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Abstract— To support daily human tasks, robots must handle
complex, long-term tasks and continuously learn new skills.
Deep reinforcement learning (DRL) offers potential for fine-
grained skill learning but faces challenges with long-horizon
tasks and relies heavily on human-defined rewards. Task and
Motion Planning (TAMP) excel at long-horizon tasks but
require tailored domain-specific skills, limiting practicality. To
address these challenges, we developed LEAGUE++, integrat-
ing Large Language Models (LLMs) with TAMP and DRL
for continuous skill learning. Our framework automates task
decomposition, operator creation, and dense reward genera-
tion for efficient skill acquisition. LEAGUE++ maintains a
symbolic skill library and utilizes existing models for warm-
starting training to facilitate new skill learning. Our method
outperforms baselines across four challenging simulated task
domains and demonstrates skill reuse to expedite learning in
new domains. Video results available at: https://sites.
google.com/view/continuallearning.

I. INTRODUCTION

Robots need to handle complex, long-term tasks and adapt
to new situations to assist humans daily. While modern deep
reinforcement learning (RL) shows promise for autonomous
learning, it struggles with long-horizon objectives in diverse
settings. On the other hand, Task and Motion Planning
(TAMP) methods excel at addressing long-term tasks but rely
on predetermined skills, limiting real-world applicability.

LEAGUE integrates TAMP and RL to enable robots to
manage complex tasks and reuse skills across situations [1].
However, it requires significant human input to define sym-
bolic operators and reward functions, hindering scalability in
real-world scenarios.

Recent studies aim to reduce human effort in task design
and reward function development using Large Language
Models (LLMs) [2–6]. However, these methods often rely
on offline, one-shot approaches and overlook continuous skill
learning for long-horizon tasks.

We introduce LEAGUE++, a framework integrating
LLMs, TAMP, and RL to overcome previous limitations.
LEAGUE++ automates task breakdown, enhances skill ac-
curacy and reusability, and composes metric functions for
constructing dense rewards to prevent LLM hallucinations.
It features a symbolic skill library for efficient skill retrieval
and expands skill sets across problem domains. In experi-
ments, LEAGUE++ outperforms its predecessor and other
RL-based methods in table-top manipulation tasks, show-
casing its reliability and potential for lifelong learning. Key
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contributions include LLMs for task planning and reward
generation, structured optional context for LLM generation,
and a symbolic skills library for skill reuse. These ad-
vancements significantly increase scalability across problem
domains and enable continuous skill learning in long-horizon
tasks.

II. METHODS

LEAGUE++ integrates Large Language Models (LLMs)
with TAMP and DRL for continuous skill learning. We
explain how to utilize LLM for automatic task decomposition
and skill operator creation in Sec. II-A; we explain how
to accelerate skill policy learning with LLM-based reward
generator in Sec. II-B; and we present the details of how
to maintain a skill library to facilitate the learning of new
skills in new problem settings in Sec. II-C. The diagram of
our framework is shown in Fig. 1. Due to page limit, please
refer Sec. B in appendix for more background information.

A. LLM-based Task Decomposition and Skill Creation
To reduce the domain knowledge required to design valid

skills for TAMP, we propose leveraging the web-scale, rich
semantic knowledge from LLMs to decompose the task and
create reusable, atomic skills. LLMs have proven to excel at
task understanding and semantic reasoning, as explored in
previous work [7, 8]. However, they face challenges with
hallucination - their generated task plans often disregard the
constraints between adjacent skills and may “hallucinate”
impossible action effects, leading to non-executable task
plans.

To address these issues, we propose utilizing readily
available structural information from the TAMP system.
Specifically, the LLMs planner starts by receiving the objects
o ∈ O, the initial state ψinit ∈Ψ and the end goal ψgoal ∈Ψ

of the task, and is designed to generate a sequence of atomic
symbolic skills ω ∈ΩLLM specifically tailored to achieve the
task’s end goals from the initial state. Each symbolic skill
is defined by the tuple ⟨Obj,Pre,Eff⟩, where Obj refers
to the object with which the skill interacts, Pre denotes the
precondition specifying the minimum conditions necessary
for the skill’s execution, and Eff represents the set of
predicates describing the skill’s objective and the expected
effects resulting from the successful execution of the skill.

To enhance the accuracy of planning, we have incor-
porated an A* plan checker to confirm the correctness of
the symbolic skill plan output. This method detects two
types of errors: either the current set of symbolic skills is
insufficient for achieving the task’s end goal, or the order
of the symbolic skills is incorrect. If the verification process
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Fig. 1: The overall framework of the LEAGUE++. We present a framework that utilizes LLMs to guide continual learning.
We integrated LLMs to handle task decomposition and operator creation for TAMP, and generate dense rewards for RL
skill learning, which can achieve online autonomous learning for long-horizon tasks. We also use a semantic skills library
to enhance learning efficiency for new skills.

fails, corresponding error feedback is given to the LLMs
planner for the regeneration of the plan. Pseducode is shown
in Alg. 1

As such, our LLMs planner relaxes the need for expert
domain knowledge by leveraging the innovative capabilities
of LLMs. At the same time, it provides a closed-set context
to the LLMs and guides its generation with the logical
and physical constraints of the environment by utilizing the
structured information defined in the TAMP. Additionally, by
integrating an A* plan checker to ensure the correctness of
the final plan, we significantly minimize the chances of our
LLMs planner producing an incorrect plan.

B. LLM-based Reward Generation
Dense rewards are crucial for reinforcement learning,

providing immediate feedback to shape an agent’s behavior.
However, traditional human-crafted dense rewards are typi-
cally tailored to specific problems and require considerable
effort, presenting challenges for continuous and lifelong
learning scenarios where agents are constantly exposed to
diverse new tasks. To solve this problem, some LLM-based
reward generators have been introduced [6, 9]. However,
LLM-based generation methods like Eureka [6] suffer from
inefficiency, as it utilize evolutionary search that samples
several independent outputs from the LLMs, which demands
excessive in-context feedback for iteration. Moreover, these
methods, primarily used for code generation, can lead to
incorrect or unfeasible code, especially when complex, long-
horizon tasks result in lengthy outputs. We therefore propose
utilizing metric functions to tackle these challenges.

Metric Function. µ ∈ M defines a quantitative spatial
relationship between objects and between objects and the
robot. These relationships are defined by a tuple of ob-
ject types (λ1, . . . ,λm) and a continuous function cψ : X ×
Om → [0,1]. This normalized continuous function reflects
the quantitative value of the relationship. For example,
dis to obj(?object:object) defines the distance

between the gripper and the object. More metric functions
are shown in Table. E

Metric functions offer numerous advantages in our context.
Instead of generating code from scratch, we simplify this
problem by letting LLMs to choose metric functions and
their weights to populate the dense rewards. This strategy
enhances success rates of generating usable reward functions
by constraining the solution space of LLMs, thus avoiding
irrelevant outputs that may not pertain to the task. Addi-
tionally, the semantic information derived from the metric
functions’ code aids the LLMs in composing reward function
that aligns well with task objectives. We assume a finite
set of metric functions to describe object interactions as
the common relationships and attributes of objects in daily
tasks [10] can be treated as limited.

To better harness the LLMs’ proficiency in code interpre-
tation and task comprehension, we input the source code of
metric functions, along with skill headers ⟨Obj,Pre,Eff⟩,
into the LLMs Generator. As an example, the metric func-
tion dis to obj with its corresponding code provides
semantic information that helps the LLMs understand its
purpose is to move the gripper closer to an object. Sub-
sequently, the reward generator is tasked with generating
dense rewards by carefully selecting relevant metric func-
tions MLLMs = {µ1,µ2, ...,µn} ⊆M and assigning appropri-
ate weights WLLMs = {w1,w2, ...,wn} where ∑

n
i=1 wi = 1 to

indicate their significance to the sparse reward Eff.

We also define sparse rewards generated by predicates
(i.e., the agent receives 1.0 when all predicates that charac-
terize the desired effect of the skill are satisfied) to comple-
ment the dense reward constructed by LLMs. This approach
facilitates more robust learning for the agent, enabling the
acquisition of nuanced behaviors and the attainment of the
expected effects of each skill. Finally, the task reward at any
given time t is determined by:



RLLMs(x(t)) = Max[RD,RS]

where:

RD = ∑
i

wi ·µi(x(t)) ∀µi ∈MLLMs,∀wi ∈WLLMs

RS =

{
1 if

∧
j ψ j(x(t)) for ψ j ∈ Eff

0 otherwise

Where RD is a dense reward, and RS is a sparse reward.
The figure of this section is shown in Fig. 4

Skill Learning. With the LLMs generated
reward function, we can then optimize the policy
corresponding to each symbolic skill with RL
by maximizing the expected total reward: J =

Ex(0),x(1),...,x(H)∼π,p(x(0))

[
∑t γ tRLLMs(x(t))+αH (π(·|x̂(t)))

]
.

We adopt SAC [11] to optimize the skill policy, where
H (·) is the entropy term. A skill example is shown in
Table. C

C. Accelerate Learning with Symbolic Skill Library
So far, we have described how to leverage the rich se-

mantic knowledge from LLMs to guide task decomposition
and skill optimization. Another important requirement for
lifelong learning is to effectively reuse existing knowledge
to accelerate the learning of new tasks in new domains. Our
idea is that the semantically-similar skill operators should
share low-level behaviors as well. For example, opening a
refrigerator and opening a door may require similar behaviors
and interactions. Therefore, the policy models for existing
skills should provide good initialization to warm-start the
learning of new skills in novel domains.

Based on this, we propose a novel storage solution —
symbolic skill library. Each element in our symbolic skill
library is a pair of symbolic operator ω ≜ ⟨Obj,Pre,Eff⟩
and a corresponding neural network weight. To utilize the
skills stored in our library, for any new skills that need to be
acquired, we first obtain their feature representation by ex-
tracting the LLMs embeddings of their symbolic description
(i.e., ⟨Obj,Pre,Eff⟩), we then identify the most similar (In
our implementation, we use cosine similarity) existing skills
and use its weights to initialize the new skill policy as a
warm start for training. For every skill learned, LEAGUE++
stores its skill definition ⟨Obj,Pre,Eff⟩ and its weight in
the symbolic skills library. The diagram of the section can
be founded in Fig. 1

III. EXPERIMENT

To validate the efficacy of our method, we developed
4 challenging task domains with Robosuite [12] simulator,
more details about each domain can be found in Sec. G.
We quantitatively evaluate LEAGUE++ and other baselines
on learning to solve long-horizon tasks in Sec. III-A, we
then validate the effectiveness of reusing learned skills for
learning new tasks. We compare and analyze different design
choices for LLM-based reward generation in Sec. III-B.

A. Quantitative Evaluation
In this section, we aim to evaluate our framework with

the previous work LEAGUE and some other SOTA baseline
methods. We introduce those baseline methods and share the
quantitative evaluation results:

• RL (SAC): We utilize Soft Actor-Critic (SAC) [11]
as a robust baseline for reinforcement learning. For an
equitable comparison, we enhance the basic task reward
function within SAC by incorporating staged rewards,
guided by an oracle task plan. This modification ensures
that the reward at each step reflects the total of rewards
for all completed subgoals, in addition to the reward
for the ongoing subgoal. This approach is represented
as sac in Fig. 2.

• Curriculum RL (CRL): We apply advanced curricu-
lum RL strategies [13, 14], starting with initial states
near success and gradually shifting to actual starting
conditions. Initial states are chosen in reverse from an
oracle task plan’s subgoals. We use the staged reward
system mentioned earlier in SAC. This approach is
labeled as crl in Fig. 2.

• Hierarchical RL (HRL): This baseline utilizes recent
HRL frameworks [15, 16], training a meta-controller
to combine skill primitives and atomic actions, based
on MAPLE [16]. This approach is labeled as maple in
Fig. 2.

• LEAGUE: The previous version of our framework
[1]. Plans, Skill, and Reward Functions in this frame-
work are designed and implemented by human experts,
whereas those components are generated by LLMs in
our framework. This approach is labeled as league in
Fig. 2

• Symb+RL: An ablation baseline of LEAGUE [1] that
removes the state abstraction and retains all other fea-
tures including the symbolic plan-based curriculum.
This approach is labeled as league w/o sa in Fig. 2

For the evaluation, we adopt task progress as our metric,
which is defined as the summed reward of all task stages and
normalized to [0, 1]. Below we discuss the main findings
based on Fig. 2.

Our framework can handle different long-horizon
table-top manipulation tasks autonomously, which pro-
vides the possibility for potential lifelong learning. Our
framework autonomously executes skill generation, planning,
and reward structuring, by leveraging the environment ab-
stractions of each task as shown in Fig. 5. Through intensive
experiments with long-horizon tasks such as StackAtTarget
and StowHammer, we have validated the efficiency and
accuracy of our framework’s planning and skill acquisi-
tion capabilities. Our experiments reveal the framework’s
adeptness in dynamically adapting to various initial states in
StackAtTarget, where it successfully generates appropriate
skills for task completion. Similarly, in the StowHammer
task, our LLMs planner demonstrated its proficiency in
planning and executing a sequence of 8 skills, which high-
lights the system’s flexibility and adaptability in long-horizon
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Fig. 2: Quantitative Evaluation. We compare our framework with other baselines in three task domains. The plot shows
the average task progress during evaluation throughout training, which is measured as the summation of achieved rewards
of each successfully executed skill in the task plan and normalized to 1. The standard deviation is shown as the shaded area.
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Fig. 3: Quantitative Evaluation. We compare the training
efficiency of our framework with reused pre-trained skills
with our framework learning from scratch.

tasks. Those capabilities definitely enhance the capability for
continuous learning.

This superiority stems from the LLMs’ comprehensive
understanding of the task’s dynamics and the intricate inter-
actions involved in contact-rich environments. By analyzing
vast amounts of data and learning from varied task exe-
cutions, the LLMs can identify patterns and priorities that
may not be immediately apparent to human designers. This
deep, data-driven insight allows the LLMs to optimize reward
functions directly aligned with the specific objectives of each
task, which leads to a more effective and efficient learning
process.

Symbolic skills library enhances training efficiency
for new long-horizon manipulation tasks. We also set
up an experiment to evaluate the feasibility of speeding
up policy learning in novel domains by reusing previ-
ously acquired skills as warm-start. In the task MakeCoffee
shown in Fig. 3, LLMs selected skills OpenCabinet,
CloseCabinet from the StowHammer, and selected skills
Pick and Place from StackAtTarget as pre-trained weights
from the symbolic skill library for policy initialization.
This strategy of reusing pre-trained skills for fine-tuning
significantly enhances training efficiency, the time to reach
proficiency in the ServeCoffee task was reduced a lot.

As we continue to expand our symbolic skills library, each
new skill added becomes a potential catalyst for more rapid
training in future tasks. It supports continuous learning in
robotic systems.

B. Ablation Study

In this part, we compare two design choices for using
LLMs for generating dense rewards:

• LEAGUE++: In our framework, we add the metrics
inspector as a part of the input in the reward generator.
It can read the code of all metric functions along with
the comments and variable names in the codes.

• LEAGUE++ w/o MI: In this ablation, we changed
the input from the metrics inspector to only the metric
function’s header.

We use the StowHammer task to quantitatively evaluate
different LLM-based reward generators, where the reward
function of each skill for the tasks needs to be generated.
We check whether the reward function can be executed
correctly or not. Same as [9], we classify them into four
error types: Class attributes misuse — chooses the wrong
objects for the metric function; Attributes hallucination —
refers to attributes that do not exist; Syntax/shape error —
generates incorrect dictionary; Wrong package — selects
incorrect metric functions. We test StowHammer 25 times
and count the probability of each error. Also, we counted
the success rate of generating reward functions for each skill
Pick, Place, Open, and Close, totaling one hundred
times.

TABLE I: Quantitative Evaluation. This table shares the
success rates for correct executions of generated rewards
in the StowHammer task domain. This table compares our
proposal LEAGUE++ with the corresponding ablated version
without Metrics Inspector (w/o MI).

Task/Skill LEAGUE++ w/o MI

StowHammer 92% 20%

Pick 96% 40%
Place 96% 36%
Open 100% 44%
Close 100% 48%

Skill Average 98% 42%

According to the results shown in Table. I, we find that
our method can reach 92% success rate for generating
reward functions. Specifically, the success rates for individual
skills—Pick and Place at 96% each, with Open and
Close achieving perfect scores of 100%—culminate in
an overall success rate of 98%. Therefore, we demonstrate
that our method exhibits a low incidence of errors, which
demonstrates the reliability of this method for long-horizon
tasks and the potential of using it for lifelong learning. The
error breakdown and analysis can be found in Sec. H.
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APPENDIX

A. Related Work

1) Language Guided Reward Design: In RL, the con-
cept of LLM-guided reward design has emerged as a key
method, utilizing language instructions and LLMs to boost
agent performance and efficiency. Early efforts [17, 18]
showcased the potential of using natural language to guide
reward shaping, improving task completion rates in complex
environments like the Atari Learning Environment. Then,
the advent of frameworks like [6, 9, 19] marked a pivotal
shift towards automating the generation of reward function
codes using LLMs which outperform expert-crafted rewards
in various domains. However, LLM-based reward generators
may not suit long-horizon tasks and lifelong learning due
to potential syntax errors and irrelevant content creation.
Methods like EUREKA [6] require a significant amount of
time to develop rewards for individual skills. This process
becomes increasingly prone to errors as tasks grow more
complex. To solve these limitations, we propose to use LLMs
to select metric functions from a human-designed functions
library, streamlining reward function creation and reducing
errors for these complex problem domains.

2) LLMs for Planning and Decision Making: LLMs
have significantly transformed how robots plan and make
decisions, driven by key research [2, 3, 20–23]. These
studies demonstrate LLMs’ ability to understand intricate
commands, create action plans, and convert natural language
into executable actions, thereby improving robot auton-
omy. Innovations such as dynamic replanning and corrective
strategies [24], coordination in collaborative tasks [25], and
the merger of perception with language models for instant
task modifications [26] underscore LLMs’ transformative
effect on robotics. In paper [27, 28], the authors utilize
LLM to do long-horizon task planning and then move one
step forward to life-long learning with humans in loop. Our
research aims to leverage LLMs to generate the necessary
skills and plans for each task, advancing the creativity of
LLMs to enable the scalability of our framework across
problem domains without any human efforts.

3) TAMP and Learning for TAMP: Task and Motion
Planning (TAMP) [29–31] offers a robust framework for
tackling intricate manipulation activities across broad time
frames. In detail, TAMP breaks down complex planning
challenges into a sequence of symbolic-continuous subtasks,
which simplifies the problem-solving process. However, the
successful deployment of TAMP solutions requires skills
that necessitate extensive expert domain knowledge in de-
sign. To address these limitations, recent efforts have been
made to combine TAMP with involved models acquired by
identifying skill preconditions and outcomes [32–34]. For
example, [32] generates symbolic models via experimental
iterations, whereas [33] utilizes graph neural networks for
understanding skill impacts. However, such methods still
depend on the manual creation of detailed skill sets designed
to accomplish the task. To address these problems, the
methodologies proposed by [34] and [1] enhance TAMP

systems through learned skill policies and also leverage
TAMP system for state action abstraction. This synthesis
allows TAMP to serve as a curriculum guiding DRL learn-
ing and simultaneously incorporates DRL-learned skills as
atomic components within TAMP’s planning process, which
significantly improves its ability to tackle complex tasks.

4) Curriculum for RL: Curriculum Learning significantly
enhances Reinforcement Learning (RL) by systematically
assisting agents in skill acquisition, aiming for the mastery of
complex final goals [35]. Previous research, such as [36–38],
designs various curricula as different environment setups to
improve model robustness. Other studies, like [13, 14], focus
on identifying specific subgoals. For instance, JumpStart
[14] employs a strategy that leverages pre-learned skills to
accelerate the mastery of new tasks. Approaches such as [1]
utilize task planner with manually defined symbolic operators
to break down long-horizon tasks into atomic tasks, with each
atomic task serving as a learning curriculum. Similar to [1],
our method utilizes LLMs for creating symbolic operators to
decompose long-horizon tasks into skill curricula, enabling
automatic and continuous skill learning in various complex
task domains.

B. Background

TAMP. To regularize the generation of LLMs models
for both plans and rewards, we have adopted the sym-
bolic planning interface ⟨O,Λ,Ψ,Ω⟩ from Task and Mo-
tion Planning (TAMP). Each object o ∈ O within the en-
vironment (for example, hole1), possesses a specific type
λ ∈ Λ (such as hole) and a tuple of dim(λ )-dimensional
features containing information such as pose and size.
The symbolic definition of each skill restricts the state
representation to be skill-related: x̂ ∈ Rdim(type(o)). Predi-
cate ψ ∈ Ψ defines a propositional spatial relationship be-
tween objects and between objects and the robot. A pred-
icate ψ , such as In(?object:peg,?object:hole),
holding(?object:peg), is defined by a tuple of object
types (λ1, . . . ,λm) and a binary classifier cψ : X ×Om →
{True,False}. This classifier determines whether the rela-
tionship holds, with each substitute entity oi ∈O constrained
to have a type λi ∈ Λ.

MDP. The motion of any generated symbolic skills can be
represented as a Markov Decision Process (MDP) denoted
by ⟨X ,A,R(x,a),T (x′|x,a), p(x(0)),γ⟩. With Continuous State
Space X , Continuous Action Space A, Reward Function
R, Environment Transition Model T , Distribution of Initial
States p(x(0)), Discount Factor γ . The objective for DRL
training is to maximize the expected total reward J of the
policy π(a|x) that the agent employs to interact with the
environment: J = Ex(0),x(1),...,x(H)∼π,p(x(0))

[
∑t γ tR(x(t))

]
.



C. Skill Operator Definition

We show the symbolic definition of the Insert skill
example.

Insert(?object,?hole)
Obj: [?object:peg,?hole:hole]
Pre: {Holding(?object),

IsClear(?hole)}
Eff: {Holding(?object),
Anti(All(IsClear(?hole))),
Anti(All(Holding(?object))),
In(?object,?hole)}

D. LLM Planner

We show the pseudocode for the LLM Planner.

Algorithm 1 LLM Planning Algorithm

1: Input:
2: ψinit ▷ Task Initial State
3: ψgoal ▷ Task End Goal
4: Ψ ▷ Set of all predicates
5: Start:
6: Ω̄LLM, is valid,error feedback← [],False,None
7: ▷ Initialize LLM plan and error feedback
8: while not is valid do
9: Ω̄LLM =LLM Planner(ψinit,ψgoal,Ψ,error feedback)

10: is valid,error feedback =
A* planner checker(Ω̄LLM)

11: end while
12: return Ω̄LLM

E. Metric Functions

We show some exemples of the Metrics Functions.

Metrics Function Definition
dis to obj Distance between the gripper and the ob-

ject
parallel dis Objects-Objects distance shadows on a

parallel plane
perpendicular dis Objects-Objects distance along the nor-

mal line
orientation diff Angle difference between object and hole
open Handle-Cabinet distance is large enough

or not.

F. Reward Generation

We show the reward generation process in Fig. 4.

G. Experimental Setup

We conduct experiments in four simulated domains. We
devise tasks that require multi-step reasoning, contact-rich
manipulation, and long-horizon interactions. The initial state
and final state of the tasks are shown in Fig. 5.

a) StackAtTarget: is to stack two cubes on a tight
target region with a specific order. Since the cubes are
randomly placed in the scene, the LLMs planner needs
to make different skills to accomplish this task according
to different initial states. For instance, if the second cube
already occupies the target position initially, the robot must
relocate it away from the target before sequentially stacking
both cubes in the target area. This task serves to demonstrate
the adaptability of our LLMs Planner in formulating plans
that accommodate diverse initial conditions.

b) StowHammer: is to stow two hammers into two
closed cabinets. In this task, the LLMs Planner needs to
make four different skills Pick, Place, OpenCabinet,
and CloseCabinet and arrange them in the correct order
to put the two hammers into the cabinets. Since this long-
horizon task contains 8 skills, this task can well verify the
accuracy of our planning system.

c) PegInHole: is to pick up and insert two pegs into
two horizontal holes. The planner needs to make two skills
Pick and Insert to accomplish this task. Considering
that insertion is a complex skill, this task can validate
the capability of the LLM reward generator to successfully
produce high-quality dense rewards, thereby completing the
training process with great efficiency.

d) ServeCoffee: is to pick up a coffee pod from a closed
cabinet, insert it into the holder of the coffee machine, and
finally close both the lid and the cabinet. In this experi-
ment, we will use many skills used in previous tasks, such
as OpenCabinet, CloseCabinet, Pick, and Place.
This task can verify that our method can select reusable skills
from the symbolic skills library and improve the training
efficiency.

The environments are built on the Robosuite [12] simu-
lator. We use a Franka Emika Panda robot arm that is con-
trolled at 20Hz with an operational space controller (OSC),
which has 5 degrees of freedom: end-effector position, yaw
angle, and the position of the gripper.



Symbolic Skill to learn

LLM Dense reward 
Generator

RLLM 

Insert
OBJ: {peg0 …}
PRE: {holding, IsClear, …} 
EFF: {In, HandEmpty, …}

…

Metrics Functions

dis_to_obj parallel_dis

perpendicular_dis
Insert Dense Reward
Reward_Dict = {
 "dis_to_obj": 0.0,
 "parallel_dis": 0.25,
 "perpendicular_dis": 0.25,
 "Orientation_diff": 0.5 }

Insert Sparse Reward
EFF= {
        Anti(Holding(?object)),
        Anti(IsClear(?hole)),
        In(?object,?hole)}

MAX

Fig. 4: Reward Generation. The reward generator takes in the skill definition ⟨Obj,Pre,Eff⟩, as well as all the Metrics
Functions M from the Metrics Function Library, and subsequently produces a dense reward for the skill. This dense reward
is then combined with the sparse reward Eff from the skill definition to calculate the final reward for the skill.

PegInHole

StackAtTarget

      Initial State       Goal State

      Initial State       Goal State

StowHammer

      Initial State       Goal State

      Initial State       Goal State

ServeCoffee

Fig. 5: Environment Setup. Four simulated domains for
four tasks that require multi-step reasoning, contact-rich
manipulation, and long-horizon interactions. They are Stack-
AtTarget, StowHammer, PegInHole, and ServeCoffee. .

H. Analysis of Reward Generation Errors

As Figure 6 shows, it’s important to highlight that
LEAGUE++ addresses two significant issues that arise LLMs
generate code: the invention of nonexistent attributes and the
production of syntax errors. In contrast to previous LLM
reward generators [6, 9], the problems of selecting incorrect
class attributes or packages in LEAGUE++ are more likely
to be resolved through improved prompts and the input of
more detailed metric functions. Table I showcases the metrics
inspector’s effectiveness in drastically reducing the error
rate from 80% to a mere 8% in generating incorrect class
attributes and wrong packages. It signifies that the LLMs
can accurately identify and select the appropriate metric
functions for each skill by inspecting the mertic functions’

LEAGUE++

w/o MI

0% 25% 50% 75% 100%

Class Attribute Misuse Attribute Hallucination
Syntax/shape Error Wrong Package Correct

Fig. 6: Error breakdown. This figure shares the
error rates/success rates for reward generation with
the task StowHammer. This figure compares our pro-
posal LEAGUE++ with the corresponding ablation
LEAGUE++ without Metrics Inspector (w/o MI).

code. These findings suggest that our current errors are likely
to improve with the provision of more detailed input, offering
a promising pathway towards achieving potential lifelong
learning.

I. Qualitative Results

We show the task demos of our system in Fig. 7.



Fig. 7: Task demos. We show the demos of our experiments. We visualize the progress of each task in the Robosuite [12]
environment. The first row is PegInHole; the second row is CubeReorder; the third row is HammerPlace; the last row is
ServeCoffee.
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