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Abstract

Efficient design of microstructures with targeted properties has always been a chal-
lenging task owing to the expensive and time-consuming nature of the problem. In
recent years, generative models have been used to accelerate this process. However,
most of these methods are hindered by the choice of their generative model - either
due to stability and usability, like with GANSs, or flexibility of the model itself, like
the availability of a semantically meaningful latent space. We propose a diffusion
autoencoder based generative design framework that not only provides the fidelity
and stability benefits of diffusion models but also has a desirable latent space that
can be exploited by evolutionary algorithms. We employ this framework to solve
multiple simultaneous objectives to find a Pareto frontier of candidate microstruc-
tures. We also show that the search space of optimization can be drastically reduced
by conditioning the model with target objective values. We demonstrate the efficacy
of the proposed framework on a number of optimization and generative tasks based
on two-phase morphology dataset derived from Cahn-Hilliard equations.

1 Introduction

The task of designing materials that possess certain target properties, called inverse problem or the
material discovery problem, is a challenging and tedious procedure. The aim here is usually to
identify optimal process parameters that can lead to materials with target properties. Recent advances
in manufacturing technologies, such as additive manufacturing, have paved the way for a new type
of inverse problem, called microstructure-sensitive design problem, where the aim is to design the
microstructure of the material rather than the process parameters. While this gives more control with
respect to the design process, this also leads to more challenges due to the size of the search space
and the complexity of forward models. Constraining the search space [[1]] or use of surrogate models
[2]] can alleviate some of these issues but microstructure design problems still remain challenging.

Recently, the use of deep generative models (DGMs) for solving inverse problems have shown
remarkable success. Use of these DGMs, owing to their ability to generate realistic data, have
been thoroughly explored in literature for solving of inverse problems [3[]. This process, called
generative design (GD), focuses on training DGMs with available data and driving generation toward
desired outcomes using optimization tools. Most existing methods in the material discovery domain
[4, 150 16l [7, 18 O] use generative adversarial networks (GANs) as their choice of DGMs. These
methods are severely hindered by their choice of DGMs due to well-known deficiencies of GANs.
GANS are notoriously difficult to train and are known for their instability and model collapse issues.
Diffusion models (DM) [10] are another family of DGMs that have outperformed GANs in generative
capabilities. Diffusion models are considered stable alternatives to GANs as they retain the fidelity
benefits while being easy to train and use. Some existing generative design methods have adapted
DMs as the choice of their DGMs [[11}12]. Herron et al. [13]] and Dureth et al. [[14] showed superior
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capabilities of denoising diffusion probabilistic models (DDPM) on microstructure datasets. However,
previously discussed generative design methods cannot be readily retrofitted with diffusion models
and the use of DMs for generative design in material discovery is relatively unexplored and needs to
be studied.

For a GD task to be tractable, we need the DGM to have superior generative capabilities and be
easy to train and use. Owing to the nature of datasets in domains like material discovery, it can be
difficult to select optimally trained DGMs as typical metrics such as FID and Inception score might
not be meaningful [15]. Due to the finite amount of data and lack of visually interpretable features,
it can also be difficult to detect failures such as mode collapse or unwanted artifacts. We also need
a semantically meaningful latent space that can be used during optimization or interpolation. A
meaningful latent space ensures that nearby solutions are similar to one another leading to a promising
optimization landscape. For example, if a near-optimal solution found by our framework but turns
out to be infeasible to manufacture, this candidate solution cannot be discarded as a similarly optimal
yet feasible solution might be available nearby. The ability to search locally and find closely related
solutions is a much-needed characteristic for successful GD. While vanilla DDPM/DDIM models are
the clear choice for their fidelity and stability benefits, they do not have a latent space that can be
used for optimization. Hence, we propose a diffusion autoencoder model [16]] based optimization
framework that can be readily exploited by evolutionary algorithms (EA) for single- and multi-
objective optimization [17]]. We use genetic algorithms (GA) for sigle-objective optimization and
NSGA-II [18] for multi-objective optimization. Since diffusion autoencoders are conditioned on both
semantic and stochastic subcodes, given a candidate semantic subcode provided by the optimization
algorithm, multiple stochastic subcodes can be sampled to create similar microstructures, that can
circumvent issues with artifacts or manufacturability of the obtained solutions. Another important
avenue for a GD framework is constrained sampling. The proposed optimization framework can be
readily modified to accommodate conditioning on target objectives to drastically reduce the search
space and speed up the optimization process. While most existing studies have only focused on the
quality of generated candidates, we approach this problem from an optimization perspective and
rigorously evaluate the proposed framework on single and multi-objective optimization problems
with varying difficulty based on two-phase morphology dataset [4] derived from Cahn-Hilliard
equations. By framing a variety of modified datasets and targets, we emulate various practical
scenarios commonly encountered while solving material discovery problems.

The reminder of the study is arranged as follows - in Section 2} we discuss existing literature. In
Section[3] we describe our proposed GD framework and in Section[d] we describe the dataset and
optimization problems used in this study. In Section[5] we discuss results and finally in Section[6] we
summarize our findings and propose future directions of research.

2 Related works

GD methods have gained a lot of attention in the recent past. These methods have been used to solve
a variety of inverse problems, such as topology optimization [[L1} [12} 19} 20], materials discovery
material science [5} 16} (8} 4} 9], design [21} 22]] etc. We refer readers to [3]] for a detailed review of
the use of DGMs for optimization. GANs have been extensively used for microstructure design
as microstructures are typically represented as 2D images and conveniently fit into the strengths
of GANs. Yang et al. [S] train GANs and use Bayesian optimization (using noise vectors) for
solving the inverse problem. Fokina et al. 6] use StyleGAN [23]] architecture for generating realistic
microstructure designs. Chen and Liu [7] use a conditional GAN to generate microstructures by using
a geometry-aware loss function. Tan et al. [8] perform inverse optimization using a DCGAN coupled
with a convolutional neural network (CNN) based surrogate model. Lee et al. [4] propose an inverse
optimization framework based on encoding invariance constraints on the GANs. Similarly, Lambard
et al. [9]] used StyleGAN2 [24] coupled with ADA for generating high-resolution microstructures.
Most of these methods are restricted by the choice of their DGM and cannot be readily retrofitted with
stable alternatives like DMs due to the nature of the generation procedure. A few recent works have
adapted DM architectures for microstructure generation - Herron et al. [[13]] use DDPMs for designing
two-phase morphology microstructures and demonstrate the superior performance of diffusion models
compared to WGANSs [25]]. Similarly, Dureth et al. [[14] illustrate the generative capabilities of DMs
by using class conditioning. The use of diffusion models along with a focus on GD in the materials
discovery domain is scarce and needs immediate attention.



3 Proposed generative design framework

3.1 Diffusion autoencoder architecture

Diffusion models have shown remarkable success in generative tasks. These models learn an iterative
denoising process to decode an arbitrary standard Gaussian noise prior to a target clean image. Song
et al. [26] proposed a non-markovian variant of DDPMs called denoising diffusion implicit models
(DDIM) that uses a deterministic generative process thereby improving sampling efficiency. The
latent space of DDIMs is not suitable for performing optimization or meaningful interpolation as
they consist of Gaussian noise. Preechakul et al. [16] proposed a conditional DDIM architecture that
consists of an additional semantic encoder, zs.,, = Encg (o) that learns to map the input image
to a semantically meaningful latent subcode z,.,,. Hence, the DDIM decoder is conditioned on both
a semantic latent subcode, z..,,, and a stochastic subcode that consists of Gaussian noise, Zstochastic
(zr). Here, zsem, is a non-spatial vector of d = 128 similar to a style-vector in StyleGAN [23] [24]
architecture. The diffusion autoencoder (DiffAE) architecture is shown in Figure[Ta]

Optional

) (v
"/ . Semantic Objective — Target I
‘ < encoder encoder Objective |}
- .

Image | cConditioning || = T=rmrmr=mr=mr=mi=mi—n= .

Zstochastic
Conditional DM _," :.n'

Generated
image

2
1l
yaaeas Aseuonnjong

Surrogate
model

or
Evaluation

Diffusion process Objective(s)

(a) Conditional and unconditional DiffAE (b) Optimization loop

Figure 1: Proposed framework

3.2 DIiffAE based optimization framework
For successful GD and design, or solving inverse problems, the following properties are desirable:

1. Generative capabilities: The DGM needs to be able to create realistic and feasible candidate
solutions that are outside the realm of training data. The DGM needs to be able to innovate
in order to find promising candidates.

2. Ease of use: The DGM needs to be easy to train and use as the dataset might be sparse,
ill-conditioned, or small.

3. Semantic search space: The latent space used for optimization should be meaningful and
exhibit consistency properties. That is, two solutions close to each other in latent space
should be similar in features or objectives or both.

4. Conditioning: The DGM should also have scope to condense the search space by using
additional conditioning.

The choice of DGM architecture is not trivial as the lack of these properties can severely hinder GD
capabilities. GANs, as demonstrated by literature, have the needed generative capabilities along with
desirable search space and conditioning ability. However, they are not easy to train and use. Similarly,
vanilla DDPM/DDIM architectures have shown great success in fidelity, ease of use, and conditioning
capabilities but do not have a meaningful latent space. DiffAE architecture on the other hand provides
all the aforementioned benefits making this the optimal choice for GD and inverse problems.



In our proposed GD framework, shown in Figure [Ib] zs., of diffusion autoencoders will act as
decision variables for an evolutionary algorithm (EA). For every candidate 24, T7 is randomly
sampled. Evolutionary methods are a convenient choice here as they are known to be effective for
global optimization. However, other methods like Bayesian optimization can also be incorporated
here instead of the EAs.

3.3 Target conditioning

We extend the DiffAE architecture to have additional conditioning from an objective encoder (MLP
in this study) that encodes target objective values, as shown in Figure[Tal This way, the relationship
between the objective values and the generated images is learned and can be later exploited using
conditional sampling. This method is similar to class conditional sampling but we condition using
continuous values. Now, instead of performing global optimization from scratch, target conditioning
can help reduce the search space and expedite the optimization procedure.

It can be tempting to replace the optimization procedure with conditional sampling, as conditional
sampling can give us the desired candidates. Instead of searching for optimal candidates, objectives
can be provided for conditioning and the generated candidate can be used as the optimal candidate.
However, we argue that conditioning might not be as effective in all parts of the objective space and
lack of information regarding uncertainty at different regions of the objective space will make this
method unreliable. Hence, we propose to use target conditioning merely to reduce the search space,
that is, to help start optimization at a near optimal solution and perform further optimization as a
fine-tuning step. This removes the uncertainty regarding the accuracy of target conditioning.

4 Problem definition

4.1 Two-phase morphology dataset

We use two-phase morphology dataset [27] derived from solving Cahn-Hilliard (CH) equation [28]]
with varying initial conditions. The CH equations represent the phase separation in a binary mixture
and track the volume fraction of the phases. These images derived from CH simulations hold visual
similarities to bulk heterogeneous morphologies observed in organic photovoltaic cells [29]]. These
synthetic microstructures have been widely used as surrogates for microstructure-sensitive design
problems [4]]. The dataset used here consists of a total of 38,578 grayscale images, each with a
resolution of 128 x 128 pixels and values in the range of 0 and 1. A few examples are shown in
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Figure 2: Two-phase morphology dataset

Given microstructures, objectives such as fill factor (F'F') and short circuit current (Js.) can be
computed by solving steady excitonic drift diffusion equations (XDD) equations. We refer readers to
[4] for more details on computing these objectives. We use the following objectives for framing GD
problems:



* One point correlation (P;): Computed as the mean of the pixel values and represents the
volume fraction of the binary mixture.

* Fill factor (F'F): The maximum amount of power that can be supplied by the solar cell as a
ratio of peak theoretical power.

 Short circuit current (J,;.): The maximum amount of current that can be drawn across the
solar cell per unit area.

Here, P is directly influenced by the pixel values and features while F'F' and J;. are non-trivially
influenced by the morphology [30]. These objectives act as an effective test bench for evaluating GD
frameworks.

4.2 Optimization problems

While most studies in this domain have focused on the quality of the newly created samples, we
frame a number of generative and optimization tasks to understand the strengths of the proposed
framework. In order to emulate different practical aspects of GD, we modify the datasets by inducing
sparsity and inefficiencies. The modified datasets are of the following categories:

» Sparse: The datasets are made incrementally sparse in order to test the stability, general-
izability, and ease of use aspect of the DGMs. We induce sparsity in the objective space
by removing chunks of data as shown in Figure We frame four levels of sparsity that
span the whole domain with respect to features and objective values but have gaps and
discontinuities. They represent a common practical scenario of sparse datasets collected
using experiments spanning the entire search space.

* Half: We consider the extreme case of removing half of all available data with respect to the
objective space. These datasets are incomplete with respect to features and objective values.
We use these datasets to evaluate the optimization capability of the proposed framework by
setting up optimization problems where the optimum is incrementally moved away from
the available data. These problems are of increasing difficulty in nature as the target to
be achieved is further away from the available data and represents a need to innovate in
order to find optimal microstructures. The target optima are shown in Table [T|where limit
represents the maximum objective value present in the modified training dataset. This is a
direct emulation of an inverse problem where the DGM needs to design microstructures that
embody the target objective values.

The amount of data present in each modified dataset is reported in supplementary material.

Table 1: Problems with increasing difficulty levels for DMs trained on half datasets
Limit  Target 1 Target2 Target3 Target4

P05 0.55 0.6 0.65 0.7
FF 0.1415 02 0.25 0.3 0.35
Jse 03314 04 0.45 0.5 0.55

Apart from these single-objective problems, we create a two-objective problem where both F'F’
and J,. need to be maximized. This is based on the computation of power conversion efficiency
(PCE) [31]] as shown in Equation[I] We use all available data for training DGMs for multi-objective
optimization due to the inherent difficulty of multi-objective optimization.

FF.Jsc.Voe
PCE = ————— 1
P /A ey
where, V. is the open-circuit voltage, Py, is the input power of incident light and A is the active area
of the photo-voltaic module.

5 Results

ResNet18 based surrogate models were used for evaluating F'F' and J,.. These surrogate models
achieved R? values of 0.997 and 0.97 on the test set respectively. More details regarding architectures



and training hyperparameters are provided in the supplementary document. Evolutionary algorithms
are implemented using pymO(ﬂ [32] and DiffAE models are based on the original implementation ﬂ

5.1 Generative capability

First, we evaluate the generative capability of the DGMs by training them on modified datasets and
analyzing the distribution of objective values of generated samples. We randomly sample 1000 zs¢,,
vectors from the latent space of the models (based on bounds of latent vectors of training data) and
generate microstructures and evaluate their objective values. The aim is to understand the effect of
the induced sparsity on DGM training from the perspective of objectives. Figure [3| shows density
plots of objective values evaluated from unconditional generation of different DiffAE models. The
Histogram of the original dataset is shown as a shaded region in each plot. One observation that is
common to all three objectives is that the half dataset models yield substantially different densities
compared to the other sparse datasets. As expected, these span a little more than the limit of the data
(from Table[T)) but drop rapidly as no data is available in those regions. We investigate this further
using results from single-objective optimization problems. On the other hand, we can observe that the
sparsity of the data does not affect the distribution of objectives learned by the DGMs. Irrespective of
the sparsity of the data, the learned distributions span the whole domain. This shows that the DGM
has filled the gaps in the dataset via interpolation of features as needed. This gives us confidence that
this architecture is suitable for GD as sparse data is often encountered during practical applications.
This helps us derive valuable insight regarding collecting data for GD - sparse yet complete datasets
are better to work with than dense and incomplete datasets. Gaps and inconsistencies in features and
objectives can be overcome by the generative model.
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Figure 3: Unconditional generation

Generating multiple versions of the same candidate microstructure can be beneficial from the per-
spective of feasibility, removing unwanted artifacts or manufacturability. We can achieve this in
our proposed framework by keeping the semantic subcode constant (zs.,,) and varying only the
stochastic subcode (x7). This will generate multiple renderings of the same image, with similar
features and minor differences. An example of this is shown in Figure 4] where Figure | shows the
generated microstructures and Figure 4] shows their corresponding objective values (P;). These
microstructures are similar and have comparable P; values.

5.2 Single objective optimization

Single objective GAs are run for 200 generations with a population size of 50, leading to a total
of 10k function evaluations (surrogate evaluations for Js. and F'F’). All optimization experiments
are performed 31 times and median results are presented. Values not present in the dataset are
set as targets and L; error from the target is used as the objective for minimization. The median
performance of the GAs at the first and last generation of optimization are presented in Table[2]and
the corresponding progress is presented in Figure 5] with solid lines. The first objective considered is
P, which is directly influenced by the pixel values. The first case is the sparse; problem where the
target is set in the middle of the induced sparsity. We can see that the GA finds corresponding latent
vectors that can generate microstructures with the correct volume fractions. The increasing difficulty

"https://github.com/anyoptimization/pymoo
*https://github.com/phizaz/diffae
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Figure 4: Effect of keeping the semantic subcode (25, ) constant while only changing the stochastic
subcode (Zstochastic) for Py sparse; DGM

of the other problems is demonstrated by the achieved objective values. As the target is moved further
away from the training dataset, the generated samples are less optimal, as seen in Figure[5a This
problem is also visually intuitive - as the target amount of white pixels increases, the DGM is unable
to extrapolate and create candidates with corresponding P; values.

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Generations Generations Generations

(@) Py (®) Jse () FF

Figure 5: Median performance of EAs - solid lines represent unconditional optimization and dashed
lines represent target objective conditioned optimization

On the other hand, optimization performance for F'F' and J. are drastically different from the P;
case. These objectives are non-trivially influenced by morphology and hence, further away in the
objective space might not imply further away in feature space. This is demonstrated in Figure [5b|and
Figure|Sc|where all problems with different difficulty levels perform similarly and achieve similar
final error values. Even though the microstructures corresponding to target objective values are not
present in the training dataset, the GAs find latent vectors that can generate optimal microstructures.

5.3 Multi-objective optimization

For multi-objective optimization, we need to maximize both F'F' and J,.. NSGA-II is employed for
this with a population size of 50 and 600 generations, giving a total of 30k solution evaluations. This
experiment is run 31 times and median results are presented.

The aim here is to find a Pareto frontier of candidate microstructures that are better than the mi-
crostructures in the available dataset. The final PO front achieved by the framework for the median
run is shown in Figure[6] A few microstructures along the Pareto front are also shown. Here, the blue
points indicate the final PO front and the gray points indicate the training dataset. We can observe that
most of the generated candidates dominate the training dataset. Now, these non-dominated solutions
can be further analyzed to choose a desirable solution by the decision maker.



Table 2: Median performance of GAs at first and last generation

.. Start (Gen = 1) End (Gen = 200)
Dataset  Objective  Target Unconditional Conditional Unconditional Conditional
sparsey 0.5 2.27E-03 9.70E-05 2.98E-07 2.38E-07
hal f 0.55 9.91E-02 2.46E-02 2.98E-07 5.36E-07
hal f P 0.6 1.49E-01 5.88E-02 1.62E-04 3.24E-05
hal f 0.65 1.99E-01 9.49E-02 4.67E-02 1.39E-02
hal f 0.7 2.49E-01 1.32E-01 9.67E-02 4.60E-02
sparsey 0.3314  6.90E-03 5.89E-03 2.95E-06 4.86E-06
hal f 0.4 4.37E-03 1.28E-03 7.15E-07 2.47E-06
hal f Jse 0.45 3.15E-02 4.77E-03 4.38E-06 5.30E-06
hal f 0.5 6.05E-02 2.05E-02 4.05E-06 7.03E-06
hal f 0.55 1.09E-01 6.55E-02 5.36E-06 7.63E-06
sparsey 0.1415 2.72E-03 2.20E-03 5.28E-06 6.90E-06
hal f 0.2 5.26E-03 4.42E-03 8.85E-06 1.11E-05
hal f FF 0.25 1.97E-02 7.65E-03 4.65E-06 4.95E-06
hal f 0.3 2.38E-02 2.28E-02 5.75E-06 2.92E-06
hal f 0.35 5.52E-02 3.60E-02 1.04E-05 1.19E-05
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Figure 6: PO front along with the training data

5.4 Target conditioned optimization
5.4.1 Conditional generation

First, we evaluate the effectiveness of conditioning of our DGM using target objective values
by sampling 128 targetted microstructures each for 100 uniformly sampled objective values and
computing L, error with the evaluated objective values. This helps us understand if target objective
conditioning is effective at generating required microstructures. Median conditional errors from target
objective conditioning are shown in Figure[8|for different DGMs using solid lines. The minimum and
maximum errors are shown as points of the corresponding colors. Conditional errors for objectives Py
and J,., shown in Figure [8a and Figure [8b]respectively show that all sparse datasets behave similarly
with respect to conditional errors. This shows similar trends as the unconditional generation case that
the DGM has intrinsically filled the gaps in the dataset. Conditional errors for half datasets quickly
start increasing once data availability ends as conditioning capability depends on the availability of
data. On the other hand, the F'F' dataset is heavily biased and the conditioning accuracy is affected
by this bias. As shown in Figure[8c] both sparse and half datasets yield similar conditional errors as
conditional error quickly increases after the dense region of the dataset. Nevertheless, the median
errors demonstrate that the conditioning from target objectives is highly effective, giving confidence
in using this during optimization. These values also show that conditioning alone might not be enough
to replace the optimization procedure as it is not possible to know the amount of error in unseen



regions of the objective space. However, the minimum errors from these plots show that a localized
search, as a fine-tuning step can yield accurate designs as targeted by the conditioning.
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Figure 8: Conditional errors for the trained DMs

5.4.2 Target conditional optimization

The effect of this target conditioning on the optimization procedure can be explained by comparing
the trajectory with unconditional optimization. We report the objective value at the beginning
(generation 1) and end of optimization. In the first generation, decision variables (2, in this case)
are sampled uniformly from the given variable ranges. A low starting objective value implies that the
target objective conditioning helps in starting optimization at a near-optimal solution. We observe
in Table E] that in 10 out of 15 problems (shown in bold, based on the Wilcoxon rank-sum test),
target-conditioned optimization starts at a better objective value than the unconditional case. This
shows that target-conditioning is effective at reducing the search space for optimization and the
performed optimization acts as merely a local search. We also see this trend in Figure [5a] where
target-conditioned optimization (dotted lines) starts at a much lower value than unconditional case
(solid lines). However, the final optimal solution found by target-conditional optimization might not
be as good as the unconditional case as the reduced search space might not contain the optimum.
Nevertheless, the possibility of target conditioning to reduce the size of search space and speed
up optimization is a desirable feature of the proposed optimization framework. An example set of
optimal microstructures are shown in Figure[7]

6 Conclusions and limitations

In this study, we proposed a multi-objective generative design framework based on diffusion au-
toencoders for microstructure-sensitive design and inverse problems. We rigorously evaluated the
proposed framework based on two-phase microstructure dataset by framing various generative tasks,
and single and multi-objective problems. We demonstrated that this framework provides a superior
setting for generative design due to stability, ease of use, generative capability, and optimization
landscape. While previous works have focused only on the quality of generated microstructure, we
analyze the potency of this framework in various practical scenarios commonly encountered during
generative design - like sparse and incomplete datasets and varying difficulties of optimization prob-
lems. We also demonstrated that this framework provides possibilities to generate multiple variants of
a candidate design by varying the stochastic subcode of the diffusion autoencoder. This can be helpful
in problems where small blemishes and artifacts can cause issues. Apart from these studies, we show
that this framework can be modified to accommodate target objective conditioning in order to reduce
the size of the search space and speed up the optimization procedure. One of the limitations of the
work is that a simple conditioning procedure was used in this study and more attention needs to be
devoted in the future to improving the accuracy of conditioning. Another limitation of this framework
is the need for thousands of initial training images which might not be available in practical problems.
A future study focusing on limited data needs to be performed. An important future direction is to
use this framework for other problem classes and data structures, like graphs (molecular design) and
meshes (finite element method based simulations). This framework can also be further extended to
constrained problems, either as a constraint for optimization or generation.
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