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ABSTRACT

In order to ensure that vulnerable end-users have a clear understanding of decisions
made by black-box models, algorithmic recourse has made significant progress by
identifying small perturbations in input features that can alter predictions. However,
the generated counterfactual examples in real-world scenarios are only feasible
and actionable for end-users if they preserve the realistic constraints among input
features. Previous works have highlighted the importance of incorporating causal-
ity into algorithmic recourse to capture these constraints as causal relationships.
Existing methods often rely on inaccessible prior Structural Causal Models (SCMs)
or complete causal graphs. To maintain the causal relationships without such
prior knowledge, we contribute a novel formulation that exploits the equivalence
between feature perturbation and exogenous noise perturbation. To be specific, our
formulation identifies and constrains the variation of exogenous noise by leverag-
ing recent advancements in non-linear Independent Component Analysis (ICA).
Based on this idea, we introduce two instantiated methods: Algorithmic Recourse
with L2 norm (AR-L2) and Algorithmic Recourse with Nuclear norm (AR-Nuc).
Experimental results on synthetic, semi-synthetic, and real-world data demonstrate
the effectiveness of our proposed methods.

1 INTRODUCTION

The abundance of big data creates opportunities to enhance decision-making in areas like finance,
employment, and healthcare. Machine learning models are widely used in these domains, but its
important to explain their complex decisions and safeguard the rights of end-users (Pawelczyk et al.,
2020; Karimi et al., 2020). Algorithmic recourse, which modifies input features to change model
predictions, have gained popularity in recent years (Wachter et al., 2017). For instance, a bank could
use algorithmic recourse to inform loan applicants of actions that would lead to approval. Serving as a
popular explanation tool, algorithmic recourse balance model accuracy and explainability (Pawelczyk
et al., 2020; Karimi et al., 2020; Mahajan et al., 2019; Kanamori et al., 2021).

One fundamental challenge for algorithmic recourse is to generate feasible real-world exam-
ples (Karimi et al., 2020). To be specific, feasibility refers to preserving realistic constraints among
input features. Despite providing insight into black-box ML models, current algorithmic recourse
often fails to offer actionable recommendations for individual users. For instance, suggesting to
increase in education level and a decrease in age for loan approval is meaningless to end-users, as
shown in Figure 1(b).

Researchers have explored realistic constraints in generating examples, considering causality (Maha-
jan et al., 2019; Pawelczyk et al., 2020; Kanamori et al., 2021). From the perspective of the Structural
Causal Model (SCM) (Pearl, 2009), achieving feasibility is equivalent to preserving the structural
causal relationships among input features. For example, methods using the distance between per-
turbed and source-determined features regulate explanation generation when the underlying SCM is
known (Mahajan et al., 2019). When the SCM is unknown but the causal graph is available, (Karimi
et al., 2020) proposes to approximate SCMs using the Gaussian process or CVAE. However, either
the full SCM or the causal graph knowledge is often limited in realistic cases.

In this paper, we aim to provide feasible and interpretable algorithmic recourse without relying on
SCMs or causal graphs in prior. To this end, previous claims suggest preserving linear/nonlinear
structural functions among input features (Mahajan et al., 2019). However, the lack of prior causal
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Figure 1: Distinctions among factual examples rejected by the ML decision model, vanilla algorithmic
recourse that alter predictions but are not actionable, and feasible algorithmic recourse complying with
realistic causal relationships.

knowledge makes direct identification or approximation of these functions impossible (Shimizu,
2014; Hyvarinen et al., 2019; Karimi et al., 2020). To overcome this, we propose that the process
of the algorithmic recourse on the input features can be modeled as solely the manipulation of the
exogenous noise of each sample, while the structural causal relationships among features remain.
To the best of our knowledge, we are the first to propose this idea. To instantiate this idea, we
indirectly preserve causal relationships by identifying and constraining the variation of exogenous
noise in aid of the non-linear Independent Component Analysis (ICA) (Hyvarinen et al., 2019;
Hyvarinen & Morioka, 2017). Theoretically, we show that exogenous noise can be identified in a
reliable manner by constructing an exogenous regressor. Subsequently, we further prove that the
variation of the exogenous noise is governed by that of representations learned by the exogenous
regressor under mild conditions. Practically, we propose two practical methods, AR-L2 and AR-Nuc,
which constrain the magnitude and sparsity of variations in exogenous representations, respectively.
Extensive experimental results verify that our methods: (a) significantly improve the preservation of
causal relationships for algorithmic recourse; (b) successfully achieve the alteration of predictions
with little cost.

1.1 RELATED WORK

Algorithmic recourse Traditional local explanation methods for black-box ML models on data,
such as tabular data, are crucial for users to interpret decisions (Ribeiro et al., 2016). However, these
explanations often differ from complex ML models. Algorithmic recourse (or counterfactual explana-
tion) offers consistent and interpretable examples as an alternative (Wachter et al., 2017; Mahajan
et al., 2019; Karimi et al., 2020). They can be categorized into gradient-based methods (Wachter et al.,
2017; Moore et al., 2019; Mahajan et al., 2019; Karimi et al., 2020) and linear programming (Ustun
et al., 2019; Kanamori et al., 2021). Recent discussions have also addressed fairness, transportability,
and reliability issues in algorithmic recourse (Black et al., 2021; von Kügelgen et al., 2022).

While the definition of algorithmic recourse has parallels with adversarial examples (Brown et al.,
2017; Santurkar et al., 2021), the biggest distinction between the two directions is that the former
only aims to explain to the model while the latter aims to suggest both interpretable and actionable
recommendations to end-users (Karimi et al., 2021a). Unfortunately, most of the current algorithmic
recourse methods lack such capability by ignoring the relationships and constraints among the input
features (Ustun et al., 2019; Karimi et al., 2020).

Causality for feasible algorithmic recourse To overcome the above-mentioned challenge, several
recent works have suggested the incorporation of causality into the algorithmic recourse (Mahajan
et al., 2019; Karimi et al., 2020; Kanamori et al., 2021; Ustun et al., 2019). From the view of
causality, the infeasibility of vanilla algorithmic recourse stems from the fact that such recourse
are generated by independently manipulating each input feature. As a consequence, the causal
relationship/constraints are broken during the generation process (as shown in Figure 1(b)). Accessing
the entire SCM model, (Mahajan et al., 2019) suggests regularization of algorithmic recourse by
minimizing differences between perturbed features and their parent-generated counterparts. Building
on this concept, several works(von Kügelgen et al., 2022; Karimi et al., 2020; 2021b) seek optimal
intervention feature sets with minimal cost. These methods relax the requirement from knowing
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the whole SCM model to knowing the causal graph. For instance,(Karimi et al., 2020) proposes
approximating the SCM model using Gaussian process or Conditional Variational Encoder(CVAE).
Moreover, (Kanamori et al., 2021) explores different cost setups with accessible causal graphs.

2 BACKGROUND

Notations We assume a binary classifier h as the underlying ML model (Kanamori et al., 2021;
Karimi et al., 2020; Mahajan et al., 2019), while our method also allows for a multi-categorical
classifier. We use a datasetD with M samples, each consisting of n input characteristics x and output
labels y. We index data points as 1 ≤ i ≤ M and features as 1 ≤ j ≤ n. The goal of algorithmic
recourse is to answer why some individuals were denied loans and what actions they could take to
increase approval chances. We search for the closest algorithmic recourse xR for a given factual
sample xF using modelM: xR ∈ argminx∈X d (x,xF) s.t. h(x) ≠ y, where d refers to some pre-
defined distance functions. To be specific, the counterfactual xR is often computed as xR = xF + δ
by adding some perturbations δ on xF.

Structural Causal Models. From the perspective of causality, it is crucial to first identify the
generation of the observational data (Pearl, 2009). Specifically, the data-generating process of X is
described by a Markov structural causal model (SCM) V = (X,F, Pσ) describes the causal relations
between n features in X = {x1,x2, . . . ,xn} as: F = {xj ∶= fj (xpa(j), σj)}

n

j=1
(Pearl, 2009), where

Pσ = Pσ1 × . . . × Pσn and F is the set of assignment functions fj which maps feature xj to its causal
parents xpa(j). Following previous protocols (Karimi et al., 2020; Mahajan et al., 2019), we here
assume the non-existence of unmeasured confounders, i.e., the causal sufficiency assumption (Pearl,
2009), such that the exogenous noise σj are mutually independent. Meanwhile, the SCM is often
coupled with its intuitive illustration, i.e., the causal graph G, which is formed by a one-to-one
mapping from each variable xj to a node in G and directed edges drawn from xj to xpa(j) for j ∈ [n].
To ensure the SCM is non-recursive, we follow (Karimi et al., 2020) and assume throughout that G is
acyclic.

Interventions with Minimal Cost. Assuming the SCM model V is accessible with invertible forms,
e.g., additive SCMs, (Karimi et al., 2021b) formulate the above algorithmic recourse problem as
finding the optimal intervention strategy with minimal cost:

A∗ ∈ argmin
A∈V

cost (A;xF) s.t. xSCF = FA (F−1 (xF)) , h (xSCF) ≠ h (xF) (1)

where A∗ directly specifies the set of feasible actions to be performed for minimally costly recourse.
By the three steps of structural counterfactuals (Pearl, 2009), the counterfactual examples, i.e., xSCF,
is generated based on the evidence XF and V , and we use FAF−1 to denote such procedure (Karimi
et al., 2021b). Based on this foundation, some relaxation has been proposed in (Karimi et al., 2020)
by assuming only the access of causal graph G rather than the SCM V . Unfortunately, as the ultimate
goal of causal discovery (Zhu et al., 2019), the prior causal graph still restricts the application of
algorithmic recourse. Hence, how to maintain the causal relationship without prior knowledge is of
urgent need in many scenarios.

Connections between ICA and Causal Inference. ICA aims to identify mutually independent
source signal S from mixed observations T via a mixture function f̃ : T = f̃(S), e.g., the cocktail
party problem (Haykin & Chen, 2005). While the traditional ICA theory can successfully identify the
non-Gaussian distributions of f̃ and σ under the condition that f̃ is a linear function (Shimizu, 2014),
practical applications often involve non-linear functions for f̃ , making it extremely challenging to
directly infer f̃ without additional information (Hyvarinen & Morioka, 2017). Previous advances
in causal inference have utilized ICA to identify different forms of SCMs (Shimizu, 2014; Gresele
et al., 2021). For instance, the identification of causal graph G for linear and additive SCMs, i.e.,
xj ∶= wjxpa(j) + bj for j ∈ [n] (w, b are linear coefficients), can be reformulated into a linear ICA
problem (Zhu et al., 2019; Shimizu, 2014). On the other side, (Gresele et al., 2021) has contributed
novel identification results for non-linear ICA based on independent causal mechanisms of source
signals. These works build up the foundation of our work to identify and constrain the exogenous
noise for learning actionable algorithmic recourse which is the goal of this paper.
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3 METHODS

3.1 IDENTIFICATION OF VARIATION OF EXOGENOUS NOISE

Relating Algorithmic Recourse to ICA. Throughout our paper, we clarify again that all our
derivations and designs are based on the assumptions that the factual examples, i.e., XF , are
generated based on the additive, non-recursive, and Markov SCMs described in Section 2. In other
words, we model the data generation using additive SCMs V with causal sufficiency assumption and
acyclic causal graph G. To generate actionable counterfactual examples xR without G and V , we
reformulate the generation process as the modifications of exogenous noise. More formally, we depict
the generation of factual data xF and recoursed xR in the form of additive SCMs with structural
functions f ∶ Rn ↦ Rn and the exogenous noise σF ∈ Rn:

xF = f(xF) + σF ⇒ xR = f(xR) + σR, (2)

where σR is the results of modifications on σF : σR = σF + δ (δ ∈ Rn refers to the variation of
the exogenous noise). Notably, the above formulation is just an aggregated variant of separate
formulation of additive SCM for each node, i.e., xj ∶= fj (xpa(j)) + σj , j ∈ [n] (We have provided
more detailed illustration on this in the appendix A.1 for saving space). Intuitively, we model the
process of algorithmic recourse as the solely manipulation of the exogenous noise, while the structural
equations f which characterize the causal relationships are kept invariant.

Identification of the exogenous noise. Assuming that the operator g = (I − f)−1 is invertible (I is
the identity mapping), we turn equation equation 2 into xR = g(σR). As we have assumed the Markov
SCMs, the exogenous noise elements σ are mutually independent (Pearl, 2009). Consequently, the
reformulation xR = g(σR) has natural connections to the formulation of ICA (Hyvarinen & Morioka,
2017), i.e., T = f(S), where the signal σR can be interpreted as the source signal S, the function g
represents the mixing process f̃ , and xR represents the mixed observations T .

Based on above observations, we determine the variability value of σR using advanced non-linear
ICA techniques (Hyvarinen et al., 2019). By introducing an observed auxiliary variable c, we
ensure that each element σj1 depends statistically on c but is conditionally independent of the other
elements σj2 (Hyvarinen et al., 2019) 1. We randomly permute the sample order of y to eliminate
correlations with σ and construct the modified data DA using permuted y. Finally, we employ a
discriminative model called the exogenous regressor to distinguish between DA and D through a
non-linear regression system as follows:

min
θ

M

∑
i=1
l( 1

1 + exp(−r(xi,yi))
, oi) s.t. r(x,y) =

n

∑
j=1

ψθ
j (ϕθ

j(x),y) , (3)

where the binary labels o indicate the source of the data as eitherD orDA. The functions ψθ
j ∶ R2 ↦ R

and ϕθj ∶ Rn ↦ R are non-linear representations parameterized by θ, implemented using deep
networks (Hyvarinen et al., 2019). In this paper, we refer to ϕ as the "exogenous representations" for
simplicity. We then offer theoretical insights into the behavior of the learned ϕθ(x) to support the
validity of our exogenous regressor as follows:

Theorem 3.1 (Identification of σ). Assume:

(a) The exogenous noise σ is conditionally exponential of order K of y. Consequently, the
conditional probability density of σ given y can be written for each feature 1 ≤ j ≤ n:

p (σj ∣ y) =
Qj (σj)
Zj(y)

exp [
K

∑
k=1

q̃jk (σj)λjk(y)] , (4)

where Qj , Zj , q̃jk and λjk as scalar-valued functions. Meanwhile, for each j, the sufficient
statistics q̃jk are assumed linearly independent over k.

1Notably, such auxiliary variables could be historical observations, the time variables or the class labels (Hy-
varinen et al., 2019). The class label y serves as a suitable choice for c (Hyvarinen & Morioka, 2017).
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Figure 2: Framework of our method.

(b) There exists nk + 1 realizations of y as {y}nkl=0 such that the matrix with size nk × nk:

L =
⎛
⎜
⎝

λ11 (y1) − λ11 (y0) , . . . , λ11 (ynk) − λ11 (y0)
⋮

λnk (y1) − λnk (y0) , . . . , λnk (ynk) − λnk (y0)

⎞
⎟
⎠

(5)

is invertible.

(c) The trained (deep) logistic regression system in equation 3 has the universal approximation
capability to distinguish D from DA.

Then, in the case of infinite samples, the representations ϕθ(x) identifies σ up to a linear transforma-
tion of point-wise statistics q̃:

q̃ (σ) =Aϕθ(x) + b, (6)

where A and b are fixed but unknown matrices.

Notably, although the above theorem provides the general case for any k ≥ 1, we will only treat the
cases when k = 1 throughout the following parts.

Constraining the variation of the exogenous noise. Based on the obtained results, we establish a
connection between the variation of exogenous representations ϕ and exogenous noise σ as follows:

A (ϕ(xF ) − ϕ(xAR)) = q̃(σF ) − q̃(σR). (7)

Building on previous analyses, we aim to limit the variation of exogenous noise as σF − σR. This
is based on the intuition that excessive variation in σF − σR diminishes the influence of structural
functions f . Essentially, significant variability in σ closely resembles point-wise intervention. Initially,
we assume the variation in exogenous representation for a batch of samples, denoted as H, as follows:

H = {ϕ(xF
1 ) − ϕ(xAR

1 ), ϕ(xF
2 ) − ϕ(xAR

2 ), . . . , ϕ(xF
Mb
) − ϕ(xAR

Mb
)}. (8)

Consequently, we will further demonstrate that constraining the sparsity and magnitude of H ade-
quately restricts the corresponding characteristics of σF − σR, respectively.

Sparsity Constraint The intuition behind the sparsity constraint is that we expect the number of
perturbed input features to be small. To this end, we restrict the variation vector of the exogenous noise
to be sparse by minimizing the rank of the matrix H. As the rank of a matrix is well approximated by
its nuclear norm, we propose the algorithmic recourse with Nuclear Norm (AR-Nuc) by optimizing
the nuclear norm of H as ∥H∥∗: minXAR ∶ Lnuc = ∥H∥∗.
The optimization process only updates the generated XAR while keeping ϕ and factual input xF

fixed. However, one might be confused on how the sparsity of H correlates to that of H0 =
{σF

1 − σAR
1 , σF

2 − σAR
2 , . . . , σF

Mb
− σAR

Mb
}. To answer this question, we provide theoretical insights to

bridge the sparsity of Hσ to that of H as follows:
Theorem 3.2 (Connection between H and H0). Assume:

(a) The sufficient statistics q̃ij are differentiable almost everywhere, and for fixed i, {q̃ij}kj=1
are linearly independent on any subset of Rn with measure greater than zero.
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(b) For fixed i, the representation functions ϕij are linearly independent on any subset of Rn

with measure greater than zero.

Then, for k = 1, the resulting matrix A is of full-rank and invertible. Meanwhile, the sparsity of H0 is
governed by that of H.

Magnitude Constraint Beyond the sparsity constraint, we restrict the exogenous noise to vary in a
small magnitude as well. To this end, we design another method named the algorithmic recourse with
L2 norm (AR-L2). More specifically, we first provide the following theorem to argue that optimizing
the L2 norm of the variation of exogenous representations, ϕ(xF ) − ϕ(xAR), is enough to constrain
that of σF − σR:

Theorem 3.3. Assume the sufficient statistics q̃ (k=1) is a bi-Lipschitz function of σ, then ∥σF −σR∥2
is governed by ∥ϕ(xF ) − ϕ(xAR)∥2, where ∥ ⋅ ∥2 is the L2 norm.

Therefore, we propose the algorithmic recourse with L2 Norm (AR-L2) by optimizing the L2 norm
of H on a batch of samples: minXAR ∶ Lmag = ∥H∥2. To save space, all proofs are placed in the
appendix A.3.

3.2 CHOICE OF ALGORITHMIC RECOURSE MODEL

As the conditional variational autoencoder (CVAE) provides a flexible and reliable approach (Mahajan
et al., 2019; Pawelczyk et al., 2020), we adopt the previous proposed CFVAE model (Mahajan et al.,
2019) to generate the algorithmic recourse with altered prediction and minimal cost in this paper. More
specifically, we achieve this by maximizing the log-likelihood of P (xAR ∣ xF ,y′), where y′ refers to
the target prediction altered from the original decision y. Following previous protocol(Mahajan et al.,
2019), we instead maximize the evidence lower bound (ELBO) of P (xAR ∣ xF ,y′) by following:

Eq(z∣xF ,y′) log p (xAR ∣ z,y′,xF ) −KL (q (z ∣ xF ,y′) ∥ p (z ∣ y′,xF )) . (9)

where we first arrive the latent representations z via the encoder q(z ∣ xF ,y′) and then generate the
counterfactual xAR via the decoder p (xAR ∣ z,y′,xF ). Meanwhile, the prior conditional density of
z is sampled from a normal distribution: p(z ∣ y′,xF ) ∼ N(µy′ , σ

2
y′) to achieve a closed form of the

KL-divergence. For realizations, we adopt the L1 norm to measure the reconstruction loss, with an
additional Hinge loss to force the ML model h to alter the prediction from y to y′:

⎧⎪⎪⎨⎪⎪⎩

Lrecon(xF ,xAR) = log p (xAR ∣ z,y′,xF ) = ∥xAR − xF ∥1,
Lhinge(h(xAR),y′, β) =max(hy(xAR) − hy′(xAR),−β),

(10)

where hy(xAR) refers to the predicted score (e.g., a probability in [0,1]) from h at class y, β is the
hyper-parameter to control the margin. Finally, by performing the monto-carlo approximation and
sampling from the encoder q(z ∣ xF ,y′), we express the original loss for optimizingM on a batch
sample with size Mb as follows:

Lori =
Mb

∑
i=1
Lrecon(xF

i ,x
AR
i ) +Lhinge(h(xAR

i ),y
′

i, β) +KL (y
′

i,zi,x
F
i ), (11)

where KL (y′i,zi,xF
i ) refers to the empirical estimation of KL (q (z ∣ xF ,y′) ∥ p (z ∣ y′,xF )).

The loss Lnuc and Lmag can be incorporated into the above objective to preserve the causal relation-
ships. Therefore, the overall objective function can be written as Lori+αnucLnuc and Lori+αmagLmag,
where αmag and αnuc are hyper-parameters to balance the original counterfactual generation and our
causal regularization. The pseudo-code of the whole algorithm can be found in the appendix (see A.2).

4 EXPERIMENTS

In this section, we first introduce the baselines we compared, together with the evaluation metrics.
Then we provide experimental results on a synthetic dataset, a semi-synthetic dataset, and a real-world
dataset.
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Baselines and implementations Overall, our baselines can be divided into three levels: (a) Vanilla
algorithmic recourse methods without any prior knowledge. Such methods include (1) the CFVAE
model we introduced before (Mahajan et al., 2019) and (2) the CEM model, which models the
perturbation using the auto-encoder structure (Dhurandhar et al., 2018); (b) Partial oracle baselines
with the prior causal graph. In detail, we choose the minimal-intervention framework proposed
in (Karimi et al., 2020) by using CVAE to approximate the SCM model at the probabilistic level,
which we call the CFA method. (c) Oracle baselines, which refers to the methods with the whole SCM
model as a prior. Such a method is implemented on the basis of the CFVAE regularized by the causal
distance proposed in (Mahajan et al., 2019), which we call the AR-SCM method. We implement the
CFA method in two versions: CFA-All (CFA-a) and CFA-Partial (CFA-p), allowing interventions on
all features or only a subset, respectively. More details are present in the appendix A.4.

Metric We evaluate the quality of generated algorithmic recourse using the following metrics (Ma-
hajan et al., 2019; Karimi et al., 2020): (1) Feasibility Score (%): Percentage of individuals whose
algorithmic recourse satisfy the prior monotonic constraints, indicating feasibility; (2) Distribu-
tion Score: Log-likelihood ratio of generated algorithmic recourse compared to the given causal
edges, indicating compliance with the SCM model. The distribution score w.r.t this edge equals to
log p (xAR

j ∣ xAR
Pa(j)) / log p (xF

j ∣ xF
Pa(j)); (3) Validity (%): Percentage of individuals with favorable

predictions from algorithmic recourse; (4) Proximity: Average L1-distance between counterfactual
and original features for continuous features, and number of mismatches for categorical features. We
conduct experiments and compute metrics in two settings: in-sample, testing the model on training
samples, and out-of-sample, testing on samples outside the training dataset without output labels. In
our experiments, we mainly answer two questions: (a) How does our method perform on preserving
the causal relationship? (b) Does our method sacrifice other metric (e.g., the Proximity or Validity)
to improve the feasibility?

Synthetic dataset Inspired by previous protocols (Mahajan et al., 2019), we simulate a toy dataset
with three features as (x1, x2, x3) and one outcome variable (y). To incorporate a monotonically
increasing causal relationship between x1,x2 and x3, we adopt the following structural equations as
in (Mahajan et al., 2019):

x1 ∼ N (µ1, σ1) ;x2 ∼ N (µ2, σ2) ;x3 ∼ N (k1 ∗ (x1 + x2)2 + b1, σ3) ;
y ∼ Bernoulli (k2 ∗ (x1 ∗ x2) + b2 − x3) ,

(12)

where we set µ1 = µ2 = 50, σ1 = 15, σ2 = 17, σ3 = 0.5, k1 = 0.0003, k2 = 0.0013, b1 = b2 = 10
as in (Mahajan et al., 2019). Obviously, the causal relationship embodied in this dataset is x1,x2

increase⇒ x3 increases; and x1,x2 decrease⇒ x3 decreases. Thus the feasibility set C equals to
the above two constraints. For method CFA-a, we allow x1,x2 and x3 to be intervented, while only
x1 and x2 are allowed to be intervented for CFA-p.

Table 1 and Figure 3 demonstrate the effectiveness of our method, AR-Nuc and AR-L2. It achieves
significant improvements in the feasibility and distribution scores. Compared to the vanilla CFVAE,
our feasibility score improves by over 15%. AR-Nuc and AR-L2 perform competitively with the
ground truth approach (AR-SCM) on feasibility and distribution scores. Therefore, our methods
successfully preserve the causal relationship from x1 and x2 to x3, and maintain validity by altering
predictions with minimal cost. Notably, our methods outperform CFA-a and CFA-p, even with prior
causal graph, due to better approximation of structural equations.

German Loan Dataset A semi-synthetic dataset called "German Loan" was created based on the
German Credit UCI dataset (Karimi et al., 2020). The dataset includes 7 variables (age, gender,
education level, loan amount, duration, income, and savings) with the class label indicating loan
approval. The causal graph and structural equations can be found in the appendix. For the German
Loan dataset, the CFA-p method was implemented with non-interventive features (age, gender, and
duration), and a constraint set (C) was used to measure feasibility, following three rules: (1) Loan
amount (L) increases⇒ loan duration (D) increases; (2) Age (A) increases⇒ income (I) increases; (3)
A increases⇒ education-level (E) increases.

As shown in Table 1 and Figure 3, our AR-Nuc and AR-L2 outperform others in feasibility and
distribution scores while maintaining 100% validity at a low proximity cost. Additionally, CFA-p
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Table 1: Results of the distribution and proximity scores on synthetic and German Loan data: Metrics
are Mean±STD over 5 repeated experiments, with the best Dist_score highlighted.

Setting In-sample Out-of-sample
Metric Proximity D-Score Proximity D-Score

Benchmark: Synthetic

Vanilla CEM 4.82±0.85 -369.74±8.9 3.79±0.62 -372.50±10.2
CFVAE 2.12±0.51 2.31±0.26 2.09±0.55 2.30±0.25

Partial CFA-a 2.24±0.07 -4.76±2.10 - -
CFA-p 2.18±0.11 -2.53±1.15 - -

Ours AR-Nuc 2.38±0.26 3.26±0.28 2.37±0.15 3.08±0.22
AR-L2 2.06±0.44 3.03±0.12 2.07±0.22 3.12±0.05

Oracle AR-SCM 2.11±0.32 3.58±0.21 2.28±0.27 3.66±0.08
Benchmark: German

Vanilla CEM 4.67±0.51 0.68±0.27 4.67±0.44 0.49±0.25
CFVAE 6.14±0.13 1.02±0.14 6.15±0.15 1.03±0.10

Partial CFA-a 6.04±0.20 0.99±0.05 - -
CFA-p 6.10±0.18 0.83±0.19 - -

Ours AR-Nuc 5.95±0.14 3.42±0.10 5.80±0.13 3.45±0.13
AR-L2 6.02±0.10 3.35±0.08 6.01±0.11 3.40±0.07

Oracle AR-SCM 6.18±0.27 3.49±0.17 6.19±0.26 3.51±0.09

Figure 3: Results on the feasibility and valid scores for the synthetic data and the German Loan data,
where higher metric means better results.

consistently performs better than CFA-a, highlighting that intervening on all features leads to poor
feasibility performance without protection (Karimi et al., 2020). For instance, intervening on the
node I (income) violates the second constraint in C by independently manipulating A and I . This
observation further supports our claim that modifying the exogenous noise σ instead of point-wise
intervention (Karimi et al., 2020) is more suitable for preserving causal relationships when the causal
graph is inaccessible.

Table 2: Proximity score of the Diabetes dataset. We refer to
the CFA method with all nodes allowed to be intervented as
CFA-Discover, as we pre-train a causal discovery model to
provide the prior causal graph.

Setting In-sample Out-of-sample

Vanilla CEM 7.42±0.11 7.43±0.08
CFVAE 16.49±0.52 16.19±0.47

Partial CFA-Discover 6.67±0.26 -

Ours AR-Nuc 6.43±0.18 6.40±0.16
AR-L2 6.48±0.19 6.50±0.11

Diabetes Dataset The Diabetes
dataset (Kanamori et al., 2021), col-
lected by Smith (Smith et al., 1988),
consists of medical records for Pima
Indians with and without diabetes. It
includes 8 input features such as preg-
nant status, blood pressure, skin thick-
ness, body mass index (BMI), and
age, with the class label indicating
diabetic conditions. No prior SCM
model or distribution score is avail-
able for Diabetes . To discover the
causal structure, we use the CFA-a
method (Karimi et al., 2020) with the NOTEARS method (Zheng et al., 2018)2. The CFA-p method
cannot be implemented due to the absence of a prior causal structure. Based on prior knowl-
edge(Kanamori et al., 2021; Smith et al., 1988), the constraint set C includes three rules: (1) Blood
Pressure → BMI, (2) Glucose → BMI, and (3) Skin thickness→ BMI.

2https://github.com/xunzheng/notears
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Figure 4: Feasibility and validity scores on Diabetes .

As shown in Table 2 and Figure 4, the insights discussed above can be similarly applied to the
real-world dataset. One reason could lie in the fact that our approaches effectively constrain the
variation of the exogenous noise, which further preserves the effect of the structural functions in
generated examples. Meanwhile, we observe that the CFA-a method performs poorly on feasibility
with no improvement compared to the vanilla CEM and CFVAE. Hence, the first-discover-then-
generation approach is difficult for realistic cases, where the error of discovery and approximation
will accumulate together.

Towards High-dimensional Data We test the capability of our method by involving a synthetic
dataset with 80 features in our study, using similar approaches as synthetic dataset (see in ap-
pendix equation A.4). The rationale behind employing synthetic data is twofold: (a) most widely
used, realistic datasets possess relatively small feature dimensions; (b) real-world data with high
dimensions lacks an underlying SCM, rendering it difficult to evaluate the feasibility.

Table 3: Performance on high-dimensional data, where the time refers to the running time for recoursing
per sample in the dataset.

Methods Proximity D-Score Validity (%) Feasibility (%) Time (s)

Vanailla CEM 5.61±1.24 <-500 99 <10 -
CFVAE 2.68±0.88 1.52±0.36 100 35.6 0.12

Partial CFA-a 3.21±0.04 -5.37±2.28 100 34.7 Over 1h
CFA-p 2.72±0.13 -2.62±1.93 100 52.8 Over 1h

Ours CF-Nuc 2.54±0.30 3.61±0.30 100 73.1 0.15
CF-L2 1.97±0.14 3.38±0.08 100 78.4 0.14

Oracle CF-SCM 2.28±0.35 3.78±0.11 99 82.0 0.17

Our methods, AR-Nuc and AR-L2, offer improved scalability in high-dimensional settings. The need
to consider every possible subset of the total feature set for conducting interventions in CFA-a and
CFA-p results in exponential complexity relative to the total feature set. In contrast, our methods
operate on learned representations of exogenous noise, achieving linear complexity with the number
of neurons in the representation layer, i.e., the original feature dimension. Besides, we also examine
the stability of our methods, AR-L2 and AR-Nuc, by varying the hyper-parameters αmag and αnuc.
Results are shown in the appendix for saving space A.5.

5 DISCUSSION AND FUTURE WORK

To protect the vulnerable end-users toward the decision models, we enhance the feasibility of
algorithmic recourse such that the users can obtain both interpretable and actionable recommendations.
We achieve this by identifying and constraining the variability of the exogenous noise. Extensive
experimental results have verified the effectiveness of our methods. However, one limitation remains
to be addressed in future work, as our method assumes causal sufficiency with no unobserved features.
One possible solution to relax such assumption is to introduce auxiliary information (e.g., instrumental
variables (Wang et al., 2022) or proxy variables (Shi et al., 2020)) for more powerful identification on
the structural functions. We will consider this direction in our future work.
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A APPENDIX

A.1 AGGREGATED FORMULATION OF ADDITIVE SCM

The aggregated formulation of linear additive SCMs is already present in (Shimizu, 2014), i.e.,
X = AX + σ, where A is the linear version of {f1, f2,⋯, fn} and σ is the exogenous noise. In
similar, we can extend such aggregation to non-linear {f1, f2,⋯, fn} as follows:

⎛
⎜⎜
⎝

x1
x2
⋮
xn

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

f1(pa(x1))
f2(pa(x2))

⋮
fn(pa(xn))

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

σ1
σ2
⋮
σn

⎞
⎟⎟
⎠
= f
⎛
⎜⎜
⎝

pa(x1)
pa(x2)
⋮

pa(xn)

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

σ1
σ2
⋮
σn

⎞
⎟⎟
⎠

(13)

Notably, the aggregated function, i.e., f , is defined by setting the j-th coordinate of f ’s domain

to be the output of fj . In other words, f
⎛
⎜⎜
⎝

pa(x1)
pa(x2)
⋮

pa(xn)

⎞
⎟⎟
⎠
j

= fj(pa(xj)). Thus, when we re-formulate

the generation of data as X = f(X) + σ with further transformations, i.e., X = g(σ), the mutually
independent σ enables us to recover latent σ from observational X . Subsequently, we can further
constrain the variation of σ and keep f invariant indirectly.
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Algorithm 1 Illustrations of AR-Nuc and AR-L2
Require: The collected observational dataset D = {xF

i ,yi}Mi=1, the algorithmic recourse
model (CVAE)M, the regression modelMl = {ψ,ϕ}, the size of input features n, the batch size
ofM as Mb.

Ensure: The trained modelM.
1: Extracting the exogenous representations:
2: Randomly shuffle {yi}Mi=1 and obtain the permuted ŷ;
3: Construct the augmented dataset DA = {xF

i , ŷi}Mi=1;
4: Optimize the regression modelMl as in equation 3 by discriminating between D and DA.
5: Training the algorithmic recourse model:
6: Arrive the latent representation {zi}Mb

i=1 through the encoder from the input {xF
i }Mb

i=1 with target
labels {y′i}Mb

i=1;
7: By sampling from {zi}Mb

i=1, compute the reconstructed {xAR
i }Mb

i=1 from the decoder with {y′i}Mb

i=1;
8: Compute the original objective Lori ofM with {zi,xAR

i ,xF
i ,yi,y

′

i}Mb

i=1;
9: AR-Nuc: Optimize the total objective as Lori + αnucLnuc.

10: AR-L2: Optimize the total objective as Lori + αmagLmag.

A.2 DETAILED ALGORITHM

We put detailed illustration of our algorithm in Alg. 1.

A.3 THEORETICAL PROOF

Throughout our appendix, we use the subscript 1 ≤ j ≤ n to index the feature, the subscript 1 ≤ i ≤M
to index the sample, and the subscript 1 ≤ k ≤ K to index the order in the conditional exponential
distribution.

Proof for Theorem 4.1. Overall, our techniques in this proof are inspired by the previous results
in (Hyvarinen et al., 2019). First, with the properties that σj1 is statistically dependent on y, but
conditionally independent of the other σj2, we have the following expression:

log p(σ ∣ y) =
n

∑
j=1

qj (σj ,y) . (14)

Furthermore, based on previous well-known results (Gutmann & Hyvärinen, 2012), the universal
approximation capability assumption in our theorem implies that the regression function r will equal
the difference of the log-densities in the two classes (namely D and DA):

∑n
j=1 ψj (ϕj(x),y) = log p(σ,u) + log ∣detJg(x)∣ − log p(σ)

− log p(y) − log ∣detJg(x)∣, (15)

where the term detJg(x) refers to the determinant of the Jacobian matrix of g, and the equality holds
due to the fact that the p(σ,y) = p(σ)p(y) in DA. Meanwhile, based on the conditional-exponential
assumption, the left side of the above equation can be simplified into the following expression:

∑
j

logQj (σj) + [∑
k

q̃jk (σj)λjk(y)] − logZj(y) − log p(σ). (16)

Consequently, a linear solution of ∑n
j=1 ψj (ϕj(x),y) can be written as follows:

∑
jk

ϕ̃jk(x)vjk(y) + s(x) + t(u), (17)

where
ϕ̃jk(x) = q̃jk(σj)
vjk(y) = λjk(y)
s(x) =∑

j

logQj (σj) − log p(σ)

t(y) =∑
j

− logZj(y),

(18)
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where the representations ϕ̃(x) identifies exactly the q̃(σ) in this special solution. Moreover, we
show that the above solution for the regressor is the only solution up to the A,b given in the
theorem (namely, ϕ̃ identifies q̃ up to a linear transformation). To this end, we collect the following
equations for the points ynk+1

l=1 in the assumption 2 in our theorem:

∑
jk

ϕ̃jk(x)vjk(yl) + s(x) + t(u)

=∑
j

logQj (σj) + [∑
k

q̃jk (σj)λjk(yl)] − logZj(y) − log p(σ),
(19)

then the following matrix expression is obtained:

WT ϕ̃(x) = LT q̃(σ) − z + 1
⎡⎢⎢⎢⎣
∑
j

logQj (σj) − q0(σ) − a(x)
⎤⎥⎥⎥⎦
, (20)

where W ∈Rnk×(nk+1) is the matrix expression of the vectors W(yl) (1 ≤ ≤ nk), L ∈Rnk×(nk+1)

is the matrix form of λjk(yl) with j ∗ k as the row index and l as the column index, q̃(σ) ∈Rnk is
the collection of q̃jk (σj), ϕ̃(x) ∈Rnk is the representation vector, z ∈Rnk+1 is the collections of all
t(yl) +∑j logZj(yl) for different l, and 1 ∈Rnk+1 is a vector of ones. Moreover, we subtract the
first row of the above equation from its rest rows, and derive the following equation:

ŴT ϕ̃(x) = L̂T q̃(σ) − ẑ, (21)

where Ŵ and L̂ are differences of the rows of W and L (and likewise for ẑ). Finally, since the
matrix L̂ coincides with invertible assumption (b) in our theorem, we obtain the identification results
as follows:

Aϕ̃(x) = q̃(σ) − b, (22)

where A = L̂−1Ŵ and b = L̂−1ẑ. Notably, the unknown matrices A and b only depend on the
support points y.

Proof for Theorem 4.2. First, we list the expression of Hσ and H0 and H for convenience:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Hσ = {q̃(σF
1 ) − q̃(σCF

1 ), q̃(σF
2 ) − q̃(σCF

2 ), . . . , q̃(σF
Mb
) − q̃(σCF

Mb
)},

H0 = {σF
1 − σCF

1 , σF
2 − σCF

2 , . . . , σF
Mb
− σCF

Mb
},

H = {ϕ(xF
1 ) − ϕ(xCF

1 ), ϕ(xF
2 ) − ϕ(xCF

2 ), . . . , ϕ(xF
Mb
) − ϕ(xCF

Mb
)},

where we argue that minimizing the rank of Hσ is enough to constrain the sparsity of H0. To be
specific, assuming the statistics q̃ is injective, then for any feature index j, q̃(σF

2 )j − q̃(σCF
2 )j =

0⇒ (σF
2 − σCF

2 )j = 0. Consequently, the number of non-zero entries of Hσ equals to that of H0,
and the sparsity Hσ implies the sparsity of H0.

Based on the assumption (a) in Theorem 4.2, we can easily obtain that the Jacobian matrix Jq̃ of
q̃ with respect to σ with the size nk × n exists. Moreover, Jq̃ is of full-rank, with Rank (Jq̃) = n.
Analogously, with the assumption (b) in Theorem 4.2, we obtain that the Jacobian Jϕ of ϕx is of
full-rank with Rank (Jϕ) = n as well. Therefore, recalling the equation in Theorem 4.1 as equation 6,
we have the following equation:

AJϕ = Jq̃, (23)

which further implies that A ∈ Rn×n is of full-rank with Rank(A) = n. Therefore, as AHσ = H,
we conclude that Rank (Hσ) = Rank(H). Therefore, constraining the sparsity of H is equivalent to
constraining that of Hσ , which further governs the sparsity of H0.

Proof for Theorem 4.3. First, we show that the term ∥q̃(σF ) − q̃(σCF )∥2 is bounded by ∥ϕ(xF ) −
ϕ(xCF )∥2 as follows:

∥q̃(σF ) − q̃(σCF )∥2 = ∥Aϕ(xF ) − ϕ(xCF )∥2
≤ ∥A∥∥ϕ(xF ) − ϕ(xCF )∥2,

(24)
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where the first equality is due to the results of identification, and the second inequality is due to
the definition of the norm of the operator A. Moreover, as A maps between finite-dimensional
Hibert spaces and A is a continuous operator, A itself is bounded (e.g., ∥A∥ ≤ C holds). Meanwhile,
recalling our assumption that q̃ is a bi-lipschitz function, we have:

K1∥σF − σCF ∥2 ≤ ∥q̃(σF ) − q̃(σCF )∥2 ≤K2∥σF − σCF ∥2, (25)

where K1 and K2 are Lipschitz constants. Notably, such assumpion implies that the variation of q̃ is
compactly correlated to that of σ, which is common for exponential families (Hyvarinen & Morioka,
2017). Hence, ∥σF − σCF ∥2 is governed by ∥ϕ(xF ) − ϕ(xCF )∥2:

∥σF − σCF ∥2 ≤
1

K1
∥A∥∥ϕ(xF ) − ϕ(xCF )∥2, (26)

where minimizing ∥ϕ(xF ) − ϕ(xCF )∥2 is enough to constrain ∥σF − σCF ∥2.

A.4 EXPERIMENTAL DETAILS

Details on Implementation of baselines The CFVAE baseline serves as the underlying algorithmic
recourse model for our AR-Nuc and AR-L2 methods. We follow the implementations in (Mahajan
et al., 2019), using Multi-layer-perception (MLP) layers to estimate µy′ and σ2

y′ in the encoder
branches. The black box ML model h is also an MLP classifier. We use the Adam optimizer (Bock
et al., 2018) with an initial learning rate of 0.01 for h andM. The batch size Mb is set to 64 in all
our experiments. The original implementations of AR-SCM and CFVAE in Pytorch by (Mahajan
et al., 2019) are publicly available3. The CEM4 and CFA5 methods are also open-source on GitHub.

Details on Implementation of our models First, we detail the architecture of the underlying
algorithmic recourse model, namely CFVAE, as we implemented in our paper. The branch of the
encoder for estimating µy′ contains 5 Multi-layer-perception (MLP) layers with Elu as the activation
functions and the batch-normalization after each layer, with the same architecture of the branch
for estimating σ2

y′ except for a Sigmoid function after the final layer to constrain the variance.
Meanwhile, the decoder architecture follows the above protocols as well. The training loss is set to
the BCE loss, as the domain label is binary. Besides, the black box ML model h consists of two MLP
layers with the Elu function. Notably, to control the effect from redundant variables, the architecture
and optimization introduced above keep exactly the same for our methods (AR-Nuc and AR-L2) and
the CFVAE (Mahajan et al., 2019). Regarding AR-Nuc and AR-L2, for the regression system, we
use a neural network with three MLP layers to model ϕ ∶ Rn ↦ Rn, where the number of units in
the hidden layers is 2n, except for the final layer with n units. The nonlinearity used is ReLU. Each
ψj ∶ R2 ↦ R is modeled with three MLP layers and ReLU functions, for 1 ≤ j ≤ n. The regression
system is trained using the Adam optimizer (Bock et al., 2018) with an initial learning rate of 0.001.
The margin β, and the hyperparameters αn and αm for controlling AR-Nuc and AR-L2, are set to
0.2, 2, and 2 respectively, in all our experiments.

Details on Dataset We then detail the simulation on the German Loan dataset, with the same
protocols in (Kanamori et al., 2021) as follows:

G ∶ UG, UG ∼ Bernoulli(0.5)
A ∶= −35 +UA, UA ∼ Gamma(10,3.5)

E ∶= −0.5 + (1 + e−(−1+0.5G+(1+e
−0.1A)−1+UE))

−1
, UE ∼ N (0,0.25)

L ∶= 1 + 0.01(A − 5)(5 −A) +G +UL, UL ∼ N (0,4)
D ∶= −1 + 0.1A + 2G +L +UD, UD ∼ N (0,9)
I ∶= −4 + 0.1(A + 35) + 2G +GE +UI , UI ∼ N (0,4)
S ∶= −4 + 1.5I{I>0}I +US , US ∼ N (0,25).

(27)

3https://github.com/divyat09/AR-feasibility
4https://github.com/IBM/Contrastive-Explanation-Method
5https://github.com/amirhk/recourse
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Meanwhile, we generate the class label y following (Karimi et al., 2020):

y ∼ Bernoulli((1 + e−0.3(−L−D+I+S+IS))
−1
) . (28)

Besides, we provide details on the sample number for each dataset. For the synthetic dataset and
semi-synthetic German Load dataset, we setM = 10000 as the number of samples. For the real-world
Diabetes dataset, we have M = 768 samples. Such variation on the samples size also verifies that
our methods does not rely on huge data samples. To report the out-of-sample prediction results, we
randomly split the each dataset into the training/testing domains with ratio as 0.7/0.3.

Details on generating the high-dimensional Dataset We have augmented our research by
incorporating additional experiments involving a synthetic dataset in our study. The synthetic dataset
is designed with a feature dimension of 80. The rationale behind employing synthetic data is twofold:
(a) most widely used, realistic datasets possess relatively small feature dimensions; (b) real-world
data lacks an underlying structural causal model (SCM), rendering it infeasible to verify whether
generated explanations align with the SCM model. Specifically, we extend the synthetic setting in
our paper to encompass a high-dimensional scenario with 80 dimensions:

x1 ∼ N (µ1, σ1) ;
x2 ∼ N (µ2, σ2) ;
x3 ∼ N (µ1, σ1) ;
x4 ∼ N (µ2, σ2) ;
⋯,

x8 ∼ N (µ2, σ2) ;
x9 ∼ N (k1 ∗ (x1 + x2 + x3 + x4)2 + b1, σ3) ;

x10 ∼ N (k1 ∗ (x5 + x6 + x7 + x8)2 + b1, σ3) .

(29)

In order to augment the original dataset XF and create a more complex structure, additional variables
xi∗10+1 to xi∗10+10 are generated for 1 ≤ i ≤ 7, following the same procedure as i = 0. Subsequently, a
random permutation is applied to shuffle the variables x1 to x80. This permutation aims to challenge
the preservation of the original structure in XF .

To ensure the integrity of the modified dataset, a feasibility check is performed. Specifically, for
each sample, the following conditions are validated: - If xi,xi+1,xi+2,xi+3 increase, then xi+9 must
also increase for i = 10k + 1, where 0 ≤ k ≤ 7. - If xi,xi+1,xi+2,xi+3 decrease, then xi+9 must
also decrease for i = 10k + 1, where 0 ≤ k ≤ 7. - Similarly, for each sample, if xi,xi+1,xi+2,xi+3

increase, xi+5 should also increase, and if they decrease, xi+5 should also decrease, for i = 10k + 5,
where 0 ≤ k ≤ 7.

Details on the Regression System Moreover, we perform extra experiments to illustrate the
behaviour of our regression system for extracting the exogenous representations. To be specific, we
report the training process on the Diabetes dataset in Figure 5, where the convergent training loss
indicates that the model indeed achieves nearly the universal approximation capability (which is
critical for identifying the exogenous noise in our theorem).
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Figure 5: The training curve of our regression system.

A.5 STABILITY ANALYSIS

Finally, we have tested the stability of our methods, AR-L2 and AR-Nuc, by varying the hyper-
parameters αmag and αnuc. The in-sample prediction results in Table 6 show that (a) our methods
have weak effects on the feasibility when α ≤ 0.1; (b) our AR-L2 and AR-Nuc does not ruin other
metrics such as proximity when improving the feasibility; (c) the feasibility achieved by our methods
does not rely on the sophisticated tuning of hyper-parameters αmag and αnuc (only require the
hyper-parameter not to be too small).

Figure 6: Stability of of our methods.
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