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ABSTRACT

Recent progress in large-scale language models has enabled breakthroughs in pre-
viously intractable computer programming tasks. Prior work in meta-learning and
neural architecture search has led to substantial successes across various task do-
mains, spawning myriad approaches for algorithmically optimizing the design and
learning dynamics of deep learning models. At the intersection of these research
areas, we implement a code-generating language model with the ability to modify
its own source code. Self-programming Al algorithms have been of interest since
the dawn of Al itself. Although various theoretical formulations of generalized
self-programming Al have been posed, no such system has been successfully im-
plemented to date under real-world computational constraints. Applying Al-based
code generation to Al itself, we develop and experimentally validate the first practi-
cal implementation of a self-programming Al system. We empirically show that a
self-programming Al implemented using a code generation model can successfully
modify its own source code to improve performance and program sub-models to
perform auxiliary tasks. Our model can self-modify various properties including
model architecture, computational capacity, and learning dynamics.

1 INTRODUCTION

Artificial intelligence technology has sought to emulate human cognitive capabilities within a com-
putational substrate. Machine learning, and more recently deep learning, has enabled computers to
derive programs from relevant data in order to address novel tasks for which they were not explicitly
programmed.

Advanced artificial intelligence is theorized to require self-modifying programs that continuously
imbue themselves with extended capabilities (Schmidhuber, 2006; |1987)), surpassing their pre-
programmed functionalities to achieve increased computational and predictive effectiveness. Meta-
learning approaches have made significant progress along this avenue, from self-referential evolu-
tionary algorithms (Schmidhuber;, |1987) to RNN-based learners (Santoro et al.,|2016) and modern
gradient-based meta-learners (Finn et al.,[2017; Khodak et al.,[2019; |Li et al.|[2017). Adjacent work
in neural architecture search (Real et al., 2018 Stanley et al.| 20095 Zoph and Le}, 2016) has led to
the development of various algorithms for automatically optimizing the architectural parameters of
neural networks.

In recent years, Al-based computer code generation has seen dramatic progress (Chen et al.l 2021; |Le
et al., [2022; L1 et al.} 2022; Wang et al.,[2021)) stemming from breakthroughs in large-scale language
processing models (Brown et al., 2020; |[Devlin et al.l 2018} Raffel et al., 2020} [Vaswani et al., 2017).
Modern language models (LMs) trained on computer programming tasks can not only generate
syntactically correct computer code, but can also formulate logically correct computer programs
from human-language prompts and understand pre-written programs to derive human-interpretable
information.

At the intersection of these paradigms, we set out to explore a completely new avenue of re-
search by combining self-modification approaches with code-generation approaches to achieve
self-programming Al. Although theoretical formulations of self-programming AI (Schmidhuber;,
2006) have been posed in the past, no practical implementation of a fully self-programming AI has
been achieved to date under real-world computational constraints.



In this paper, we implement a LM-based code generation model with the ability to rewrite and improve
its own source code, thereby achieving the first practical implementation of a self-programming Al
system. With free-form source code modification, it is possible for our model to change its own
model architecture, computational capacity, and learning dynamics.

Since this system is designed for programming deep learning models, it is also capable of generating
code for models other than itself. Such models can be seen as sub-models through which the main
model indirectly performs auxiliary tasks. We explore this functionality in depth, showing that our
model can easily be adapted to generate the source code of other neural networks to perform various
computer vision tasks. We illustrate our system’s ability to fluidly program other deep learning
models, which can be extended to support model development in various other fields of machine
learning.

2 RELATED WORK

Meta-learning. Meta-learning is the subfield of machine learning that attempts to "learn how to
learn". To be precise, let w denote an assumption on "how to learn" and p(7) be a task distribution,
where a "task" T = {D, L} for some dataset D and loss function £ (Hospedales et al., 2022). Then,
the goal of meta-learning can be viewed as computing

min,E7(L(D;w)).

Approaches in this subfield are broadly classified into RNN-based learners (Santoro et al.l [2016),
gradient-based meta-learners (Finn et al., 2017} |[Khodak et al., [2019; [Li et al.l |2017), and self-
referential evolutionary algorithms (Schmidhuber, |1987)).

A select body of prior work within meta-learning establishes the conceptual groundwork for theoreti-
cal self-programming Al systems. Notably, Godel machines (Schmidhuber, 2006) pose a theoretical
formulation wherein an intelligent system can continuously rewrite itself in a globally optimal way.
Schmidhuber] (1987)) discusses some of the evolutionary concepts that might underpin such systems.

Automated Code Generation. [Vaswani et al.|(2017) introduced the transformer, an attention-based
architecture that alleviated many of the previous issues with prior sequence-to-sequence models. The
success of this architecture and subsequent innovations in Natural Language Processing (Brown et al.|
2020; Devlin et al.| 2018} |Raffel et al., 2020) have led to breakthroughs in Al-driven code generation
(Chen et al.| 2021} |Drori et al., [2022; |Le et al., 20225 L1 et al.| [2022; |Wang et al., 2021).

Chen et al.| (2021)) revolutionized the application of language models to code generation. |Le et al.
(2022) and (Wang et al.| (2021) extended the transfer learning concepts introduced in |[Raffel et al.
(2020)) to create systems capable of efficiently executing multiple tasks, including code generation
and understanding. |Li et al.| (2022)) created a system that was able to achieve top-half performances at
various code competitions. |Drori et al.| (2022)) showed that a pretrained language model fine-tuned on
code was capable of solving, generating, and explaining university level math problems, as well as
problems from challenging high-school math competitions. Although these systems are capable of
writing programs for diverse and complex tasks, they are not capable of modifying and improving
their own source code.

AutoML. AutoML is a nascent and incredibly complex field that aims to automatically generate
machine learning algorithms to solve problems without human tuning. Part of the difficulty lies in
the fact that intricate, well-crafted neural networks are often necessary to obtain high performance
on even mildly nontrivial problems such as CIFAR-100. Thus, the subfield of Neural Architecture
Search(NAS) formed with the goal of creating algorithms capable of efficiently generating suitable
architectures for a given problem. There are three approaches typically used for NAS: reinforcement
learning-based NAS (Jaafra et al., 2019; Zoph and Lel [2016), gradient-based NAS (Shi et al., 2021),
and evolutionary NAS (ENAS) (Liu et al., 2021).

Evolutionary algorithms are based upon the principles of Darwinian evolution and natural selection:
a population of algorithms are created and evaluated, the "fittest" (best-performing) survive and
are used as "parents” for a future generation of algorithms that are then evaluated, and so on (Liu
et al.| 2021)). Some evolutionary approaches include regularized evolution search (Real et al., 2018}
2020), particle swarm optimization (Haidar et al., [2021), and genetic algorithms (Whitley, 2021]).
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Figure 1: Baseline implementation of our model with a simple genetic algorithm.

While AutoML techniques are usually restricted to one type of network (such as convolutional neural
networks), our system is capable of editing and improving all sorts of neural network source code.

Our Contribution. We extend the methodologies of automated code generation as well as some
simple evolutionary ideas from the field of AutoML to create the first functional self-programming
Al system. In particular, we use a code-generating transformer model based on [Raffel et al.| (2020)
and a simple genetic algorithm (Whitley, 2021).

3 METHODS

3.1 SELF-PROGRAMMING Al

We present the first practical implementation of a self-programming Al system. We initialize an
arbitrary language processing model and train it on a synthetically-generated code corpus dataset,
henceforth referred to as the "Random Refinement Dataset". Within this dataset, code samples are
included for creating and training transformer-based neural networks. The model learns to parse and
generate machine learning code, allowing it to understand its own source code. In an iterative process,
the model is trained for a period of time before it is queried to generate a new source code for itself.
A new iteration of the model is initialized and trained, and the cycle continues (Figure[I).

Our model is initialized with a standard encoder-decoder transformer model based on T5 (Raffel et al.|
2020). The model begins with 2 encoder layers, 2 decoder layers, 8 attention heads, and a feed-forward
layer width of 1024. The architecture of the model is easily modified by its self-reprogramming in
subsequent episodes.

Each episode of the algorithm is comprised of a training stage and a reprogramming stage. The model
can be run for an arbitrary number of episodes to continuously self-improve, although its ability to do
so is conditional on having an initial dataset with relevant code samples from which it can effectively
deduce how to edit its existing source code.

During the training stage, the model is trained on the random refinement dataset. In our experiments,
we train the model on a text-to-text "code refinement" task in order for it to learn code modification.
Given an initial source code snippet, the model is trained to generate a modified version of that code
snippet. The specific modification applied is arbitrary, but the newly generated or "refined" code
should be syntactically and logically correct. The text-to-text transformer model outputs probability
distributions over tokens, allowing for effective modeling of non-deterministic mappings for the code
refinement process.

The reprogramming stage utilizes an algorithm similar to the simple genetic algorithm as described
in |Whitley| (2021). During this stage, the trained model is given its own source code c as input



for code refinement. The model is queried to generate n modified versions of its current source
code ¢y, o, - Cp. [H Each refined source c; is executed to check for program validity, and the
model instantiated within the refined code is quickly trained for one epoch on a subset S of the
training corpus. Each model’s average loss Ls(c;) over this "extended few-shot" training run is used
as a proxy to evaluate the potential future performance of each refined source code version. The
highest-performing source code c; is kept as the new source code for the model, and the training
stage is repeated with the model defined in this source. To be precise, this c; satisfies

Ls(c;) =min(Ls(c1), - Ls(cn))-

Algorithm 1 Self-Reprogramming Algorithm

Require: Default source code that defines a default model and default training algorithm
Ensure: Implements self-reprogramming artificial intelligence
source < default source code;
while Model is running do
if source defines a model then
model < model as defined in source;
end if
if source defines a train() function then
train() < train() as defined in source;
end if
train(model, dataset);
for number of candidates do
candidate < model.generate(source)
model, train, dataset < as defined in candidate
candidate.metrics= train(candidate) on a small subset of the dataset
end for
source < candidate with the best metrics;
end while

3.2 PROGRAMMING OTHER Al

The process to generate code for novel neural networks is similar. We initialize an encoder-decoder
transformer based on TS5 and train it on a random refinement dataset of code samples for arbitrary
convolutional neural networks.

Next, the model is queried to generate modifications of an initial source code snippet. In our experi-
ments, this is a network with a single hidden layer of 16 neurons. The possible modifications include
adding convolutional layers, changing the size of convolutional or hidden layers, and increasing the
number of hidden layers.

During the reprogramming stage, the trained model is given the default network as input for code
refinement and is then queried to generate n modified versions of this network. Each modification is
first checked for program validity, and is then trained for two epochs on subset of data for a classic
neural network problem (such as MNIST or CIFAR-10). The objective of each network is to minimize
the cross-entropy loss,

L) =— Zg log(p:),

where 6 represents the model parameters, n is the number of classes, g; is the ground-truth label, and
p; is the softmax probability outputted for the i-th class. The best-performing algorithm is reused as
input to the model for further code refinement, and the process continues.

"For most trials we used n = 8.
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Figure 2: Loss curves for text-to-text refinement

4 EXPERIMENTS

4.1 SELF-PROGRAMMING Al

We carry out preliminary experiments evaluating a basic implementation of self-reprogramming Al
We procedurally generate a code refinement dataset for transformer models, and use the our algorithm
to train language processing models on this dataset in order to rewrite their own neural network
source code.

In the random refinement dataset, we sample unrefined source codes for T5-based transformer models.
Several model design parameters are randomly generated: number of encoder layers (between 1 and 8
inclusive), number of decoder layers (between 1 and 8), feed-forward layer dimensionality (between
64 and 4096), and number of attention heads (between 1 and 16). The key-value dimensionality is set
to be the model dimensionality divided by the number of attention heads.

We "refine" this source code by randomly modifying one of the model design parameters. Either one
among the encoder depth, decoder depth, and number of heads is incremented or decremented, or the
feed-forward width is randomly increased or decreased by a percentage of 1% to 50%, inclusive. The
unrefined source code is used as input to the model, and the refined source is used as the corresponding
output label.

In the training stage, the model is trained in a conditional generation configuration to generate refined
transformer source codes given an unrefined source code as input. The objective of this procedure
is to teach the model to modify design parameters in the source code of its own model class. This
"refinement" process is more or less random, but the extended few-shot evaluation method used in
the reprogramming stage allows us to achieve performance improvements over multiple iterations of
our reprogrammed model.

In these experiments, we use a simple greedy search approach to evaluate and select generated source
codes that would potentially improve the code refinement model. The model is queried with its own
source code as input, and randomly generates 8 refined source code candidates. The candidates are
each evaluated using the extended few-shot method, training for one epoch on the first 1024 samples
of the code refinement dataset.

Source code candidates that produce errors are discarded entirely, and the source code candidate
with the lowest average training loss in extended few-shot evaluation is kept as the new query code.
If all candidates underperform the original source code, then the original source is kept. This new
query code is given to the code refinement model as input to generate another batch of source code
candidates in the following iteration of the main loop. The main loop runs for 10 iterations of training
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Figure 3: Loss curves of multiple iterations of self-reprogramming models on convolutional networks
for CIFAR-10 and EMNIST. Each graph represented Model O refers to the default model. The value
of n is the number of candidates tested prior to source code updating. Loss curves for MNIST do not
show much improvement as even the input network was able to achieve high performance.

and reprogramming. The resulting loss curves of our self-reprogramming models are show in Figure
[2] and an example of a modification made is in Table ]

Unrefined Source (Input Text)

config = transformers.PretrainedConfig.from_pretrained("Salesforce/codet5-small")
config.num_layers = 2

config.num_decoder_layers = 2

config.d_ff = 1024

model = transformers.TSForConditionalGeneration(config)

Refined Source (Output Text)

config = transformers.PretrainedConfig.from_pretrained("Salesforce/codet5-small")
config.num_layers = 2

config.num_decoder_layers = 2

config.d_ff = 1331

model = transformers.TSForConditionalGeneration(config)

Table 1: Example of an input-output pair comprised of an unrefined transformer source code and
a corresponding refined source code. In the refined source, the feed-forward layer dimensionality
parameter is randomly increased by 30%.

4.2 PROGRAMMING OTHER Al

In the random refinement dataset, we sample unrefined source codes for convolutional neural networks.
Several model design parameters are randomly generated: number of hidden layers n (between 1 and
8 inclusive), number of convolutional layers ¢ (between 0 and 8), number of channels h (between 16
and 512), and size of each hidden layer s (between 16 and 1024). Any of these four hyperparameters
is either incremented or decremented for each modification.

The remainder of the process is similar to the self-programming stage. The model is given a initial
source code and queried to generate n modified versions. Each modified version is then trained a
subset of the target dataset (such as CIFAR-10 or MNIST) before being evaluated on a disjoint subset
of the target dataset. The source code with the highest accuracy is then given to the model as a new
source, and the process is repeated over the next five main loop iterations.

The performance of the code generated was evaluated on a handful of classic neural network tasks
- MNIST, CIFAR10, and EMNIST (ByClass). Each experiment was repeated multiple times with
different model setups.

The accuracy of generated networks trained on MNIST increased from roughly 92% to 98% within
one training epoch. Accuracy on CIFAR10 improves from 20% to 70% over four epochs. Finally,



accuracy on EMNIST increased from roughly 70% to 87% over four epochs. An example of a
modification made by the agent is provided in Table[2] As shown in Figure[3] later models tend to
achieve favorable start, end, and intermediate loss values compared to earlier iterations.

Input Network

Linear(in=784, out=64, bias=True)
ReLU()

Linear(in=64, out=64, bias=True)
ReLU()

Linear(in=64, out=10, bias=True)

Output Network

Conv2d(1, 128, kernel=(3, 3), stride=(1, 1))
Conv2d(128, 256, kernel=(3, 3), stride=(1, 1))
MaxPool2d(kernel=2, stride=2, padding=0, dilation=1)
Linear(in=6400, out=64, bias=True)

ReLU()

Linear(in=64, out=64, bias=True)

ReLU()

Linear(in=64, out=62, bias=True)

Table 2: Example of an input neural network and code modifications made by our model. Our system
adds two convolutional layers, a pooling layer, and automatically adjusts the number of inputs to the
dense layers accordingly.

5 ANALYSIS

Our self-programming results verify that our model is capable of editing its own source code to
extend its capabilities.

Furthermore, on all three tasks for programming other models, our system is able to autonomously
design networks that achieve effective performance. Our approach is both flexible by way of its
free-form programming capabilities and simple in its search and selection procedures. Other methods
to search for optimal networks, such as reinforcement learning, may be unstable (Kumar et al.,
2020) when applied to different domains, and therefore may require specialized tuning in order to be
effective.

Accuracy on MNIST is around 1.5% below SoTA and EMNIST ByClass is about 10% below SoTA,
but performance on CIFAR-10 lags significantly behind the current SOTA (Vahidian et al., [2021]).
This is likely due to the fact that competitive results on CIFAR-10 typically require specialized model
designs, which are unlikely to be achieved since our approach uses a simple class of models with
greedy search over random code modifications. Performance on these three problems could possibly
be improved to by using more sophisticated source code data and search algorithms specialized for
computer vision model development.

As shown in Figure[dh, the average performance of generated models on CIFAR-10 tends to increase
with the total number of candidates (the product of the number of code search iterations multiplied
by the number of candidates per iteration) up to a certain point. Figure [dp shows that the average
performance of generated models increases significantly with the number of candidates tried per
epoch, and is not as sensitive to the number of code search iterations.

Figure[5|plots the average model size (number of parameters) of generated models over 10 consecutive
reprogramming steps. The most significant increases were found to typically occur in the number
of convolutional layers. Other significant increases occurred in the size of the hidden layers. The
size of the convolutional layers did not increase significantly in any of the three tasks (it was found
to fluctuate for CIFAR-10 and MNIST), and the number of hidden layers was rarely found to be
increased.

In the three tasks involving generating other models, the code-generating model consistently chose to
increase convolutional layer counts, which was found to produce significant increases in performance.
These deeper convolutional network source codes were naturally reused by the algorithm as input in
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Figure 4: The first graph (left) illustrates the average performance of a network on CIFAR-10 based
on the total number of candidates tested over all epochs. The second (right) shows the average
performance of a model with a varying number of candidates over four epochs and the average
performance of a model with 8 candidates over a varying number of epochs.

subsequent code generation queries. In the initial training loop, most networks had no convolutional
layers and a small minority had a single convolutional layer. Within four loops, every network had
at least 2 convolutional layers and often more. The number of hidden layers did not significantly
increase, indicating that deeper feed-forward architectures may not be necessary to achieve increased
performance on these problems.

As can be seen in[6] the number of trainable parameters in the best-performing network increased
significantly over time. This agrees with our current understanding of neural networks that larger
models with more parameters are more expressive and capable of effectively addressing more complex
tasks (Hestness et al.,2017; Kaplan et al., 2020).

All in all, our results demonstrate that our system is able to effectively rewrite the code for a variety
of types of neural networks. From a self-programming perspective, our self-programming Al system
is capable of extending itself with additional functionalities by way of programming sub-models that
can perform auxiliary tasks. From a more practical perspective, our neural network code generation
approach can be seen as a kind of free-form AutoML solution that can be used to support model
development in various task domains.

6 CONCLUSION

We propose and experimentally validate the first functional self-reprogramming Al system. In our
experiments, we successfully implement the system and show it can freely modify its own neural
network design. Over several iterations of the algorithm, reprogrammed models tend to achieve
increasingly favorable performance on a simple supervised text-to-text code modification task.

Furthermore, the code-generating model used in our self-programming system can easily be adapted
to program other models, in order to perform various other machine learning tasks.

6.1 FUTURE WORK

Our work presents a number of promising directions for future research. We are interested in
extending this work by incoporating training on a large computer code corpus. Not only would this
allow our model to adapt to differences in code styles (such as syntax differences or distinctions
between machine learning libraries and frameworks), but it would also allow the model to incorporate
code and synthesize new approaches to improve itself and its auxiliary sub-models.

Furthermore, an actor-critic implementation in which the code generation model is trained as an actor
via gradients from an associated critic model, similarly to CodeRL in (Le et al.l 2022), could improve
performance and generalization. We plan to implement these ideas promptly in future work.
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