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Abstract

The information bottleneck (IB) method offers an attractive framework for understanding
representation learning, however its applications are often limited by its computational
intractability. Analytical characterization of the IB method is not only of practical interest,
but it can also lead to new insights into learning phenomena. Here we consider two different
generalizations of the IB problem, in which the mutual information is replaced by correlation
measures based on Rényi and Jeffreys divergences, respectively. We derive an exact, analytical
IB optimal linear Gaussian encoder for Gaussian correlated variables. Our analysis reveals a
series of structural transitions, similar to those previously observed in the original IB case.
We find further that although solving the original, Rényi and Jeffreys IB problems yields
different representations in general, the structural transitions occur at the same critical
tradeoff parameters, and the Rényi and Jeffreys IB solutions perform well under the original
IB objective. Our results suggest that formulating the IB method with alternative correlation
measures could offer a strategy for obtaining an approximate solution to the original IB
problem.

1 Introduction

Effective representation of data is key to generalizable learning. Characterizing what makes such representation
good and how it emerges is crucial to understanding the success of modern machine learning. The information
bottleneck (IB) method—an information-theoretic formulation for representation learning (Tishby et al.,
1999)—has proved a particularly useful conceptual framework for this question, and has led to a deeper
understanding of representation learning in both supervised and self-supervised learning (Achille & Soatto,
2018a;b; Tian et al., 2020; Zbontar et al., 2021). Investigating this abstraction of representation learning has
the potential to yield new insights that are applicable to learning problems.

Quantifying the goodness of a representation requires the knowledge of what is to be learned from data.
Information bottleneck theory exploits the fact that, in many settings, we can define relevant information
through an additional variable; for example, it could be the label of each image in a classification task. This
notion of relevance allows for a precise definition of optimality—an IB optimal representation T is maximally
predictive of the relevance variable Y while minimizing the number of bits extracted from the data X. The
IB method formulates this principle as an optimization problem (Tishby et al., 1999),

minQT |X
IBβ(QT |X ; PXY ) with IBβ(QT |X ; PXY ) = I(T ; X) − βI(T ; Y ). (1)

Here the optimization is over the encoders QT |X which provide a (stochastic) mapping from X to T .
Maximizing the mutual information I(T ; Y ) [second term in Eq (1)] encourages a representation T to encode
more relevant information while minimizing I(T ; X) [first term in Eq (1)] discourages it from encoding
irrelevant bits. The parameter β > 0 controls the fundamental tradeoff between the two information terms.

The IB method has proved successful in a number of applications, including neural coding (Palmer et al.,
2015; Wang et al., 2017; 2021), statistical physics (Still et al., 2012; Gordon et al., 2021; Kline & Palmer,
2022), clustering (Strouse & Schwab, 2019), deep learning (Alemi et al., 2017; Achille & Soatto, 2018a;b),
reinforcement learning (Goyal et al., 2019) and learning theory (Bialek et al., 2001; Shamir et al., 2010; Bialek
et al., 2020; Ngampruetikorn & Schwab, 2022). However the nonlinear nature of the IB problem makes it
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computationally costly. Although scalable learning methods based on the IB principle are possible thanks
to variational bounds of mutual information (Alemi et al., 2017; Chalk et al., 2016; Poole et al., 2019), the
choice of such bounds, as well as specific details on their implementations, can introduce strong inductive
bias that competes with the original objective (Tschannen et al., 2020).

While large-scale applications of the IB method in its exact form are generally intractable, special cases exist.
For example, the limit of low information—i.e., when both terms in Eq (1) are small—can be described
by a perturbation theory, which provides a recipe for identifying a representation that yields maximum
relevant information per extracted bit (Wu et al., 2019; Ngampruetikorn & Schwab, 2021). But perhaps the
most important special case is when the source X and target Y are Gaussian correlated random variables
(see Sec 2.3). In this case, an exact analytical solution exists (Chechik et al., 2005). Despite the seemingly
restrictive Gaussian assumption, this result has proved useful in practice. In particular, it is possible to control
the data in many interesting settings. The exact IB solution allows for a principled and exact investigation of
the optimality and adaptability of learning systems, see, e.g., Palmer et al. (2015).

Although originally formulated with Shannon mutual information, the fundamental tradeoff in the IB method
applies more generally: the IB optimization, Eq (1), can be formulated with other mutual dependence
measures, see, e.g., Harremöes & Tishby (2007); Hsu et al. (2018). Here we consider generalized IB problems
based on two important correlation measures. The first is a parametric generalization of Shannon information,
based on Rényi divergence (Rényi, 1961). Rényi-based generalizations of mutual information and entropy are
central in quantifying quantum entanglement (Horodecki et al., 2009; Eisert et al., 2010) and have proved a
powerful tool in Monte-Carlo simulations (Hastings et al., 2010; Singh et al., 2011; Herdman et al., 2017) as
well as in experiments (Islam et al., 2015; Bergschneider et al., 2019; Brydges et al., 2019). The second mutual
dependence measure we consider is based on Jeffreys divergence (Jeffreys, 1946). The resulting Jeffreys
information is (up to a constant prefactor) equal to the generalization gap of a broad family of learning
algorithms, known as Gibbs algorithms (Aminian et al., 2021).

We specialize to the case of Gaussian correlated variables, and derive an analytical solution for two separate
generalizations of the IB problem: the Rényi and Jeffrey cases in §3 and §4, respectively. Our derivations
extend the result of Chechik et al. (2005) to a class of information-theoretic mutual dependence measures
which includes Shannon information as a limiting case. We show that, for both Rényi and Jeffreys cases, an
optimal linear Gaussian encoder can be constructed from the eigenmodes of the normalized regression matrix
ΣX|Y Σ−1

X . Our solution reveals a series of phase transitions, similar to those observed in the Gaussian IB
method (Chechik et al., 2005). In both Rényi and Jeffreys cases, we find that although the optimal encoders
depend on information measures, the phase transitions occur at the critical tradeoff parameters β

(i)
c that

coincide with that of the Shannon case, independent of the order of Rényi information.

2 Background

2.1 Divergence-based Correlation measure

When two random variables X and Y are uncorrelated, their joint distribution PXY is equal to the product
of their marginals PX and PY . As a result, we can quantify the mutual dependence between X and Y by the
difference between PXY and PX ⊗ PY ,

Ω(X; Y ) ≡ D(PXY ∥ PX ⊗ PY ). (2)

Here D(P ∥ Q) denotes a statistical divergence which, by definition, is nonnegative and vanishes if and only
if P = Q. When defined with the Kullback–Leibler (KL) divergence, the above measure becomes Shannon
information, I(X; Y ) = DKL(PXY ∥ PX ⊗ PY ).
Definition 2.1. The generalized IB problem is characterized by the loss function

IB(Ω)
β (QT |X ; PXY ) = Ω(T ; X) − βΩ(T ; Y ),

where Ω( · ; · ) is a measure of statistical correlation between two random variables.

Below we use Rényi and Jeffrey divergences to provide concrete definitions for Rényi q–information and
Jeffrey information, respectively.
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2.1.1 Rényi q–information

Definition 2.2. We define Rényi q-information as

Iq(X; Y ) ≡ Rq(PXY ∥ PX ⊗ PY ) for q ∈ (0, 1) ∪ (1, ∞), (3)

where Rq denotes Rényi divergence of order q (Rényi, 1961),

Rq(P ∥ Q) = 1
q − 1 ln

∫
dQ

(
dP

dQ

)q

. (4)

This definition extends to q = 0, 1 and ∞ via continuity in q. In particular, R1(P∥Q) = DKL(P∥Q) (van
Erven & Harremoës, 2014, Thm 5), and as a result I1(X; Y ) = I(X; Y ). Rényi divergences, and thus
q-information, satisfy the data processing inequality since they have a strictly increasing relationship with an
f -divergence [with f(t) = (tq − 1)/(q − 1)] which exhibits this property, see, e.g., Liese & Vajda (2006).
Lemma 2.1. Let

[
X
Y

]
∼ N (

[
µX

µY

]
,
[ ΣX ΣXY

ΣY X ΣY

]
). Rényi information is given by (see Appendix B for derivation)

Iq(X; Y ) = − 1
2q̄

ln
|ΣX|Y Σ−1

X |q̄

|I − q̄2(I − ΣX|Y Σ−1
X )|

with q̄ = 1 − q, (5)

where I denotes the identity matrix and |M | the determinant of a matrix M .

We see that this information depends on the covariance matrices only through the normalized regression
matrix ΣX|Y Σ−1

X . We note also that this information can diverge when q > 2 since the eigenvalues of
ΣX|Y Σ−1

X range from zero to one (Chechik et al., 2005, Lemma B.1). It is easy to verify that Shannon
information corresponds to the limit q → 1,

I(X; Y ) = lim
q→1

Iq(X; Y ) = −1
2 ln |ΣX|Y Σ−1

X |. (6)

In addition, we note that for Gaussian variables I2(X; Y ) = 2I(X; Y ) and Iq(X; Y ) increases with q from
zero at q = 0.

Note that alternative definitions of Rényi mutual information exist. In physics literature, a frequently
used definition is Ĩq(X; Y ) = Sq(X) + Sq(Y ) − Sq(X, Y ) where Sq(X) = (1 − q)−1 ln

∫
dx pX(x)q is Rényi

(differential) entropy of order q (see, e.g., Brydges et al. (2019, Eq 4)). However, for Gaussian variables, this
definition leads to Rényi information that is equal to Shannon information regardless of q (see Appendix B.1).

2.1.2 Jeffrey information

Definition 2.3. We define Jeffreys information by

J(X; Y ) ≡ DJ(PXY ∥ PX ⊗ PY ), (7)

where DJ is Jeffreys divergence (Jeffreys, 1946),

DJ(P ∥ Q) = 1
2 [DKL(P ∥ Q) + DKL(Q ∥ P )]. (8)

Jeffreys divergence, and thus Jeffrey information, satisfies the data processing inequality since it is an
f -divergence, see, e.g., Liese & Vajda (2006).
Lemma 2.2. Let

[
X
Y

]
∼ N (

[
µX

µY

]
,
[ ΣX ΣXY

ΣY X ΣY

]
). Jeffreys information reads (see Appendix C)

J(X; Y ) = 1
2 tr

(
ΣXΣ−1

X|Y − I
)

. (9)

Note that, unlike Shannon information, Jeffreys information is not a special case of Rényi information.
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2.2 Canonical representation of Gaussian correlated variables

Consider Gaussian correlated variables[
X

Y

]
∼ N

([
µX

µY

]
,

[
ΣX ΣXY

ΣY X ΣY

])
. (10)

The canonical representation is a linear transformation, X̃ = KX(X − µX) and Ỹ = KY (Y − µY ), which
results in a factorizable joint distribution PX̃Ỹ =

∏
i PX̃iỸi

where PX̃iỸi
is a bivariate Gaussian distribution,

characterized by unit variance σX̃i
= σỸi

= 1 and a correlation coefficient ρi. When the dimensions of X and
Y are unequal, the joint distribution is a product of the bivariate Gaussian distributions for the matched
dimensions and a standard Gaussian distribution for the unmatched dimensions.
Lemma 2.3 [Globerson & Tishby (2004, §4)]. For

[
X
Y

]
∼ N (

[
µX

µY

]
,
[ ΣX ΣXY

ΣY X ΣY

]
), let V = [v1 v2 · · · ]T be a

matrix of left (row) eigenvectors of ΣX|Y Σ−1
X and Λ = diag(λ1, λ2, · · · ) the diagonal matrix of corresponding

eigenvalues, (i.e., V ΣX|Y Σ−1
X = ΛV ). Then, there exist invertible matrices, KX and KY , such that[

X̃

Ỹ

]
=
[
KX(X − µX)
KY (Y − µY )

]
∼ N

(
0,

[
I (I − Λ) 1

2 IXY

IY X(I − Λ) 1
2 I

])
,

where [IXY ]ij = δij is a diagonal rectangular matrix.

The proof follows the logical steps in Globerson & Tishby (2004).

Proof. We will use three identities (see, e.g., Chechik et al. (2005)):

(a) Let R = V ΣXV T. Then, R is diagonal,
(b) V ΣX|Y V T = ΛR,
(c) V ΣXY Σ−1

Y ΣY XV T = (I − Λ)R.

We start with the proof of (a). Multiplying V ΣX|Y Σ−1
X = ΛV by Σ

1
2
X from the right and rearranging yields

(V Σ
1
2
X)Σ− 1

2
X ΣX|Y Σ− 1

2
X = Λ(V Σ

1
2
X), which shows that V Σ

1
2
X is a matrix of eigenvectors of a symmetric matrix

Σ− 1
2

X ΣX|Y Σ− 1
2

X . Therefore V Σ
1
2
X is an orthogonal matrix and V Σ

1
2
X(V Σ

1
2
X)T = V ΣXV T = R is diagonal. Next,

we show that (b) and (c) follow from direct algebraic manipulations: V ΣX|Y V T = V ΣX|Y Σ−1
X ΣXV T =

ΛV ΣXV T = ΛR and V ΣXY Σ−1
Y ΣY XV T = V (ΣX − ΣX|Y )V T = (I − Λ)R.

Suppose X̃ = R− 1
2 V X and Ỹ = IY X(I − Λ)− 1

2 R− 1
2 V ΣXY Σ−1

Y Y . Then,

ΣX̃ = R− 1
2 V ΣXV TR− 1

2 = R− 1
2 RR− 1

2 = I (11)

ΣỸ = IY X(I − Λ)− 1
2 R− 1

2 V ΣXY Σ−1
Y ΣY Σ−1

Y ΣY XV T(I − Λ)− 1
2 R− 1

2 IXY (12)

= IY X(I − Λ)− 1
2 R− 1

2 V ΣXY Σ−1
Y ΣY XV TR− 1

2 (I − Λ)− 1
2 IXY (13)

= IY X(I − Λ)− 1
2 R− 1

2 (I − Λ)RR− 1
2 (I − Λ)− 1

2 IXY (14)
= IY XIXY (15)

ΣX̃Ỹ = R− 1
2 V ΣXY Σ−1

Y ΣY XV TR− 1
2 (I − Λ)− 1

2 IXY (16)

= R− 1
2 (I − Λ)RR− 1

2 (I − Λ)− 1
2 IXY (17)

= (I − Λ) 1
2 IXY (18)

When the dimension of X is greater than or equal to that of Y , IY XIXY = I and we have shown that
the canonical transformation is given by two invertible matrices: KX = R− 1

2 V and KY = IY X(I −
Λ)− 1

2 R− 1
2 V ΣXY Σ−1

Y .

If the dimension of X is smaller than that of Y , we can repeat the above analysis but with X and Y in
place of one another. That is, we have KY = R

− 1
2

Y VY and KX = IXY (I − ΛY )− 1
2 R

− 1
2

Y VY ΣY XΣ−1
X , where

VY ΣY |XΣ−1
Y = ΛY VY , RY = VY ΣY V T

Y , with both ΛY and RY being diagonal. Again we see that both KX

and KY are invertible.

4



Under review as submission to TMLR

Importantly, the invertibility of the canonical transformation preserves information content, I(T ; X) = I(T ; X̃)
and I(T ; Y ) = I(T ; Ỹ ). As a result, we can reformulate the IB problem for PXY as an equivalent one for
PX̃Ỹ . Moreover, since PX̃Ỹ factorizes, we can obtain an IB solution QT |X by solving separate IB problems
for each bivariate Gaussian variable (X̃i, Ỹi). That is, QT̃ |X̃ =

∏
i QT̃i|X̃i

where QT̃i|X̃i
is an optimal encoder

under the Markov constraint T̃i—X̃i—Ỹi.

2.3 Gaussian Information Bottleneck

For Gaussian correlated X and Y , Globerson & Tishby (2004) show that an optimal compressed representation
of the source X is defined by a linear map with additive Gaussian noise,

T = AX + ξ with ξ ∼ N (0, Σξ). (19)

Since the mutual information is invariant under an invertible transformation—i.e., I(T ; X) = I(KT ; X)
and I(T ; Y ) = I(KT ; Y ) for any invertible K—we can always transform T such that the noise covariance
matrix Σξ becomes an identity matrix I, without changing the information content (see Chechik et al. (2005,
Appx A)). Without loss of generality, we set Σξ = I. That is, the encoder becomes a Gaussian channel,
parametrized only by the matrix A,

T | X ∼ N (AX, I). (20)
This channel completely characterizes the representation T ; integrating out X from the above equation gives

T ∼ N (0, I + AΣXAT) (21)
T | Y ∼ N (AµX|Y , I + AΣX|Y AT), (22)

where µX|Y = ΣXY Σ−1
Y Y and ΣX|Y = ΣX − ΣXY Σ−1

Y ΣY X .
Definition 2.4. For

[
X
Y

]
∼ N (0,

[ ΣX ΣXY

ΣY X ΣY

]
), the Gaussian IB loss is given by

GIBβ(A) = I(T ; X) − βI(T ; Y ) with T = AX + ξ, ξ ∼ N (0, I). (23)

The following theorem, due to Chechik et al. (2005), provides a solution of the optimization minA GIBβ(A).
Theorem 2.4 [Chechik et al. (2005, Thm 3.1)]. For

[
X
Y

]
∼ N (0,

[ ΣX ΣXY

ΣY X ΣY

]
), let vi and λi be the left

eigenvectors and eigenvalues of ΣX|Y Σ−1
X (i.e., vT

i ΣX|Y Σ−1
X = vT

i λi) and ri = vT
i ΣXvi. Then, a solution of

minA GIBβ(A) is given by

A = diag(α1r
− 1

2
1 , α2r

− 1
2

2 , · · · ) [v1 v2 · · · ]T with αi =
{√

[β(1 − λi) − 1]/λi if β > 1/(1 − λi)
0 otherwise

Our work focuses on extending the above definition and theorem to the case where the mutual information in
Eq (23) is replaced by other correlation measures.
Definition 2.5. For

[
X
Y

]
∼ N (0,

[ ΣX ΣXY

ΣY X ΣY

]
), the generalized Gaussian IB loss reads

GIB(Ω)
β (A) = Ω(T ; X) − βΩ(T ; Y ) with T = AX + ξ, ξ ∼ N (0, I). (24)

We note that we can set Σξ = I without loss of generality when the mutual correlation measure is invariant
under an invertible transformation of a random variable. Both Rényi and Jeffreys generalizations of mutual
information in §2.1.1 and §2.1.2 exhibit this property (see Appendix D).

3 Rényi Information Bottleneck for Gaussian variables

We now turn to the Rényi generalization of the Gaussian IB problem. Substituting the correlation measure
in Eq (24) with Rényi q-information yields

GIB(Iq)
β (A) = Iq(T ; X) − βIq(T ; Y ) with T = AX + ξ, ξ ∼ N (0, I). (25)
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Figure 1: Generalized IB for Gaussian variables yields a solution that depends on the choice of correlation
measures. We illustrate IB solutions (Thms 3.1 and 4.1) for a specific instance of normalized regression
matrix ΣX|Y Σ−1

X with eigenvalues λi = 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, for three families of correlation measures
(§2.1): Shannon (Ω = I), Jeffreys (Ω = J) and Rényi (Ω = Iq), see legend. For the Rényi case, we show
the results for a range of orders q (see color bar). a We plot the IB frontier which traces an upper bound
on Ω(T ; Y ) (how much information a representation T of X can have about Y ) at any given Ω(T ; X) (the
information the representation T has about X). We see that this frontier depends on our choice of information
measure. The IB frontier is bounded by the data processing inequality (DPI), Ω(T ; Y ) ≤ Ω(T ; X), and its
tight, data-dependent version (SDPI), Ω(T ; Y ) ≤ (1 − λmin)Ω(T ; X), where λmin is the smallest eigenvalue of
ΣX|Y Σ−1

X . We emphasize that while Shannon IB is equivalent to Rényi IB with q = 1, Jeffreys IB is not a
special case of Rényi IB. b-c We illustrate Ω(T ; X) and Ω(T ; Y ) as a function of the tradeoff parameter β
[(1)]. Both information terms increase with β and vanish below the critical value βc = 1/(1 − λmin). The
vertical lines mark the critical tradeoff parameters β

(i)
c = 1/(1 − λi) [Eq (34)]. We see no nonanalytic behavior

in information at these critical points, suggesting that the transitions are continuous in all cases considered.

More generally, the q-information terms need not be of the same order but the data processing inequality
Iq(T ; X) ≥ Iq′(T ; Y ) is guaranteed only when q = q′.1

Theorem 3.1. Let vi and λi be the left eigenvectors and eigenvalues of ΣX|Y Σ−1
X (i.e., vT

i ΣX|Y Σ−1
X = vT

i λi),
ri = vT

i ΣXvi, and ui the positive root of

1
β

= 1 − λi

1 + uiλi

1 + q̄(1+q̄)(1−λi)ui

1+(1−q̄2(1−λi))ui

1 + q̄(1+q̄)ui

1+(1−q̄2)ui

Then, a solution of the optimization minA GIB(Iq)
β (A) reads

A = diag(α1r
− 1

2
1 , α2r

− 1
2

2 , · · · ) [v1 v2 · · · ]T with αi =
{√

ui if β > 1/(1 − λi)
0 otherwise

Proof. First, we consider the scalar case
[

X
Y

]
∼ N (0,

[1
ρ

ρ
1
]
). Here the matrix A in Eq (25) reduces to a scalar

α and the covariance matrices in Eqs (20-22) become ΣT |X = 1, ΣT = 1 + α2 and ΣT |Y = 1 + (1 − ρ2)α2.
Using the expression for Rényi information in Eq (5), we write down

Iq(T ; X) = − 1
2q̄

ln (1 + α2)q

1 + (1 − q̄2)α2 (26)

Iq(T ; Y ) = − 1
2q̄

ln (1 + (1 − ρ2)α2)q̄(1 + α2)q

1 + (1 − q̄2ρ2)α2 (27)

1For q ̸= q′, Iq and Iq′ are monotone maps of different f -divergences, hence the data processing inequality needs not hold.
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where q̄ = 1 − q. Differentiating the above equations with respect to α gives

d

dα
Iq(T ; X) = −α

q̄

(
q

1 + α2 − 1 − q̄2

1 + (1 − q̄2)α2

)
(28)

d

dα
Iq(T ; Y ) = −α

q̄

(
q

1 + α2 + q̄
1 − ρ2

1 + α2(1 − ρ2) − 1 − q̄2ρ2

1 + (1 − q̄2ρ2)α2

)
. (29)

Equating the derivative of the IB loss to zero, d
dα [Iq(T ; X) − βIq(T ; Y )] = 0, and rearranging the resulting

expression yields either α = 0 or

1
β

= dIq(T ; Y )/dα

dIq(T ; X)/dα
= gq(α2, 1 − ρ2), (30)

where we define

gq(u, λ) ≡ 1 − λ

1 + uλ

1 + q̄(1+q̄)(1−λ)u
1+(1−q̄2(1−λ))u

1 + q̄(1+q̄)u
1+(1−q̄2)u

. (31)

For λ ∈ (0, 1), q ∈ (0, 1)∪ (1, 2] and u ≥ 0, the function gq(u, λ) is strictly decreasing in u, approaching zero as
u → ∞ (see Appendix A). As a result, Eq (30) has exactly one positive solution α2 > 0 if 1/β < gq(0, 1 − ρ2).
That is, this IB problem admits a nontrivial solution (α ̸= 0) only when β exceeds the critical value

βc = 1
gq(0, 1 − ρ2) = 1

ρ2 , (32)

which, rather surprisingly, does not depend on q.

In the multi-dimensional case, we work in the canonical representation (X̃, Ỹ ) = (KXX, KY Y ) (see §2.2). If
Ã is an optimal projection for PX̃Ỹ , then A = ÃKX is an optimal linear map for PXY since Iq(ÃX̃ + ξ; X̃) =
Iq(ÃKXX + ξ; KXX) = Iq(ÃKXX + ξ; X), and similarly for Y . (The first equality is a direct substitution
X̃ = KXX and the second is due to the fact that KX is invertible.) The joint distribution PX̃Ỹ is a product
of bivariate Gaussian distributions and thus we can obtain Ã from the solution of the scalar case. That is,
ÃX̃ = [α1X̃1 α2X̃2 · · · ]T or Ã = diag(α1, α2, · · · ) where αi is a solution from the scalar case. Recalling that
σ2

X̃i
= σ2

Ỹi
= 1 and ρi =

√
1 − λi with λi the eigenvalues of ΣX|Y Σ−1

X , we obtain [see Eq (30)],

αi = 0 if β ≤ β(i)
c and β−1 = gq(α2

i , λi) if β > β(i)
c (33)

where the critical tradeoff parameter for each dimension is

β(i)
c = 1

1 − λi
. (34)

Since KX = R− 1
2 V = diag(r1, r2, · · · )− 1

2 [v1 v2 · · · ]T when the dimension of X is equal to or greater then
that of Y (see §2.2), we have

A = ÃKX = diag(α1r
− 1

2
1 , α2r

− 1
2

2 , · · · ) [v1 v2 · · · ]T, (35)

which is the expression in Thm 3.1. When the dimension of X is less than that of Y , we can drop the excess
dimensions of Ỹ since they are uncorrelated with X̃ and thus cannot be encoded in any representation of
X̃.

The optimal projection results in Rényi information

Iq(T ; X) = − 1
2q̄

β>β(i)
c∑

i

ln (1 + α2
i )q

1 + (1 − q̄2)α2
i

(36)

Iq(T ; Y ) = − 1
2q̄

β>β(i)
c∑

i

ln (1 + λiα
2
i )q̄(1 + α2

i )q

1 + [1 − q̄2(1 − λi)]α2
i

, (37)
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where the summations are restricted to the eigenmodes that contribute the IB encoder, i.e., those with αi > 0.
We depict an example of the optimal frontiers of Rényi IB in Fig 1.

To conclude our analysis of Rényi IB, we note that the analytical solution of Chechik et al. (2005) is a limiting
case of our results. In the limit q → 1, Eq (33) reads

1
β

= gq→1(α2
i , λi) = 1 − λi

1 + λiα2
i

=⇒ α
(q=1)
i =

√
β(1 − λi) − 1

λi
. (38)

This solution is identical to that of Chechik et al. (2005, Lemma 4.1), with αi/
√

ri being the weight of each
eigenmode.

4 Jeffreys Information Bottleneck for Gaussian variables

The technique in the previous section applies also to the IB problems, based on other statistical divergences.
In this section, we consider Jeffreys IB for Gaussian variables. Substituting the correlation measure in Eq (24)
with Jeffreys information (§2.1.2) yields

GIB(J)
β (A) = J(T ; X) − βJ(T ; Y ) with T = AX + ξ, ξ ∼ N (0, I). (39)

Theorem 4.1. Let vi and λi be the left eigenvectors and eigenvalues of ΣX|Y Σ−1
X (i.e., vT

i ΣX|Y Σ−1
X = vT

i λi)
and ri = vT

i ΣXvi. Then, a solution of the optimization minA GIB(J)
β (A) reads

A = diag(α1r
− 1

2
1 , α2r

− 1
2

2 , · · · ) [v1 v2 · · · ]T with αi =
{√

[
√

β(1 − λi) − 1]/λi if β > 1/(1 − λi)
0 otherwise

Proof. We first consider the scalar case
[

X
Y

]
∼ N (0,

[1
ρ

ρ
1
]
), for which the projection A is a scalar α and

ΣT |X = 1, ΣT = 1 + α2 and ΣT |Y = 1 + (1 − ρ2)α2. From Eq (9), we have

J(T ; X) = 1
2α2 and J(T ; Y ) = 1

2
ρ2α2

1 + (1 − ρ2)α2 . (40)

Differentiate the above information with respect to α yields

d

dα
J(T ; X) = α and d

dα
J(T ; Y ) = α

ρ2

(1 + (1 − ρ2)α2)2 . (41)

The first order condition, d
dα [J(T ; X) − βJ(T ; Y )] = 0, results in either α = 0 or

α2 =
√

βρ2 − 1
1 − ρ2 . (42)

This equation admits a real α only when β exceeds the critical value βc = 1/ρ2, which is identical to that of
the Rényi case, see Eq (32).

We can construct an optimal projection A for multi-dimensional X and Y , using the canonical representation
(§2.2) which factorizes the IB problem into scalar Gaussian IB problems for each eigenmode of ΣY |XΣ−1

X .
Following the same logical steps as in §3, we obtain A = diag(α1r

− 1
2

1 , α2r
− 1

2
2 , · · · ) [v1 v2 · · · ]T, with

αi = 0 if β ≤ β(i)
c and αi =

√√
β(1 − λi) − 1

λi
if β > (1 − λi)−1. (43)

We note that the Jeffreys IB method for Gaussian variables admits the exact same set of critical tradeoff
parameters, β

(i)
c = (1 − λi)−1, as the Rényi case, see Eq (34).

8
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Figure 2: Rényi and Jeffreys IB problems for Gaussian variables admit solutions that are close to Shannon
IB optimal. Plotted on the Shannon information plane, the solutions to Shannon (dotted), Jeffreys (dashed)
and Rényi (solid) IB problems are nearly indistinguishable. For the Rényi case, we depict the results for
a range of Rényi orders q (see color bar). Inset: We depict the gap between the maximum achievable and
encoded relevant Shannon informations, Imax(T ; Y ) and I(T ; Y ) respectively, as a function of the extracted
Shannon information I(T ; X). This gap vanishes in the low and high-information limits, I(T ; X) → 0 and
I(T ; X) → ∞. The satellite peaks result from the fact that the solutions to Shannon, Jeffreys and Rényi IB
problems go through structural transitions at different values of I(T ; X) even though these transitions occur at
the same set of critical tradeoff parameters. Here the eigenvalues of ΣX|Y Σ−1

X are λi = 0.1, 0.2, 0.3, 0.5, 0.7, 0.8.

Finally, we write down Jeffreys information using the optimal projection,

J(T ; X) = 1
2

β>β(i)
c∑

i

√
β(1 − λi) − 1

λi
(44)

J(T ; Y ) = 1
2

β>β(i)
c∑

i

1 − λi

λi

√
β(1 − λi) − 1√

β(1 − λi)
. (45)

where the summations are limited to the modes that contribute to the encoder, i.e., those with β
(i)
c < β. In

Fig 1, we depict an example of the Jeffreys IB optimal frontier, computed from the above equations. We
emphasize that while Shannon information is equivalent to Rényi information with q = 1, Jeffreys information
is not a special case of Rényi information.

5 Discussion & Conclusion

In Fig 2, we depict the optimal Gaussian encoders for the original, Rényi and Jeffreys IB problems on the
Shannon information plane. We see that these solutions are very close to the optimal frontier, characterized
by the Shannon IB solutions. This result suggests that formulating and solving an IB problem, defined with
alternative correlation measures other than Shannon information, could offer a strategy for obtaining an
approximate solution to the original IB problem. To better illustrate the differences between the solutions to
the original, Rényi and Jeffreys IB problems, the inset shows how much less relevant Shannon information
the optimal linear representations of Rényi and Jeffreys IB encode, compared to the Shannon IB optimal
representation. We see that the differences are maximum at intermediate information and vanish in the low
and high-information limits. In addition, the Shannon information gaps exhibit satellite peaks, resulting
from structural the transition of the IB solutions. We note that although these transitions occur at the
same critical tradeoff parameters β

(i)
c = 1/(1 − λi), they generally correspond to different values of extracted

Shannon information.

9
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To sum up, we consider generalized IB problems in which the mutual information is replaced by mutual
dependence measures, based on Rényi and Jeffreys divergences. We obtain exact analytical IB optimal
Gaussian encoders for the case of Gaussian correlated random variables, generalizing the results of Chechik
et al. (2005). We show that the fundamental IB tradeoff between relevance and compression holds also
for correlation measures other than Shannon information. Our analyses reveal structural transitions in the
optimal representations, similar to that in the original IB method (Chechik et al., 2005). Interestingly the
critical tradeoff parameters are the same for original, Rényi and Jeffreys IB problems, even though the
solutions are distinct.

We anticipate that our work will find application in physics of correlated components which relies on
Rényi-generalization of entropy and information to quantify entanglement. In addition, our characterization
of Jeffreys IB could have implications for understanding the generalization properties of Gibbs learning
algorithms of which the generalization gap is proportional to Jeffreys information between fitted models
and training data. Finally we note that the conditional IB problem, in which the compression term I(T ; X)
is replaced by I(T ; X | Y ), becomes non-trivial for generalized information measures since the chain rule
does not hold for Rényi and Jeffreys information—that is, given the Markov constraint T–X–Y , we have
I(T ; X | Y ) = I(T ; X) − I(T ; Y ) for Shannon information, but in general, Ω(T ; X | Y ) ̸= Ω(T ; X) − Ω(T ; Y ).
The logical steps in our analyses are readily generalizable to conditional IB problems.
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Figure A1: The function gq(u, λ) [Eq (31)] decreases with u from 1 − λ at u = 0 and approaches zero as
u → ∞. As a result, the equation β−1 = gq(u, λ) always has a unique positive solution when β > 1/(1 − λ).
We consider only 0 ≤ q ≤ 2 since Rényi information for Gaussian variables can diverge for q > 2 [see Eq (5)].

B Rényi information for Gaussian variables

In this appendix, we derive Rényi mutual information for Gaussian correlated variables. Using the definition
from Eqs (3-4), we write down Rényi mutual information for continuous random variables,

Iq(X; Y ) = 1
q − 1 ln

∫
dxdy pX(x)pY (y)

(
pXY (x, y)

pX(x)pY (y)

)q

. (46)

where pX , pY and pXY denote the probability density functions of X, Y and (X, Y ), respectively. We consider
Gaussian correlated random variables[

X

Y

]
∼ N (µ, Σ) with µ =

[
µX

µY

]
and Σ =

[
ΣX ΣXY

ΣY X ΣY

]
. (47)

In this case, the joint probability density is given by

pXY (x, y) =
exp

{
− 1

2 ([ x
y ] − µ)TΣ−1([ x

y ] − µ)
}

|2πΣ|1/2 (48)

The product of the marginal distributions is equal to a joint distribution but with ΣXY and ΣY X set to zero,
i.e.,

pX(x)pY (y) =
exp

{
− 1

2 ([ x
y ] − µ)TΣ̄−1([ x

y ] − µ)
}

|2πΣ̄|1/2
(49)

where Σ̄ =
[ΣX ·

· ΣY

]
. Substituting the above densities into Eq (46) and performing the resulting Gaussian

integration over x and y gives

Iq(X; Y ) = 1
q − 1 ln |qΣ−1 + (1 − q)Σ̄−1|−1/2

|Σ|q/2|Σ̄|(1−q)/2
. (50)

The determinants of the covariance matrices are given by

|Σ| = |ΣY | × |ΣX|Y | and |Σ̄| = |ΣY | × |ΣX |, (51)

where ΣX|Y = ΣX − ΣXY Σ−1
Y ΣY X and we use Schur’s formula∣∣∣∣A B

C D

∣∣∣∣ = |D| × |A − BD−1C|. (52)
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We now consider the numerator in Eq (50),∣∣qΣ−1 + (1 − q)Σ̄−1∣∣ =
∣∣Σ−1 (qΣ̄ + (1 − q)Σ

)
Σ̄−1∣∣

= 1
|Σ| × |Σ̄|

∣∣∣∣ ΣX (1 − q)ΣXY

(1 − q)ΣY X ΣY

∣∣∣∣
=
∣∣I − (1 − q)2(I − ΣX|Y Σ−1

X )
∣∣

|ΣY | × |ΣX|Y |
, (53)

where the last equality follows from Eqs (51-52). Finally we write down the Rényi information for Gaussian
variables

Iq(X; Y ) = 1/2
q − 1 ln

|ΣX|Y Σ−1
X |1−q∣∣I − (1 − q)2(I − ΣX|Y Σ−1

X )
∣∣ . (54)

This expression is identical to Eq (5) (with q̄ = 1 − q).

B.1 Alternative definition of Rényi information

An alternative generalization of Shannon mutual information is based on its entropy representation,

I(X; Y ) = S(X) + S(Y ) − S(X, Y ), (55)

where the terms on the rhs denote the entropy of the random variables X, Y and (X, Y ), respectively.
Replacing the entropy in the above equation by Rényi entropy,

Sq(X) = 1
1 − q

×
{

ln
∑

x pX(x)q for discrete X
ln
∫

dx pX(x)q for continuous X
, (56)

yields a definition of Rényi mutual information,

Ĩq(X; Y ) = Sq(X) + Sq(Y ) − Sq(X, Y ), (57)

where q ∈ (0, 1) ∪ (1, ∞).

This definition is commonly used in physics literature (see, e.g., Brydges et al. (2019, Eq 4)), but it gives
Rényi information that is equal to Shannon information regardless of q for Gaussian correlated X and Y . To
see this, we recall the probability density of a Gaussian variable X ∼ N (µX , ΣX),

pX(x) = |2πΣX |−1/2e− 1
2 (x−µX )TΣ−1

X
(x−µX ).

Substituting the above density into Eq (56) and using the multidimensional Gaussian integral to integrate
out x leads to

Sq(X) = S(X) − nX

2

(
1 + ln q

1 − q

)
(58)

where nX is the dimensions of X and S(X) = 1
2 ln |2πeΣX | is the differential entropy of a Gaussian vector.

Similarly, for
[

X
Y

]
∼ N (

[
µX

µY

]
,
[ ΣX ΣXY

ΣY X ΣY

]
), we have

Sq(Y ) = S(Y ) − nY

2

(
1 + ln q

1 − q

)
(59)

Sq(X, Y ) = S(X, Y ) − nX + nY

2

(
1 + ln q

1 − q

)
, (60)

where nY denotes the dimensions of Y . Substituting the above expressions into Eq (57) yields

Ĩq(X; Y ) = S(X) + S(Y ) − S(X, Y ) = I(X; Y ), (61)

where the last equation is due to Eq (55). We see that for Gaussian correlated variables, the Rényi information
defined in Eq (57) is identical to Shannon information for q ∈ (0, 1) ∪ (1, ∞).
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C Jeffreys information for Gaussian variables

The Jeffreys information is defined via

J(X; Y ) ≡ DJ(PXY ∥ PX ⊗ PY ), (62)

where DJ is Jeffreys divergence (Jeffreys, 1946),

DJ(P ∥ Q) = 1
2 [DKL(P ∥ Q) + DKL(Q ∥ P )]. (63)

For Gaussian correlated X and Y , the Jeffreys information follows immediately from the KL divergence
between two multivariate Gaussian distributions

DKL(N (µ0, Σ0) ∥ N (µ1, Σ1)) = 1
2

(
tr(Σ−1

1 Σ0 − I) + (µ1 − µ0)TΣ−1
1 (µ1 − µ0) + ln |Σ1|

|Σ0|

)
. (64)

For X and Y described by Eq (47), we have PXY = N (µ, Σ) and PX ⊗ PY = N (µ, Σ̄), where Σ =
[ ΣX ΣXY

ΣY X ΣY

]
and Σ̄ =

[ΣX ·
· ΣY

]
. As a result, we have

DKL(PXY ∥ PX ⊗ PY ) = 1
2

(
tr(Σ̄−1Σ − I) + ln |Σ̄|

|Σ|

)
(65)

DKL(PX ⊗ PY ∥ PXY ) = 1
2

(
tr(Σ−1Σ̄ − I) + ln |Σ|

|Σ̄|

)
. (66)

We see that the logarithmic term drops out upon symmetrization [Eq (63)]. Substituting Σ̄−1 =
[

Σ−1
X

·
· Σ−1

Y

]
and the determinant formula in Eq (51) into Eq (65) gives

DKL(PXY ∥ PX ⊗ PY ) = 1
2 ln |Σ̄|

|Σ|
= −1

2 ln |ΣX|Y Σ−1
X | (67)

which is the usual mutual information, as expected. To compute the trace in Eq (66), we write down the
inverse of the covariance matrix,

Σ−1 =
(

Σ−1
X|Y −Σ−1

X|Y ΣXY Σ−1
Y

−Σ−1
Y ΣY XΣ−1

X|Y Σ−1
Y |X

)
. (68)

Therefore we have

tr(Σ−1Σ̄ − I) = tr(Σ−1(Σ̄ − Σ))

= tr
([

Σ−1
X|Y

−Σ−1
X|Y

ΣXY Σ−1
Y

−Σ−1
Y

ΣY X Σ−1
X|Y

Σ−1
Y |X

] [ · −ΣXY

−ΣY X ·
])

= tr(Σ−1
X|Y ΣXY Σ−1

Y ΣY X) + tr(Σ−1
Y ΣY XΣ−1

X|Y ΣXY )

= 2 tr(ΣXY Σ−1
Y ΣY XΣ−1

X|Y )

= 2 tr(ΣXΣ−1
X|Y − I), (69)

where the last equality follows from the identity ΣX|Y = ΣX − ΣXY Σ−1
Y ΣY X . Substituting the above result

into Eq (66) yields

DKL(PX ⊗ PY ∥ PXY ) = tr(ΣXΣ−1
X|Y − I) + 1

2 ln |ΣX|Y Σ−1
X |. (70)

Finally eliminating the logarithmic term with Eq (67) leads to

J(X; Y ) = 1
2 [DKL(PX ⊗ PY ∥ PXY ) + DKL(PXY ∥ PX ⊗ PY )]

= 1
2 tr

(
ΣXΣ−1

X|Y − I
)

. (71)
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D Correlation measures under invertible transformation

Lemma D.1 [Liese & Vajda (2006, Thm 14); Qiao & Minematsu (2010, Thm 1)]. Let x ∈ X , and pX and
qX be probability densities. The integral

∫
X dx qX(x)f(pX(x)/qX(x)) is invariant under an invertible and

differentiable transformation T : X → X̃ .

Proof. Let x̃ = T (x). Then, dx = |JT (x̃)|dx̃, where |JT (x̃)| denotes the Jacobian determinant. Let ρX

be a probability density function, the conservation of probability, ρ(x)dx = ρX̃(x)dx̃, implies ρX(x) =
ρX̃(x̃)|JT (x̃)|−1, where ρX̃ is the corresponding probability density function of x̃. As a result,∫

X
dx qX(x)f

(
pX(x)
qX(x)

)
=
∫

X̃
dx̃ qX̃(x̃)f

(
pX̃(x̃)|JT (x̃)|−1

qX̃(x̃)|JT (x̃)|−1

)
=
∫

X̃
dx̃ qX̃(x̃)f

(
pX̃(x̃)
qX̃(x̃)

)
.

Since f -divergence and Rényi divergence depend on the probability densities only through the integral∫
dx qX(x)f(pX(x)/qX(x)), they are invariant under an invertible and differentiable transformation of the

random variable X. Consequently, the correlation measures, defined with these divergences, are also invariant
under an invertible and differentiable map.

This invariance property means that we can manipulate the covariance matrix of a random vector without
changing the information content. For random vectors, A and B, a random variable C and an invertible
matrix K, we have

Ω(A + B; C) = Ω(KA + KB; C) = Ω(Ã + B̃; C),

where Ã = KA and B̃ = KB. Then, the covariance matrix of B̃ is ΣB̃ = KΣBKT. If we choose K = Σ− 1
2

B , it
follows that ΣB̃ = I. That is, we can transform A and B into new random variables Ã and B̃ such that the
information Ω(A + B; C) is unchanged and the covariance of B̃ is an identity matrix.
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