the
occurrence or absence of an interactive threat at time ¢.

3 SYSTEM DESIGN

We design FedINT for IoT interactive threat detection as shown
in Figure 2. A client represents a house where data is collected
and a client GNN model is trained. Each client can run FedINT
on devices such as a Raspberry Pi or NVIDIA Jetson Nano. Each
client implements the client model: GNN-based interaction threat
detection. A server can perform the clustering and aggregation in
FedINT, which could be served by a security solution provider.
We present a refined approach to federated graph representation
learning, which takes into account the challenges posed by data
heterogeneity and drifting samples in the federated learning (FL)
setting. The acquired graph representations serve as a basis for
interactive threat detection. In our designed FL framework, each
client maintains two distinct models. The first model is responsible
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Figure 2: System architecture of FedINT.

for graph representation learning and actively participates in the
FL process outlined in Algorithm 1. The second model is a linear
classification model, such as an SGDClassifier, which locally trains
to classify the acquired graph representations and identify graphs
that contain interactive threats.

Dynamic Clustering-based Federated Learning. Based on
the following observations, we propose a dynamic fine-grained
clustering-based federated learning algorithm. In the federated
learning (FL) framework, there can be instances of domain shifts
when knowledge is transferred across non-identically and inde-
pendently distributed (non-i.i.d.) datasets [7]. This heterogeneity
manifests in two distinct ways. Firstly, the interaction graph can ex-
hibit homogeneity or heterogeneity. The presence of diverse devices
among households and variations in user usage habits contribute
to graph heterogeneity. Such diversity within the graph data can
lead to negative transfer among users and adversely affect model
performance. Secondly, the graph dataset itself may suffer from im-
balances and non-i.i.d. characteristics. The non-i.i.d. nature of graph
datasets from different households introduces biased stochastic
gradients, impeding the convergence of FL models.

Another noteworthy observation is that, despite the overall het-
erogeneity, there are underlying similarities in data distributions
within smart homes. This is primarily because different users may
have common automation rules that they follow. Based on this
premise, we make the assumption that households can be grouped
into several clusters, where the graph datasets within each cluster
exhibit the independently and identically distributed (i.i.d.) prop-
erty, as proposed in [29]. This is because although there may be
a variety of smart devices with different functionalities, their se-
mantic perspectives are often limited. As a result, certain graph
datasets will share common feature information, allowing them
to be effectively grouped into distinct clusters. Consequently, a



Federated Threat Detection for Smart Home loT Rules

Algorithm 1: Dynamic clustering-based federated GNN
Input: Graph dataset G, of each client ¢, GNN model weight W,
GNN layer [ < L, client cluster C, global update round T,
thresholds €1, €,
1 fort < Tdo

2 forc € Cdo

3 W, « local training process

4 W, = RecursiveClusteringAgg(1, C)

5 end

6 end

7 Procedure RecursiveClusteringAgg(l, C):

8 if [ > L then

9 ‘ Return;
10 end
11 Receive [-th layer’s weights Wcl,- from each client ¢;;
| ife > || Sien Sl AWL]] && e < max(/[AWL]]) then
13 M;j CosineSimilarity(WCIi, Wclj) fori,jeC
14 clustery, clustery « BinaryClustering(M; ;)

15 cllusterl — FedAz:g(WL{) for each ¢ € cluster;
16 eluster, < FedAug(Wcl) for each ¢ € cluster;
17 end

18 else

19 Wé — FedAUg(Wcl) for eachc € C
20 end
21 Send M/Zluster back to each client ¢
22 RecursiveClusteringAgg(l + 1, clustery)
23 RecursiveClusteringAgg(l + 1, clustersy)

24 End Procedure

new challenge arises in determining how to aggregate clients in an
efficient manner, ensuring appropriate clustering.

Consider the clustering-based federated learning (FL) scenario,
consisting of a central server and a collection of n clients denoted as
c1,¢2, -+, cp. These clients can be dynamically clustered into vari-
ous clusters, such as clustery, clusters, - - -. Each client ¢; possesses
a set of interaction graphs represented by G = Gy, Gy, - - - and per-
forms graph classification tasks denoted as y = hZ(Gi), where h;z
represents the optimal graph classification model for the cluster set
clustery. The graph feature information can be captured through
the model parameters and their gradients, as outlined in [29]. The
current approaches for federated graph classification on non-i.i.d.
graphs [39] are considered coarse-grained as they solely focus on
the similarity of parameters across the entire model. However, when
considering the models from a bottom-up perspective, the degree of
similarity among deep models decreases [23, 26, 43]. Therefore, in
order to learn the fine-grained clustering structure, we propose the
bottom-up layer-wise dynamic clustering algorithm, presented in
Algorithm 1, to capture the similarity among clients’ weight values.

Specifically, we consider the scenario where there are n clients
participating in the FL training process. Each client ¢ independently
performs local GNN training, following the traditional FL training
paradigm (lines 2-4). Subsequently, the server receives the local
models WCI from all n clients (line 12). The dynamic clustering
process on the server begins from the bottom layer /1. To determine
the clustering conditions for different clients, we introduce two
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thresholds, €; and €; (line 13):

|Ge; |
€1 > || Z |GC| AWCi“’
icln] (1
€2 < max(||AW, ),

Here, |G;| represents the number of graphs owned by client c;, while
|G| represents the total number of graphs owned by all clients. AW,
denotes the local update of model weights for client c;. The thresh-
old €; is used to measure the degree of fluctuation in FL training,
defining a relatively stationary point for the global model before
initiating the clustering process. Additionally, the threshold ez is
set to identify large weight updates that exceed its value, indicat-
ing high heterogeneity among clients and triggering clustering to
prevent performance degradation. Determining the appropriate
values for these thresholds can be achieved through initial experi-
ments conducted on validation sets [29]. If the conditions stated in
Equation (1) are satisfied, the server proceeds to divide the clients
within the same cluster into two sub-clusters and performs model
aggregation within each sub-cluster (lines 14-17). This recursive
process continues to the next layer, resulting in the clustering and
aggregation of client models across multiple layers. As a result, each
cluster of clients exhibits reduced divergence, leading to quicker
model convergence in fewer training rounds.

4 EVALUATION

We use the interaction graph dataset from Glint [34], where there
are 6,000 labeled homogeneous interaction graphs, and 12,758 het-
erogeneous graphs. To emulate the FL training process, we assess
the performance of the dynamic clustering-based federated GNN on
a high-performance computing cluster. This cluster comprises In-
tel(R) Xeon(R) Gold 6148 2.4GHz CPUs and operates on the CentOS
7 operating system.

We implement FedINT with GIN [40] model, which is a graph
isomorphism network model, and we adopt the original model ar-
chitecture. We conduct a comparative analysis of FedINT against
four baseline methods using five distinct data distributions. The
four federated learning framework baselines include: (i) Federated
multi-task learning (FMTL) [29], which employs geometric charac-
teristics of the loss surface to cluster clients. (ii) Graph clustered
federated learning (GCFL+) [39], which utilizes a gradient sequence-
based clustering approach for graph classification. (iii) Federated
averaging (FedAvg) [24], which aggregates locally-computed up-
dates during the federated learning process. (iv) Self-training in
clients (Client), where GNNss are trained locally by individual clients
without any communication. By comparing FedINT with these base-
lines across the different data distributions, we aim to evaluate the
performance and effectiveness of our proposed method.

We investigate the effects of various data distributions on the
performance of the federated GIN model. To simulate the non-i.i.d.
dataset across multiple clients, we partition the homogeneous inter-
action graph dataset based on the Dirichlet distribution. Specifically,
we consider a scenario with 10 clients. The class marginal distri-
bution is generated using the Dirichlet distribution, characterized
by the probability density function p(x) o ]_[f.c:1 x;x"_l. We set the
concentration parameter « to different values: 0.5, 1, 2, 5, and 10.
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Figure 3: The performance of FedINT with GIN model under five different Dirichlet distribution parameters a.
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Figure 4: Communication cost with different client numbers.

This allows us to examine the impact of varying data distributions
on the federated GIN model.

As shown in Figure 3, our FedINT surpasses the baselines in
terms of performance due to its design consideration of fine-grained
homogeneous data features within a heterogeneous data distribu-
tion. For instance, when « is 0.1, the accuracy of FedINT is 0.891,
whereas for GCFL+, it is 0.852, and for FedAvg, it is 0.717. Sim-
ilarly, when « is 10, the accuracy of FedINT is 0.919, GCFL+ is
0.889, and FedAvg is 0.768. In terms of average client accuracy,
FedINT achieves 0.542 and 0.622 when « is 0.1 and 10, respectively,
showcasing a 17.4% improvement over FedAvg. The poor model-
ing performance and low accuracy in FL training paradigms can
be attributed to the significant impact of data heterogeneity on
FedAvg. Conversely, FedINT effectively mitigates the impact of
data heterogeneity among different datasets by training on clusters
characterized by high homogeneity.

Besides, we evaluate the communication cost during the training
process by quantifying the total data transferred (both download
and upload) between the server and clients. As depicted in Figure 4,
the total transferred data remains below 40 GB over 60 rounds
with 100 clients, which is deemed acceptable for wired network
bandwidth. In terms of communication overhead, FedINT achieves
a 40.2% reduction compared to FedAvg [24]. FedAvg requires ag-
gregating the entire model during the FL process, while FMTL [29]
and GCFL+ [39] also share the complete model but within different
clusters. The low communication cost of FedINT can be attributed
to our proposed layer-wise clustering-based FL method. Initially,
only the parameters of the first layer are uploaded to the server for
clustering. Subsequently, based on the previous clustering results,
the upper layer parameters of the models are transmitted to the
server, which in turn sends the parameters of different layers back
to the respective client clusters. Clients within the same cluster

share more layers compared to clients in different clusters. As a
result, the number of parameters transmitted between the server
and clients is reduced.

5 RELATED WORK

Federated graph learning (FGL) involves collaboratively training
a shared GNN model without centralizing the data. Recent stud-
ies [4, 15-17, 20, 35, 42, 47] have addressed the challenges of system
and data heterogeneity in FL. FedProx incorporates weights to ag-
gregate different clients [20], but determining suitable weights for
different applications can be difficult. Zhao et al. [47] propose to
share local device data or server-side proxy data to handle data
heterogeneity, but it requires prior knowledge of local data dis-
tribution. Some researchers propose techniques such as gradient
bounding [44] or adding additional noise [14] to ensure conver-
gence, but these methods can increase training time and reduce
model accuracy. GNN models [12, 13, 18, 46] have shown remark-
able performance in various tasks (e.g., graph or node classifica-
tion). Several recent works [3, 19, 25, 28, 33] have applied FL to
GNN models. For example, FedRule [42] constructs graphs based
on applied smart home rules, and models rule recommendation as
a link prediction task. GraphFL [33] is an FL framework based on
meta-learning for semi-supervised node classification. However, in
addition to feature and label heterogeneity, graph data can contain
non-i.i.d. structural information, which can degrade learning per-
formance [39]. In contrast, our proposed FedINT clusters clients
based on layer-wise GNN model information, which can greatly
mitigate the heterogeneity issue among different clients.

6 CONCLUSION

In this work, we investigate how IoT rule data could expose in-
teractive threats across heterogeneous smart home platforms. We
present FedINT, which leverages federated graph learning to an-
alyze large-scale IoT interaction data. We design the fine-grained
dynamic clustering-based federated graph representation learning
algorithm to discover interactive threats. With the data collected
from 5 real-world IoT platforms, we demonstrated the superior
performance of FedINT in collaboratively training the GNN model
on heterogeneous interaction graph data. In the future, we will
enhance data privacy by adding differential privacy [9, 22, 38] and
secure aggregation mechanisms [2, 6, 21] to FedINT. Besides, we
will extend the experiment scale to evaluate the model accuracy
and communication cost. Furthermore, we will explore the explain-
able federated GNN-based threat detection results, so as to provide
user-friendly root cause analysis.
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