
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPTIMIZATION INSIGHTS INTO DEEP DIAGONAL LIN-
EAR NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Overparameterized models trained with (stochastic) gradient descent are ubiqui-
tous in modern machine learning. These large models achieve unprecedented per-
formance on test data, but their theoretical understanding is still limited. In this
paper, we take a step towards filling this gap by adopting an optimization perspec-
tive. More precisely, we study the implicit regularization properties of the gradient
flow “algorithm” for estimating the parameters of a deep diagonal neural network.
Our main contribution is showing that this gradient flow induces a mirror flow
dynamic on the model, meaning that it is biased towards a specific solution of the
problem depending on the initialization of the network. Along the way, we prove
several properties of the trajectory.

1 INTRODUCTION

In recent years, the application of deep networks has revolutionized the field of machine learning,
particularly in tasks involving complex data such as images and natural language. These models,
typically trained using stochastic gradient descent, have demonstrated remarkable performance on
various benchmarks, raising questions about the underlying mechanisms that contribute to their
success. Despite their practical efficacy, the theoretical understanding of these models remains rel-
atively limited, creating a pressing need for deeper insights into their generalization abilities. The
classical theory shows that the latter is a consequence of regularization, which is the way to impose
a priori knowledge into the model and to favour “simple” solutions. While usually regularization is
achieved either by choosing simple models or explicitly adding a penalty term to the empirical risk
during training, this is not the case for deep neural networks, which are trained simply by minimiz-
ing the empirical risk. A new perspective has then emerged in the recent literature, which relates
regularization directly to the optimization procedure (gradient based methods). The main idea is
to show that the training dynamics themselves exhibit self regularizing properties, by inducing an
implicit regularization (bias) which prefers generalizing solutions (see Vardi (2023) for an extended
review of the importance of implicit bias in machine learning).

In this context, a common approach is to study simplified models that approximate the networks used
in practice. Analyzing the implicit bias of optimization algorithms for such networks is facilitated
but still might give some insights on the good performance of neural networks in various scenarios.

1.1 RELATED WORKS

Matrix factorization A step in this direction is made by Gunasekar et al. (2017) who analyze the
implicit regularization induced by matrix factorization for minimizing a simple least squares objec-
tive as L (Θ) = ∥AΘ− b∥2 for Θ ∈ Rn×n. More precisely, the authors consider the reparametriza-
tion Θ = UUT for U ∈ Rn×d and so the new problem

min
U∈Rn×d

∥∥A (UUT
)
− b
∥∥2 . (1)

Under some assumptions on the initialization, they demonstrate that using gradient flow on the
variable U returns a matrix Θ = UUT approximating a specific solution of the original problem,
the one with minimal nuclear norm. In other words, a simple change of variable before running
the algorithm allows to promote sparsity of the recovered solution, which tends to imply a better
generalization. Such a setting can roughly be linked to neural networks and has been followed by

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

several works enriching the understanding of training factorized matrices: Li et al. (2018) study
the optimization aspects of such a model; Arora et al. (2018) show that such a reparameterization
can improve the conditioning of the problem, accelerating the resulting optimization problem; Gu-
nasekar et al. (2018a) give implicit bias results for an overparameterized matrix factorization; Arora
et al. (2019) study the effect of deep matrix factorization, proving a similar implicit bias towards a
minimal nuclear norm solution for sufficiently small initialization.

Weight normalization Similarly, weight normalization is a strategy used in machine learning that
has been studied using this framework. It has been proven to accelerate training (Salimans & Kingma
(2016)) and to have desirable implicit regularization properties (Wu et al. (2020)). Moreover, it can
be calibrated to take full advantage of both characteristic (Chou et al. (2024)).

More complex parameterizations Several works focus on more complex architectures, showing
valuable but less interpretable features; for instance, studying the implicit bias in the case of lin-
ear convolutional networks (Gunasekar et al. (2018b)), shallow neural networks (Allen-Zhu et al.
(2019a;b)), ReLU networks (Vardi & Shamir (2021)) and deep linear networks (Marion & Chizat
(2024)). We can also mention the work of Chizat & Bach (2020), where a two-layer neural network
with infinite width is considered.

Diagonal Linear Networks Diagonal Linear Networks are introduced in the literature by Wood-
worth et al. (2020) and Moroshko et al. (2020) as a linear approximation of a neural network with
diagonal connections between the nodes (see Figure 1). In this case the network function is given by
fθ(x) = θTx with the parameters vector expressed as θ = u ⊙ v, where ⊙ denotes the Hadamard
product. Although this model appears to be overly simplistic, its analysis offers a considerable de-
gree of insight. Both Woodworth et al. (2020) and Moroshko et al. (2020) highlight the role of the
initialization for such a network in regard of the implicit bias induced on the solution: a small initial-
ization favours a solution close to that with minimal L1 norm, while a large one tends to minimize
the L2 norm. These two regimes can be put in parallel with respectively the rich regime and the ker-
nel (or lazy) regime outlined in Chizat et al. (2019). Azulay et al. (2021) give additional results on
the implicit bias of the network, allowing untied weights and also considering the case of connected
networks (non diagonal). This model has been also been analyzed to better understand the implicit
bias induced by stochastic gradient descent Pesme et al. (2021); Even et al. (2023), by the choice of
the step size Nacson et al. (2022) and by other methods involving momentum Papazov et al. (2024).
The L-layer case has been studied by Woodworth et al. (2020); Moroshko et al. (2020); Chou et al.
(2023a) for a very simplified model, suggesting that the number of layers is positively correlated
with the sparsity of the selected solution.

xi
1

xi
2

xi
3

xi
4

u1

u2

u3

u4

v1

v2

v3

v4

fθ(x
i)

Figure 1: Representation of a Diagonal Linear Network

Hadamard parameterization to promote sparsity Diagonal Linear Networks are closely related
to Hadamard parameterization (HP) and it is worth noticing that HP was used before for sparsity
recovery. Hoff (2017) takes benefit of HP to promote sparsity in a LASSO problem. Vaskevicius
et al. (2019); Zhao et al. (2022) also consider an HP for a least squares problem inducing an implicit
bias towards the minimal L1-norm solution, enabling the use of early stopping strategies. In a
comparable vein, Amid & Warmuth (2020) exploit a reparameterization θ = u⊙2 for a classification
problem and Chou et al. (2022) apply HP to solve non negative least squares. Poon & Peyré (2023)
elegantly reformulate a group-LASSO problem using some Hadamard parameterization in order to

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

apply more efficient optimization methods. The geometry induced by HP is also a subject of interest
and in this regard, Ouyang et al. (2024) give necessary condition for a reparameterized function to
satisfy the Kurdyka-Łojasiewicz property.

Links with Mirror Flow As shown in Azulay et al. (2021); Chou et al. (2023a), Diagonal Linear
Networks trained with a Gradient Flow (or Gradient Descent) share direct links with Mirror Flow
(or Mirror Descent). One of the first appearances of the Mirror Flow dynamic can be attributed
to Alvarez et al. (2004). Many years later, a number of studies are presented in the context of
understanding the effects of reparameterization. The mirror gradient method having an implicit
bias towards specific solutions, Vaskevicius et al. (2020) propose early stopping strategies taking
advantage of it. Li et al. (2022) provide assumptions that are necessary for a reparameterization
trained with a Gradient Flow to be equivalent to a Mirror Flow. In their paper, Chou et al. (2023b)
adopt an original point of view, seeing reparameterization as a way to enforce some implicit bias. In
this perspective, the authors give guidelines to define it efficiently.

1.2 CONTRIBUTIONS

The general problem stated at the beginning of the introduction can be phrased in a precise math-
ematical form. We want to study the properties of an optimization procedure run on the following
problem, that is the problem available in practice (e.g. an empirical risk depending on some param-
eters):

min
u∈Rp

L̃(u). (2)

We look at this through the lens of reparameterization: we suppose that the previous problem arises
from a hidden problem through some change of variable, i.e. that there exists a loss function L :
Rd → R and a reparametrization q : Rp → Rd such that

L̃(u) = L(q(u)).

In the variable θ = q(u), the hidden problem is then given by

min
θ∈Rd

L(θ). (3)

The general question of this line of research is the following. Running an optimization procedure on
the reparametrization u ∈ Rp to minimize the loss L̃ of the available problem in 2, what happens on
the variable θ = q(u) in terms of the minimization of L, the hidden problem in 3?
One example of the previous setting is given by Shallow Linear (connected) Neural Networks,
where, for u = (W, v), q(W, v) = WT v.

In this paper we focus on a Deep Diagonal Linear Networks, an extension of Diagonal Linear Net-
works to the L-layer case. The corresponding reparameterization of θ ∈ Rd is given by

θ = q(u1, u2, . . . , uL) = u1 ⊙ u2 ⊙ · · · ⊙ uL,

where L is the number of layers and ui ∈ Rd for every i = 1, ..., L. In this case, considering for
instance the empirical risk with linear-quadratic loss on input-output data (xi, yi)

n
i=1, we have

min
(u1,u2,...,uL)

L̃(u1, u2, . . . , uL) = L(q(u1, u2, . . . , uL)) =

n∑
i=1

(⟨u1 ⊙ u2 ⊙ · · · ⊙ uL), xi⟩ − yi)
2,

where L(θ) =
∑n

i=1(⟨θ, xi⟩ − yi)
2.

Although simplified versions of this model have been previously studied in the literature (see Wood-
worth et al. (2020); Moroshko et al. (2020); Chou et al. (2023a)), this formulation appears to better
approximate real-life networks. In fact, these works consider the reparameterization θ = u⊙L−v⊙L,
allowing for the derivation of numerous properties. Nevertheless, it can be argued that this model is
overly simplistic, as the number of layers does not affect the number of hyperparameters.

The objective of this work is to gain a deeper comprehension of the effect of reparameterization
when the network layers (uj)j∈[L] are trained using Gradient Flow. In this regard, we make the
following contributions:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• We identify quantities that are conserved along the trajectory of the flow. This allows us to
show that the dynamic of the variable θ is driven by that of an abstract layer containing the
minimal nodes.

• We provide a mild assumption on the initialization such that applying Gradient Flow to the
layers (uj)j∈[L] generates a trajectory in the variable θ that is the solution of a Mirror Flow.

• We show several convergence properties in terms of the original optimization problem,
under the same assumption. In particular, we show that the value of the loss function along
the variable θ decreases exponentially to its minimal value under a Polyak-Łojasiewicz
property. These results also reveal that initializing the layers with small values leads to a
slow training, a phenomenon that is known in the literature for other models.

1.3 NOTATION

For any positive integer L, the set of integers from 1 to L is denoted by [L]. The coordinate-wise
product, also called the Hadamard product, of two vectors x and y in Rp is denoted x ⊙ y, where
for each i in [p], (x⊙ y)i = xiyi. The vector x⊙L is defined as

(
xL
i

)
i∈[p]

and if
(
xj
)
j∈[L]

∈ (Rp)
L,

then
⊙L

j=1 x
j refers to

(∏L
j=1 x

j
i

)
i∈[p]

. We use | · | to denote the absolute value which can be

defined for vectors in Rp: for any x ∈ Rp, |x| = (|xi|)i∈[p]. Similarly, the sign function denoted
sign(·), the square root function

√
·, the hyperbolic sine sinh, the inverse hyperbolic sine arcsinh

and the logarithm log are considered as functions from Rp to Rp that apply to each component. The
Jacobian of G = (G1, . . . , Gp) with respect to θ ∈ Rk is denoted by JG(θ) and is defined as:

JG(θ) :=

[
∂G

∂θ1
; . . . ;

∂G

∂θk

]
=


∂G1

∂θ1
. . . ∂G1

∂θk
...

. . .
...

∂Gp

∂θ1
. . .

∂Gp

∂θk

 .

The Hessian of G is denoted by ∇2G. We denote by # the cardinality of a set, and by % the modulo
operation. The vector 1 ∈ Rp denotes the unitary vector equal to (1)i∈[p] and ⌊·⌋ represents the floor
function. For a vector v ∈ Rp, diag(v) denotes the diagonal matrix in Rp×p having the diagonal
equal to v.

2 DEEP DIAGONAL LINEAR NETWORKS

In this section, we state several results on the trajectory of the variable θ when parameterized by
a Deep Diagonal Linear Network and when its parameters are trained by Gradient Flow. More
specifically, we overparameterize our system by defining

θ =

L⊙
j=1

uj ,

where L ⩾ 2 is the number of layers of the network and each uj ∈ Rd corresponds to the j-th layer,
as illustrated in Figure 2. Note that for L = 2, we recover the classical Diagonal Linear Network.
We consider the training of the Deep Diagonal Linear Network by Gradient Flow, which can be
written as follows:

∀j ∈ [L], ∀t ⩾ 0,
duj(t)

dt
+∇jL

(
L⊙

k=1

uk(t)

)
= 0, (4)

where we denoted
(
∇jL

(⊙L
k=1 u

k
))

i
= ∂

∂uj
i

L
(⊙L

k=1 u
k
)

for any j ∈ [L] and i ∈ [d]. By
simple computations, we get the following dynamical system:

∀j ∈ [L], ∀t ⩾ 0,
duj(t)

dt
+

⊙
k ̸=j

uk(t)

⊙∇L(θ(t)) = 0. (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

xi
1

xi
2

xi
3

xi
4

xi
5

u1
1

u1
2

u1
3

u1
4

u1
5

u2
1

u2
2

u2
3

u2
4

u2
5

uL
1

uL
2

uL
3

uL
4

uL
5

fθ(x
i)

Figure 2: Representation of a Deep Diagonal Linear Network with L layers in Rd, d = 6.

We first derive several properties of the trajectories of the weights of the network. We then demon-
strate the main result on the dynamic of θ by adopting a different approach. Convergence guarantees
are stated in the last section, under the same assumption on the initialization.

2.1 ON THE BEHAVIOR OF THE FLOW

From equation 5, we can prove the following properties on the trajectory of the layers.

Proposition 1. Let
(
uj
)
j∈[L]

satisfy equation 5 and let θ =
⊙L

j=1 u
j . Then the following statements

hold:

1. For any (j, k) ∈ [L]× [L],

∀t ⩾ 0,
d

dt

(
uj ⊙ uj

)
(t) =

d

dt

(
uk ⊙ uk

)
(t) = −θ(t)⊙∇L(θ(t)). (6)

In particular,
∀t ⩾ 0, uj(t)⊙2 − uj(0)⊙2 = uk(t)⊙2 − uk(0)⊙2. (7)

2. Let i ∈ [d]. If j /∈ argmink∈[L] |uk
i (0)|, then for every t > 0 we have that uj

i (t) ̸= 0.

Proof.
1. This statement is obtained by multiplying equation 5 by uj(t) and then by integrating it.
2. Let i ∈ [d] and j /∈ argmink∈[L] |uk

i (0)|. We suppose that there exists T > 0 such that
uj
i (T) = 0. We define l ∈ argmink∈[L] |uk

i (0)| and according to the first claim, for all t ⩾ 0,

ul
i(t)

2 − ul
i(0)

2 = uj
i (t)

2 − uj
i (0)

2.

In particular, for t = T ,

ul
i(T)

2 = ul
i(0)

2 + uj
i (T)

2 − uj
i (0)

2 = ul
i(0)

2 − uj
i (0)

2 < 0.

Since the above equation cannot be true, we can conclude.

Before commenting the previous result, we introduce the main assumption on the initialization of
the network that we will consider in the next:

∀i ∈ [d], #

(
argmin
k∈[L]

|uk
i (0)|

)
= 1. (A)

The preceding condition indicates that, for each component i ∈ [d], the node with the minimal
absolute value is unique across all layers. For instance, initializing each layer with the same values
violates this assumption; while setting them randomly is almost surely valid.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

It should be noted that this initialization assumption is relatively weak in comparison to those pre-
sented in the existing literature, even when considering only two layers. For Diagonal Linear Net-
works, Woodworth et al. (2020) impose a layer to be zero before training while in the context of
deep matrix factorization, Arora et al. (2019) impose the layers to be balanced i.e.

∀(i, j) ∈ [L]2, Wi(0)
TWi(0) = Wj(0)

TWj(0),

where Wj is the matrix containing the weights of the j-th layer.

One can notice that by assuming A, the second claim of Proposition 1 ensures that for each compo-
nent i, only one layer j can cross zero (and this layer is the one with the minimal absolute value at
initialization). This phenomenon can be observed in Figure 3 where for the first component, only the
third layer changes its sign throughout the training process. This layer is that with minimal absolute
value at initialization.

Figure 3: Dynamic of the nodes (uj
1(t))j∈[L] for a loss function satisfying L : θ 7→ ∥Xθ− y∥2 with

X ∈ R10×5 and y ∈ R10 generated randomly, and L = 4 layers.

We use this feature to rewrite the dynamic of the layers.

Simplifying the system Suppose that assumption A is satisfied. Then, it allows us to define(
vj
)
j∈[L]

∈
(
Rd
)L

as a permutation of
(
uj
)
j∈[L]

in the following way: for any i ∈ [d],

v1i = uj
i where j = arg min

k∈[L]
|uj

i (0)|,

and for any j ∈ J2, LK,

vji =

u1
i if j = arg min

k∈[L]
|uj

i (0)|.

uj
i else.

In other words,
(
vj
)
j∈[L]

is a permutation of
(
uj
)
j∈[L]

where the first layer gathers all minimal

absolute values at initialization. Note that we have θ =
⊙L

j=1 v
j and it is trivial to show that the

equations and properties stated above still hold for
(
vj
)
j∈[L]

.

Since we assume that A holds, the second claim of Proposition 1 ensures that for any j ∈ J2, LK,

∀t ⩾ 0, sign
(
vj(t)

)
= sign

(
vj(0)

)
,

where sign : Rd → Rd returns the sign for every component. By using the first claim of Proposition
1, we get that

∀j ∈ J2, LK, ∀t ⩾ 0, vj(t) = sign
(
vj(0)

)
⊙
√
v1(t)⊙2 + vj(0)⊙2 − v1(0)⊙2.

By rewriting equation 5 for the first layer, we have that:

∀t ⩾ 0,
dv1(t)

dt
+ sign

⊙
j ̸=1

vj(0)

⊙

⊙
j ̸=1

√
v1(t)⊙2 +∆j

⊙∇L(θ(t)) = 0, (8)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where ∆j = vj(0)⊙2 − v1(0)⊙2 for any j ∈ [d]. Since

θ(t) = sign

 L⊙
j=1

vj(0)

⊙

 L⊙
j=1

√
v1(t)⊙2 +∆j

 ,

we can see that the flow of θ is entirely determined by that of v1 and the initialization of the
network.

Deducing a Mirror Flow? From that point, it appears natural to apply the strategy proposed by
Woodworth et al. (2020) to study Diagonal Linear Networks: the authors leverage a formulation of
θ to derive an implicit bias which is also linked to a Mirror Flow (for further details, see Appendix
A.1; for another example to which it applies, see Appendix A.3). However, if L > 2, equation 8
does not allow us to get an analytical expression of v1(t) and thus of θ(t). As a consequence, this
approach cannot be applied in this situation. Note that in the case L = 2, equation 8 gives for any
t ⩾ 0,

dv1(t)

dt
+ sign

(
v2(0)

)
⊙
√

v1(t)⊙2 +∆⊙∇L(θ(t)) = 0, (9)

with ∆ = v2(0)⊙2 − v1(0)⊙2, allowing to compute θ and recover the analysis of Woodworth et al.
(2020).

2.2 IT IS ACTUALLY A MIRROR FLOW

Since this setting does not fit the framework of Woodworth et al. (2020), we base our analysis on the
work of Li et al. (2022) to prove the following theorem. Although our analysis demonstrates that θ
is the solution of a Mirror Flow, it does not yield the associated entropy function (nor the implicit
bias).

Theorem 1. Let θ ∈ Rd be parameterized as θ =
⊙L

j=1 u
j and

(
uj
)
j∈[L]

follow the dynamic
described in equation 5. If the initialization of the network satisfies A, then θ follows a Mirror Flow
dynamic, i.e there exists a convex entropy function Q : Rd → R such that:

∀t ⩾ 0,
d∇Q(θ(t))

dt
+∇L(θ(t)) = 0.

Proof.
The proof of this claim consists in showing that the reparameterization induced by Deep Diagonal
Linear Networks satisfies the hypotheses necessary to the application of (Li et al., 2022, Theo-
rem 4.8). It is first necessary to introduce some notation.

Let θ ∈ Rd be parameterized as θ =
⊙L

j=1 u
j where

(
uj
)
j∈[L]

. We denote u ∈ RL×d the entire set
of parameters of the network. More specifically, we have

∀n ∈ [Ld], ui = u
(i−1)%L+1
⌊(i−1)/L⌋+1,

meaning that we can write

u =
(
u1
1 u

2
1 . . . uL

1 u1
2 u1

d . . . uL
d

)T
.

It is then possible to write θ according to u via the parameterization function G : RL×d → Rd

defined as follows

∀w ∈ RL×d, ∀i ∈ [d], Gi(w) =

iL∏
j=(i−1)L+1

wj . (10)

Showing the desired claim then requires to prove that G : M → Rd is a commuting and regular pa-
rameterization for a well-chosen smooth manifold M of RL×d. Then, under an additional technical
assumption that we discuss and if u(0) ∈ M, (Li et al., 2022, Theorem 4.8) ensures that the trajec-
tory of θ is the solution of a Mirror Flow. The detailed computations are given in Appendix A.4.

In the previous theorem we have shown that, under mild assumptions on the inizialization,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

running Gradient Flow on the reparametrization (uj)j∈[L] given by a Deep Diagonal Linear
Network generates a trajectory in θ(t) = ⊙L

j=1u
j(t) that is the solution of a Mirror Flow on the

function L with entropy Q. The strategy adopted does not lead to an explicit expression for the
entropy Q (and so for the implicit bias induced by the reparametrization). On the other hand,
we can guarantee that the entropy Q is convex and so, for instance, that the quantity L(θ(t)) is
non-increasing along time.

2.3 CONVERGENCE GUARANTEES

We now give additional convergence results on the trajectory of θ under the assumption A. First,
notice that θ is a solution of the following dynamical system

∀t ⩾ 0, θ̇(t) +

L∑
j=1

⊙
k ̸=j

uk(t)⊙2

⊙∇L(θ(t)) = 0. (11)

We can easily write this equation in the following way:

∀t ⩾ 0, θ̇(t) +M(t)∇L(θ(t)) = 0, (12)

where M : t 7→ diag
((∑L

j=1

(∏
k ̸=j u

k
i (t)

2
))

i∈[d]

)
.

Since we assume that assumption A holds, the second claim of Proposition 1 ensures that for any
i ∈ [d], if j /∈ argmink∈[d] |uk

i (0)|, then |uj
i (t)| > 0 for all t ⩾ 0. More precisely, using the first

claim of Proposition 1, we obtain that uj
i (t)

2 ⩾ uj
i (0)

2 − ul
i(0)

2 where l = argmink∈[d] |uk
i (0)|.

Therefore, for any i ∈ [d],

∀t ⩾ 0,

L∑
j=1

∏
k ̸=j

uk
i (t)

2

 =

L∑
j=1, j ̸=l

∏
k ̸=j

uk
i (t)

2

+
∏
k ̸=l

uk
i (t)

2

⩾ 0 +
∏
k ̸=l

(uk
i (0)

2 − ul
i(0)

2) > 0.

(13)

As a consequence, we get the following properties:

• M(t) is invertible for all t ⩾ 0 and

M−1(t) = diag



 L∑

j=1

∏
k ̸=j

uk
i (t)

2

−1


i∈[d]

 .

As a consequence,
∀t ⩾ 0, M−1(t)θ̇(t) +∇L(t) = 0,

which means that the mirror map Q from Theorem 1 satisfies for any t ⩾ 0

d∇Q(θ(t))

dt
= M−1(t)θ̇(t).

• The smallest eigenvalue λmin(M(t)) of M(t) admits a lower bound that does not depend
on t:

λmin(M(t)) ⩾ min
i∈[d]

∏
k ̸=ki

(uk
i (0)

2 − uki
i (0)2), (14)

where ki = argmink∈[d] |uk
i (0)| for any i ∈ [d].

Thus, we get the following result which applies, for example, if L is the squared loss function.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Theorem 2. Let θ ∈ Rd be parameterized as θ =
⊙L

j=1 u
j and

(
uj
)
j∈[L]

follow the dynamic
described in equation 5. Suppose that argminθ∈Rd L(θ) ̸= ∅ and let L∗ denote minθ∈Rd L(θ). If
the initialization of the network satisfies A and the loss function L satisfies a Polyak-Łojasiewicz
property with parameter µ > 0, then for all t ⩾ 0,

L(θ(t))− L∗ ⩽ e−2σµt (L(θ(0))− L∗) ,

where σ = mini∈[d]

∏
k ̸=ki

(uk
i (0)

2 − uki
i (0)2) and ki = argmink∈[d] |uk

i (0)| for any i ∈ [d].

Proof.
For all t ⩾ 0, we have that:

d

dt
(L(θ(t))− L∗) =

〈
∇L(θ(t)), θ̇(t)

〉
= −⟨∇L(θ(t)),M(t)∇L(θ(t))⟩
⩽ −λmin(M(t))∥∇L(θ(t))∥2

⩽ −σ∥∇L(θ(t))∥2,

where we use the lower bound σ = mini∈[d]

∏
k ̸=ki

(uk
i (0)

2 − uki
i (0)2). is define in equation 14.

Supposing that L satisfies the Polyak-Łojasiewicz inequality, there exists µ > 0 such that:

∀θ ∈ Rd, 2µ (L(θ)− L∗) ⩽ ∥∇L(θ)∥2.
In particular, this guarantees that:

d

dt
(L(θ(t))− L∗) ⩽ −2σµ (L(θ(t))− L∗) ,

and as a consequence:

∀t ⩾ 0, L(θ(t))− L∗ ⩽ e−2σµt (L(θ(0))− L∗) . (15)

This bound on the suboptimality gap reveals that the initialization of the network significantly affects
the convergence rate of its training. In this regard, it is erroneous to assume that the linear rate
necessarily implies rapid convergence, as the parameter σ = mini∈[d]

∏
k ̸=ki

(uk
i (0)

2 − uki
i (0)2)

plays an important role. If the gap between the minimal absolute value of a component across layers
and the others is small, then σ is also considerably small, which affects the speed of convergence
during training. Figure 4 emphasizes this point, showing that larger values at initialization lead to a
better convergence rate.

Figure 4: Evolution of log (L(θ(t))− L∗) according to time for three 6-layer networks with differ-
ent initialization. The loss function is defined as L : θ 7→ ∥Xθ− y∥2 with X ∈ R10×8 and y ∈ R10

generated randomly. Each network is initialized with a first layer having components equal to 0.
The initial value of the remaining layers of the first network (in blue) is generated randomly, while
that of the second (in orange) and the third (in green) are respectively equal to 1.4 and 1.8 times the
values of the firs component-wise.

This phenomenon has been documented in the literature for similar models (e.g. see Chou et al.
(2023a; 2024)) and may indicate that initializing the network with larger values would be beneficial.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

However, it is also well known that the initialization of a network should be chosen small enough to
induce sparsity of the approximated solutions and consequently generalize well, see Gunasekar et al.
(2017); Arora et al. (2019); Woodworth et al. (2020); Moroshko et al. (2020); Chizat et al. (2019). To
address the challenge of slow training, Chou et al. (2024) suggest employing weight normalization,
a reparameterization technique that promotes comparable sparsity in the solution while ensuring
reasonable convergence rates.

3 CONCLUSION AND PERSPECTIVES

In this work, we have studied Deep Diagonal Linear Networks and broaden our understanding of
their training. In particular, we have analyzed the trajectories of the original variable when a Gradient
Flow is applied to its layers. In this way, we were able to extract a sufficient initialization condition
to prove theoretical results both on the optimization and the bias of this model. We show indeed that
such a training induces a Mirror Flow on the original variable and ensures a linear decrease of the
error on the loss function as long as it satisfies the Polyak-Łojasiewicz inequality. This study also
reveals the negative impact of initializing the network with small values in terms of convergence
speed.

Despite its apparent simplicity, this model is still tricky to study and we were unable to compute the
entropy function associated to the Mirror Flow induced. It is then a natural question remaining that
would also inform us on the implicit bias underlying. It is also noteworthy that the linearity of this
model may prevent us from fully understanding the generalization properties of real-world neural
networks. This highlights the potential necessity for incorporating non-linearity in future works.
From an optimization perspective, further research could be conducted to investigate the influence
of stochasticity, momentum, and more generally, the optimization method applied during training.

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-
terized neural networks, going beyond two layers. Advances in neural information processing
systems, 32, 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019b.

Felipe Alvarez, Jérôme Bolte, and Olivier Brahic. Hessian riemannian gradient flows in convex
programming. SIAM journal on control and optimization, 43(2):477–501, 2004.

Ehsan Amid and Manfred K Warmuth. Winnowing with gradient descent. In Conference on Learn-
ing Theory, pp. 163–182. PMLR, 2020.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. In International conference on machine learning, pp. 244–
253. PMLR, 2018.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. Advances in Neural Information Processing Systems, 32, 2019.

Shahar Azulay, Edward Moroshko, Mor Shpigel Nacson, Blake E Woodworth, Nathan Srebro, Amir
Globerson, and Daniel Soudry. On the implicit bias of initialization shape: Beyond infinitesimal
mirror descent. In International Conference on Machine Learning, pp. 468–477. PMLR, 2021.

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. In Conference on learning theory, pp. 1305–1338. PMLR, 2020.

Lénaı̈c Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable pro-
gramming. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/ae614c557843b1df326cb29c57225459-Paper.pdf.

10

https://proceedings.neurips.cc/paper_files/paper/2019/file/ae614c557843b1df326cb29c57225459-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/ae614c557843b1df326cb29c57225459-Paper.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Hung-Hsu Chou, Johannes Maly, and Claudio Mayrink Verdun. Non-negative least squares via
overparametrization. arXiv preprint arXiv:2207.08437, 2022.

Hung-Hsu Chou, Johannes Maly, and Holger Rauhut. More is less: inducing sparsity via overpa-
rameterization. Information and Inference: A Journal of the IMA, 12(3):1437–1460, 2023a.

Hung-Hsu Chou, Johannes Maly, and Dominik Stöger. How to induce regularization in generalized
linear models: A guide to reparametrizing gradient flow. arXiv preprint arXiv:2308.04921, 2023b.

Hung-Hsu Chou, Holger Rauhut, and Rachel Ward. Robust implicit regularization via weight nor-
malization. Information and Inference: A Journal of the IMA, 13(3):iaae022, 2024.

Mathieu Even, Scott Pesme, Suriya Gunasekar, and Nicolas Flammarion. (s)gd over di-
agonal linear networks: Implicit bias, large stepsizes and edge of stability. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 29406–29448. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/5da6ce80e97671b70c01a2e703b868b3-Paper-Conference.pdf.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Sre-
bro. Implicit regularization in matrix factorization. Advances in neural information processing
systems, 30, 2017.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in
terms of optimization geometry. In International Conference on Machine Learning, pp. 1832–
1841. PMLR, 2018a.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent
on linear convolutional networks. Advances in neural information processing systems, 31, 2018b.

Peter D Hoff. Lasso, fractional norm and structured sparse estimation using a hadamard product
parametrization. Computational Statistics & Data Analysis, 115:186–198, 2017.

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix sensing and neural networks with quadratic activations. In Conference On Learning The-
ory, pp. 2–47. PMLR, 2018.

Zhiyuan Li, Tianhao Wang, Jason D Lee, and Sanjeev Arora. Implicit bias of gradient descent
on reparametrized models: On equivalence to mirror descent. Advances in Neural Information
Processing Systems, 35:34626–34640, 2022.

Pierre Marion and Lénaı̈c Chizat. Deep linear networks for regression are implicitly regularized
towards flat minima. arXiv preprint arXiv:2405.13456, 2024.

Edward Moroshko, Blake E Woodworth, Suriya Gunasekar, Jason D Lee, Nati Srebro, and Daniel
Soudry. Implicit bias in deep linear classification: Initialization scale vs training accuracy. Ad-
vances in neural information processing systems, 33:22182–22193, 2020.

Mor Shpigel Nacson, Kavya Ravichandran, Nathan Srebro, and Daniel Soudry. Implicit bias of the
step size in linear diagonal neural networks. In International Conference on Machine Learning,
pp. 16270–16295. PMLR, 2022.

Wenqing Ouyang, Yuncheng Liu, Ting Kei Pong, and Hao Wang. Kurdyka-łojasiewicz exponent
via hadamard parametrization, 2024. URL https://arxiv.org/abs/2402.00377.

Hristo Papazov, Scott Pesme, and Nicolas Flammarion. Leveraging continuous time to understand
momentum when training diagonal linear networks. In International Conference on Artificial
Intelligence and Statistics, pp. 3556–3564. PMLR, 2024.

Scott Pesme, Loucas Pillaud-Vivien, and Nicolas Flammarion. Implicit bias of sgd for diagonal
linear networks: a provable benefit of stochasticity. Advances in Neural Information Processing
Systems, 34:29218–29230, 2021.

11

https://proceedings.neurips.cc/paper_files/paper/2023/file/5da6ce80e97671b70c01a2e703b868b3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5da6ce80e97671b70c01a2e703b868b3-Paper-Conference.pdf
https://arxiv.org/abs/2402.00377

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Clarice Poon and Gabriel Peyré. Smooth over-parameterized solvers for non-smooth structured
optimization. Mathematical programming, 201(1):897–952, 2023.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. Advances in neural information processing systems, 29, 2016.

Gal Vardi. On the implicit bias in deep-learning algorithms. Communications of the ACM, 66(6):
86–93, 2023.

Gal Vardi and Ohad Shamir. Implicit regularization in relu networks with the square loss. In Con-
ference on Learning Theory, pp. 4224–4258. PMLR, 2021.

Tomas Vaskevicius, Varun Kanade, and Patrick Rebeschini. Implicit regularization for optimal
sparse recovery. Advances in Neural Information Processing Systems, 32, 2019.

Tomas Vaskevicius, Varun Kanade, and Patrick Rebeschini. The statistical complexity of early-
stopped mirror descent. Advances in Neural Information Processing Systems, 33:253–264, 2020.

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
Conference on Learning Theory, pp. 3635–3673. PMLR, 2020.

Xiaoxia Wu, Edgar Dobriban, Tongzheng Ren, Shanshan Wu, Zhiyuan Li, Suriya Gunasekar, Rachel
Ward, and Qiang Liu. Implicit regularization and convergence for weight normalization. Ad-
vances in Neural Information Processing Systems, 33:2835–2847, 2020.

Peng Zhao, Yun Yang, and Qiao-Chu He. High-dimensional linear regression via implicit regular-
ization. Biometrika, 109(4):1033–1046, 2022.

A APPENDIX

A.1 BACKGROUND: A DIRECT STRATEGY TO ANALYZE DIAGONAL LINEAR NETWORKS

In this section, we briefly state the strategy proposed by Woodworth et al. (2020) to analyze the
training of a Diagonal Linear Network through Gradient Flow. The proposed approach to derive
an implicit bias benefits from its simplicity and is general enough to be extended to other simple
models. To emphasize this point, we apply it also to Deep Redundant Linear Network in Appendix
A.3.

We are interested in solving the problem:

min
θ∈Rd

L(θ),

for some loss function L : Rd → R, where the loss is minimal if Xθ = y, X : Rd → Rn and y ∈ Rn

denoting some data input and output. We look at this problem through the lens of reparameterization,
i.e. we consider the change of variable θ = u⊙ v which corresponds to a Diagonal Linear Network.
Such a network is then trained using a Gradient Flow on the new parameters:{

u̇(t) + v(t)⊙∇L(θ(t)) = 0

v̇(t) + u(t)⊙∇L(θ(t)) = 0.
(16)

Further computations, detailed in Appendix A.2, show that the variable θ can be written in the
following way:

θ(t) = Ψ(ξ(t)) :=

∣∣u(0)⊙2 − v(0)⊙2
∣∣

2
sinh

(
2ξ(t) + log

∣∣∣∣u(0) + v(0)

u(0)− v(0)

∣∣∣∣) , (17)

where ξ : t 7→ −
∫ t

0
∇L(θ(s))ds is the solution of

ξ̇(t) +∇L(θ(t)) = 0.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Deriving the implicit bias Suppose now that lim
t→+∞

θ(t) = θ∞ such that Xθ∞ = y, and that the

loss function L can be written as L(θ) = ℓ(Xθ − y) for any θ ∈ Rd with ℓ : Rn → R. Proving
that the trajectories generated by equation 23 are implicitly biased towards a potential Q consists in
showing that:

θ∞ = arg min
Xθ=y

Q(θ). (18)

In order to achieve this, Woodworth et al. (2020) notice that θ∞ = Ψ(XT ν) (where Ψ is defined in
equation 17) for some ν ∈ Rn. Indeed,

lim
t→+∞

ξ(t) = −
∫ +∞

0

∇L(θ(s))ds = −XT

∫ +∞

0

∇ℓ(Xθ(s)− y)ds︸ ︷︷ ︸
:=−ν

.

This property is crucial since by writing the KKT conditions associated to the problem described in
equation 18, we obtain: {

Xθ∞ = y

∃ω ∈ Rn, ∇Q(θ∞) = XTω
(19)

The first condition is satisfied by assumption. Defining Q such that ∇Q(θ) = Ψ−1(θ) for any θ, we
get that ∇Q(θ∞) = Ψ−1(θ∞) = XT ν, demonstrating that equation 18 holds. In this case, we have

Q(θ) =
1

2

d∑
i=1

(
2θiarcsinh

(
2θi
∆0

)
−
√
4θ2i +∆2

0 +∆0

)
− 1

2

〈
log

∣∣∣∣u(0) + v(0)

u(0)− v(0)

∣∣∣∣ , θ〉 , (20)

where ∆0 =
∣∣u(0)⊙2 − v(0)⊙2

∣∣.
Revealing a Mirror Flow The above strategy provides insights on the implicit bias induced by
reparameterizing the problem and also allows one to reveal a more general property on the trajectory
of θ.
The function Q defined in equation 20 ensures that for any θ, ∇Q(θ) = Ψ−1(θ). In particular, for
any t ⩾ 0:

∇Q(θ(t)) = Ψ−1(θ(t)) = ξ(t), (21)

according to equation 17. As mentionned before, ξ̇(t) +∇L(θ(t)) = 0 and thus:

d∇Q(θ(t))

dt
+∇L(θ(t)) = 0. (22)

This shows that θ is the solution of a Mirror Flow dynamic with mirror map Q.

A.2 DETAILED COMPUTATIONS FOR DIAGONAL LINEAR NETWORKS

Recall that we focus on the problem:
min
θ∈Rd

L(θ),

for some loss function L : Rd → R, and we consider the reparameterization θ = u⊙v. By applying
a Gradient Flow to the hyperparameters u and v we obtain:{

u̇(t) + v(t)⊙∇L(θ(t)) = 0

v̇(t) + u(t)⊙∇L(θ(t)) = 0.
(23)

It is then trivial to observe that (z+, z−) defined as (u+ v, u− v) is a solution of:{
ż+(t) + z+(t)⊙∇L(θ(t)) = 0

ż−(t)− z−(t)⊙∇L(θ(t)) = 0
, (24)

which guarantees that for any t ⩾ 0, {
z+(t) = z+(0)e

ξ(t)

z−(t) = z−(0)e
−ξ(t)

, (25)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

where ξ : t 7→ −
∫ t

0
∇L(θ(s))ds. Note by defining ξ in this way, it holds that

ξ̇(t) +∇L(θ(t))) = 0, ξ(0) = 0.

It is done by observing that θ(t) = z+(t)⊙2−z−(t)⊙2

4 , implying that

θ(t) =
z+(0)

⊙2e2ξ(t) − z−(0)
⊙2e−2ξ(t)

4

=
|z+(0)⊙ z−(0)|

2
sinh

(
2ξ(t) + log

∣∣∣∣z+(0)z−(0)

∣∣∣∣) .

(26)

A.3 STUDY OF A DEEP REDUNDANT LINEAR NETWORKS

In this section, we emphasize that the strategy stated in Section A.1 is general enough to be applied
to other similar parameterizations. We briefly analyze the implicit features of a Deep Redundant
Linear Network defined through similar computations. The stated results can be seen as a simplified
version of that obtained in Woodworth et al. (2020); Moroshko et al. (2020); Chou et al. (2023a) in
the L-layer case.

We consider the parameterization θ = u⊙L where the number of layers L ∈ N is strictly greater than
2. We also suppose that the loss function L can be written as L(θ) = ℓ(Xθ − y) for any θ ∈ Rd,
with ℓ : Rn → R which reaches its minimum at 0.

By applying a Gradient Flow to L(θ) according to the vector of hyperparameters u, it holds that

u̇(t) + Lu(t)⊙(L−1) ⊙∇L(θ(t)) = 0. (27)

Supposing that for any i ∈ Rd, ui(t) is different from 0 for any t ⩾ 0 (which can be done by
enforcing positivity of X , y and the initialization), we can write that

u(t) =
(
u(0)⊙−(L−2) − L(L− 2)ξ(t)

)⊙− 1
L−2

, (28)

where ξ : t 7→ −
∫ t

0
∇L(θ(s))ds. The original variable θ then satisfies:

θ(t) =
(
u(0)⊙−(L−2) − L(L− 2)ξ(t)

)⊙− L
L−2

=: Ψ (L(L− 2) ξ(t)). (29)

The inverse of Ψ is trivial to compute as for any θ, Ψ−1(θ) = u(0)⊙−(L−2) − θ⊙−(1− 2
L). Then,

simple computations show that the entropy function Q defined as:

Q(θ) = ⟨u(0)⊙(L−2), θ⟩ − L

2

〈
1, θ⊙

2
L

〉
, (30)

satisfies ∇Q(θ) = Ψ−1(θ) for any θ. Then, by applying the same arguments as in the previous
section, we get that:

d∇Q(θ(t))

dt
+∇L(θ(t)) = 0, (31)

and, if the trajectory converges to θ∞ a solution of the problem, i.e. Xθ∞ = y, then

θ∞ = arg min
Xθ=y

Q(θ). (32)

A.4 DETAILED PROOF OF THEOREM 1

The proof of Theorem 1 follows the steps described in Section 2.2.
· We start by defining M in the following way:

M =
{
w ∈ RL×d, ∀i ∈ [d], #

{
j ∈ [L], w(i−1)L+(j−1) = 0

}
⩽ 1
}
. (33)

We can easily show that this set is a smooth submanifold of RL×d. Let us rewrite M in the following
way:

M =
⋂
i∈[d]

{
w ∈ RL×d, #

{
j ∈ [L], w(i−1)L+(j−1) = 0

}
⩽ 1
}
.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

As a consequence, the complement set of M in RL×d denoted MC satisfies:

MC =
⋃
i∈[d]

{
w ∈ RL×d, ∃(j, k) ∈ [L]2, j ̸= k, w(i−1)L+(j−1) = w(i−1)L+(k−1) = 0

}
=
⋃
i∈[d]

⋃
(j,k)∈[L]2, j ̸=k

{
w ∈ RL×d, w(i−1)L+(j−1) = w(i−1)L+(k−1) = 0

}
.

We can deduce that MC is a closed set and that M is a smooth submanifold of RL×d.
One can notice that if θ is parameterized by

(
uj
)
j∈[L]

satisfying A, then the corresponding u(0)

belongs to M.
· We now prove that G : M → Rd is a commuting parameterization. Recall that it is said to be
commuting on M if for any (i1, i2) ∈ [d]× [d] and w ∈ M,

∇2Gi1(w)∇Gi2(w)−∇2Gi2(w)∇Gi1(w) = 0.

We have that for any w ∈ M and i ∈ [d],

∀j ∈ [Ld], (∇Gi(w))j =


iL∏

k=(i−1)L+1, k ̸=j

wk if j ∈ J(i− 1)L+ 1, iLK,

0 else.

(34)

Thus, for any i ∈ [d],
(
∇2Gi(w)

)
jk

= 0 as long as j /∈ J(i−1)L+1, iLK or k /∈ J(i−1)L+1, iLK.
As a consequence, for any (i1, i2) ∈ [d] × [d] such that i1 ̸= i2, ∇2Gi1(w)∇Gi2(w) = 0. We can
deduce that G is a commuting parameterization on M.
· It is also required that G is a regular parameterization on M. More specifically, we need to show
that JG(w) is of rank d for all w ∈ M.
We can easily obtain JG(w) from equation 34 and one can observe that it has the following structure:

JG(w) =


K1

1 · · · K1
L 0 · · · 0 · · · 0 · · · 0

0 · · · 0 K2
1 · · · K2

L · · · 0 · · · 0
...

. . .
...

...
. . .

...
. . .

...
. . .

...
0 · · · 0 0 · · · 0 · · · Kd

1 · · · Kd
L

 ,

where for any (i, j) ∈ [d]× [L],

Ki
j =

iL∏
k=(i−1)L+1, k ̸=j+L(i−1)

wk.

Hence, if for any i ∈ [d] there exists j ∈ [L] such that Ki
j ̸= 0, then JG(w) is of rank d and G is a

regular parameterization. Following the definition of M, this condition is satisfied for all w ∈ M
which ensures that G is regular on M.
· We finally need to check that (Li et al., 2022, Assumption 3.5) is satisfied by G, i.e that the domain
of the flows induced by its gradient vector fields is pairwise symmetric. We refer the curious reader
to the reference for more details, but we simply notice that since ∇Gj(w) and ∇Gk(w) have non
zero entries on disjoint sets of components (if j ̸= k), this assumption is directly satisfied.

From this point, we apply (Li et al., 2022, Theorem 4.8) and conclude.

15

	Introduction
	Related works
	Contributions
	Notation

	Deep Diagonal Linear Networks
	On the behavior of the flow
	It is actually a Mirror Flow
	Convergence guarantees

	Conclusion and Perspectives
	Appendix
	Background: A direct strategy to analyze Diagonal Linear Networks
	Detailed computations for Diagonal Linear Networks
	Study of a Deep Redundant Linear Networks
	Detailed proof of Theorem 1

