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Abstract: In this study, we examine inferences (in particular, hypothesis tests)

for generalized partial functional linear models. A Bahadur representation for

both functional and scalar estimators is developed based on the reproducing ker-

nel Hilbert space (RKHS). We establish the asymptotic independence between the

scalar estimators and the estimator of the functional part. A penalized likelihood

ratio test is proposed to detect the significant effects of the functional and scalar co-

variates on the scalar outcome, either simultaneously or separately. The asymptotic

normality of the test statistic is established under the null hypothesis. Simulation

studies provide numerical support for the asymptotic properties. Lastly, data on

air pollution are used to demonstrate our method.

Keywords and phrases: Bahadur representation, hypothesis testing, penalized like-

lihood ratio test, reproducing kernel Hilbert space.

1. Introduction

Driven by numerous applications, functional data analyses are gaining in-

creasing attention, and there is now a large body of literature on the func-

tional linear model and its extensions (Ramsay and Silverman (2002, 2005)).

Frequently, we have both one covariate vector and one functional variable on

each individual subject, where researchers are interested in assessing the effects

of the functional variable and the scalar covariates on a scalar response. As a

result, hypothesis tests related to the functional and scalar parameters, whether

simultaneously or separately, are of great importance, because they provide an

overall assessment of the model and evaluate the effects of the covariates on the

outcome.

Most existing testing methods for partial functional linear models are based

on the functional principal component analysis (FPCA) method. Kong, Staicu

and Maity (2016) and Su, Di and Hsu (2017) assessed the association between the

functional predictor and the response, and Yu, Zhang and Du (2016) tested the

effect of the parametric component on the response. These testing procedures rely
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1380 LI AND ZHU

heavily on the success of the FPCA approach, and may not be appropriate if the

functional parameter cannot be represented effectively by the leading principals

of the functional covariates. In addition, they are not capable of handling binary

response variables. Moreover, the above methods mainly test the linear effect of

either the functional predictor or the scalar covariates. In contrast, simultaneous

tests of functional and scalar parameters have received little attention.

To the best of our knowledge, this is the first work to simultaneously test

the global behaviors of functional and scalar parameters. The aim of this study

is to develop a new method for inferences, especially hypothesis tests, on func-

tional and scalar parameters, simultaneously and separately, for generalized par-

tial functional linear models under the RKHS framework.

Following Yuan and Cai (2010) and Cai and Yuan (2012), we employ the

roughness regularization method to avoid the drawbacks of the FPCA method.

Motivated by the seminal work of Shang and Cheng (2015), we establish a Ba-

hadur representation for both the scalar and the functional estimators using our

predefined inner product. Despite a conceptual similarity to the aforementioned

work, the model considered in this study is more comprehensive and informative

as a result of incorporating the scalar variables. Moreover, we define a new type

of inner product, leading to a different eigensystem. A potential challenge arises

as a result of allowing for scalar variables, owing to the interactions between the

functional covariate and the scalar covariates. To overcome this difficulty, we

impose the restriction that the scalar covariates can only linearly associate with

the functional process, and then determine the decay rates of the corresponding

coefficients.

We discover that the scalar estimators and the estimator of the functional

part are asymptotically independent, under some mild conditions. Cheng and

Shang (2015) demonstrated the asymptotic independence between the estimator

of a general nonlinear function and the parametric estimators. However, the

covariates are all scalar, and the results can not be applied to functional data.

A penalized likelihood ratio test is also developed to detect the significant ef-

fects of the functional and scalar covariates on the outcome, either simultaneously

or separately. Compared with the test in Shang and Cheng (2015), which inves-

tigates only the association between the functional predictor and the response,

the proposed test offers more choices. The null limit distribution of the proposed

test statistic is shown to be a normal distribution and approximately a chi-square

distribution, which enables an easy implementation of the proposed testing pro-

cedure. Simulation studies demonstrate that the proposed test exhibits good size
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and power, and show its superiority over other competing methods.

The rest of this paper is organized as follows. Section 2 introduces the

model and defines the inner products for the parameter spaces. Section 3 shows

the Bahadur representation and the asymptotic independence results. The test

statistic and its null limit distribution are presented in Section 4. Our simulation

studies and a real-data analysis are discussed in Sections 5 and 6, respectively.

Section 7 concludes the paper. Additional simulations and all proofs are provided

in the online Supplementary Material.

2. Model and Inner Products

The generalized partial functional linear regression model has the form

µ0(X,Z) = E(Y |X,Z) = F

(
Z>γ0 +

∫ 1

0
X(t)β0(t)dt

)
, (2.1)

where Y ∈ Y ⊆ R is the response, X(t) is a random function recorded on the

interval I = [0, 1], and Z ∈ Rp is a vector of covariates with a fixed dimension

p. The functional coefficient β0(·) is defined on I = [0, 1] and F is a known link

function. We consider β ∈ Hm(I) as the m-order Sobolev space, defined as

Hm(I) = {β : I 7→ R| β(j) is absolutely continuous

for j = 0, . . . ,m− 1 and β(m) ∈ L2(I)}. (2.2)

Following Yuan and Cai (2010) and Cai and Yuan (2012), we assume that m >

1/2, such that Hm(I) is an RKHS. The full parameter space for θ = (γ, β) is

H = Rp ×Hm(I).
Model (2.1) is more comprehensive and flexible than the standard generalized

functional linear model because it allows for scalar covariates. In contrast to the

general class of semi-nonparametric regression models, whole curves rather than

single points are included in the model. Obviously, the observed curves contain

more information than points.

To estimate γ0 and β0(t), we adopt a general loss function `(y; a) : Y×R 7→ R,

which can be either a likelihood or a quasi-likelihood function. Dimension-

reduction or additional constraints are mandatory, owing to the infinite dimen-

sionality of β0(t). One popular method is to represent β0(t) as a truncated ex-

pansion of certain basis functions, such as those derived from FPCA, B-splines,

or Fourier basis functions. As pointed out in Ramsay and Silverman (2005), the

truncation parameter changes in a discrete manner, which may yield imprecise
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control over the model complexity, resulting in inaccurate functional estimates

with hard-to-interpret “artificial” bumps. We choose the roughness penalty

approach to avoid these problems. The penalized estimators are obtained by

(γ̂n,λ, β̂n,λ) = arg sup(γ,β)∈H `n,λ(θ), where

`n,λ(θ) =

{
1

n

n∑
i=1

`

(
Yi;Z

>
i γ +

∫ 1

0
Xi(t)β(t)dt

)
− λ

2
J(β, β)

}
, (2.3)

and J(β1, β2) =
∫ 1
0 β

(m)
1 (t)β

(m)
2 (t)dt is a roughness penalty. The roughness

penalty is used to control the model complexity via the smoothing parameter

λ in a relatively continuous way. This type of penalized estimator is quite com-

mon in the literature (Yuan and Cai (2010); Cai and Yuan (2012); Du and Wang

(2014); Shang and Cheng (2015)).

We now introduce the inner products and norms of Hm(I) and H. The

Bahadur representation in Section 3 is established in terms of the norms we

define. Futhermore, our derivation of the null limit distribution of the proposed

test statistic in Section 4 relies heavily on these inner products. Let U = (X,Z) ∈
U . Denote ˙̀

a(y; a), ῭
a(y; a) and `′′′a (y; a) as the first-, second-, and third-order

derivatives, respectively, of `(y; a) with respect to a. In addition, define ε =
˙̀
a(Y ;Z>γ0 +

∫ 1
0 X(t)β0(t)dt) and

I(U) = −E
(

῭
a

(
Y ;Z>γ0 +

∫ 1

0
X(t)β0(t)dt

)
|U
)
. (2.4)

The inner product for any β1, β2 ∈ Hm(I) is defined by

〈β1, β2〉1 = V (β1, β2) + λJ(β1, β2), (2.5)

where V (β1, β2) =
∫ 1
0

∫ 1
0 C(s, t)β1(s)β2(t)dsdt, C(s, t) = EX{B(X)X(t)X(s)},

and B(X) = E{I(U)|X} acts as a weighting function such that C(s, t) can be

viewed as a weighted covariance operator of X. Denote the induced norm by

‖ · ‖1. Yuan and Cai (2010) adopted an inner product without the weighting

function B(X), and Shang and Cheng (2015) introduced the Fisher information

I(U) = I(X) as the weighting function. We modify the weighting function to be

the conditional expectation B(X) = E{I(U)|X}, such that C(s, t) is a function

of X only.

For any θ1 = (γ1, β1) and θ2 = (γ2, β2) ∈ H, the inner product of the full
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parameter space H is defined by

〈(γ1, β1), (γ2, β2)〉

= EU

{
I(U)

(
Z>γ1 +

∫ 1

0
X(t)β1(t)dt

)(
Z>γ2 +

∫ 1

0
X(t)β2(t)dt

)}
+λJ(β1, β2). (2.6)

The corresponding norm ‖θ‖2 = 〈θ, θ〉 is well defined under some conditions.

Specifically, the positive definiteness of the matrix Ω1, defined in Assumption 4,

ensures the validity of the norm. We can derive the Bahadur representation in

terms of this norm, which is rarely studied under the L2 norm. Cheng and Shang

(2015) considered the general nonparametric function and employed a similar

inner product. It is more challenging to obtain a well-defined inner product

allowing for functional data, because this requires greater effort to obtain the

expression of Ω1.

3. Theoretical Results

In this section, we derive the joint Bahadur representation for the penalized

estimators. The joint Bahadur representation greatly facilitates the asymptotic

analysis. The joint distribution for the scalar estimators and the estimator of the

functional part can be obtained afterwards. We start with some assumptions.

Let av � bv if there exist constants c1, c2 > 0 such that c1 ≤ av/bv ≤ c2, and let

‖ · ‖L2 be the L2 norm.

Assumption 1. The weighted covariance operator C(s, t) is continuous on I×I.
For any β 6= 0 ∈ Hm(I), we have Cβ 6= 0, where (Cβ)(t) =

∫ 1
0 C(s, t)β(t)dt.

Assumption 2. The loss function `(y; a) is three times continuously differen-

tiable and strictly concave with respect to a. There exist positive constants C0,

C1, and C2 such that

E

{
exp

(
sup
a∈R

|῭a(y; a)|
C0

)
|U

}
≤ C1 a.s.,

E

{
exp

(
sup
a∈R

|`′′′a (y; a)|
C0

)
|U
}
≤ C1 a.s.,

(3.1)

and C−12 ≤ I(U) ≤ C2 a.s. In addition, E(ε|U) = 0 and E(ε2|U) = I(U) a.s..

Assumption 1 is analogous to the positive definiteness of the ordinary co-

variance operator in an FPCA, and enables (2.5) to be a well-defined inner
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product. Assumption 2 is commonly used in semiparametric quasi-likelihood

models (Mammen and van de Geer (1997)). Because `(y; a) is either a likelihood

`(y; a) = log p(y;F (a)), where the conditional distribution of y is p(y;µ0(x, z)), or

a quasi-likelihood `(y; a) =
∫ F (a)
y (y− t)/V (t)dt with V (µ0(X,Z)) = Var(Y|X,Z),

the link function F is determined by `(y; a). For example, in the functional linear

model where `(y; a) = (y − a)2, F is an identity link function. However, in a

logistic regression model with `(y; a) = ay − log(1 + exp(a)), F has the form

F (a) = exp(a)/(1 + exp(a)). Therefore, the assumptions on the loss function

imply the assumptions on the link function F .

Assumption 3. The space Hm(I) is an RKHS under the inner product (2.5).

For any v ≥ 1 and some constants a ≥ 0 and Cϕ > 0, there exist eigenfunctions

{ϕv}v≥1 in Hm(I), such that ‖ϕv‖L2 ≤ Cϕva, for each v ≥ 1. The eigenfunctions

also satisfy V (ϕv, ϕu) = δvu and J(ϕv, ϕu) = ρvδvu for any v, u ≥ 1, where

ρv � v2k(k ≥ 3/2) is a nondecreasing, nonnegative sequence, and δvu = 1 if and

only if v = u.

Assumption 3 indicates that all β ∈ Hm(I) have the representation β =∑∞
v=1 V (β, ϕv)ϕv. The eigensystem construction above controls the local behav-

iors of the penalized estimates (Gu (2013)). In particular, the eigensystem can

be obtained from the pseudo Sacks-Ylvisaker conditions in the Supplementary

Material of Shang and Cheng (2015). Note that although the eigensystem has

a similar form to that in Shang and Cheng (2015), the final eigenfunctions and

eigenvalues are different, owing to the different inner products.

Assumption 4. The p × p matrix Ω1 = E{I(U)(Z −G(X))(Z −G(X))>} is

positive-definite, where G(X) = E{I(U)Z|X}/B(X) is a p-dimensional functional-

valued vector. Denote G(X) = (G1(X), . . . , Gp(X))>. For each j = 1, . . . , p,

there exists β̃j, such that Gj(X) can be expressed as Gj(X) =
∫ 1
0 X(t)β̃j(t)dt,

with V (β̃j , β̃j) <∞.

The p-dimensional functional-valued vector G(X) is a projection of Z to X

satisfying E{I(U)(Z − G(X))X} = 0. Assumption 4 guarantees the positive

definiteness of Ω1, and admits that the projection of Z to X is linear in X. A

similar condition is adopted in Shin and Lee (2012).

Assumption 5. There exist constants s∗1 ∈ (0, 1) and M1, such that

E{exp(s∗1‖X‖L2)} <∞, (3.2)
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E

{∣∣∣∣∫ 1

0
X(t)β(t)dt

∣∣∣∣4
}
≤M1

[
E

{∣∣∣∣∫ 1

0
X(t)β(t)dt

∣∣∣∣2
}]2

, (3.3)

for any β ∈ Hm(I).

Assumption 6. There exists a constant s∗2 ∈ (0, 1), such that

E{exp(s∗2(Z
>Z)1/2)} <∞, (3.4)

E{exp(s∗2((Z − 〈A, τ(X)〉1)>(Z − 〈A, τ(X)〉1))1/2)} <∞, (3.5)

where τ(X) =
∑

vXvϕv(t)/(1 + λρv) with Xv =
∫ 1
0 X(t)ϕv(t)dt, and A =

(A1, . . . , Ap)
> with Aj(t) =

∑
v V (β̃j , ϕv)ϕv(t)/(1 + λρv). Moreover, for any

γ ∈ Rp, there exists a constant M2 satisfying

E(|Z>γ|4) ≤M0[E(|Z>γ|2)]2. (3.6)

A detailed discussion of Assumption 5 can be found in Shang and Cheng

(2015). Condition (3.3) is commonly seen in roughness penalty methods (Yuan

and Cai (2010); Du and Wang (2014)). Assumption 6 is analogous to Assumption

5. Condition (3.5) is critical to deriving the null limit distribution of the proposed

test statistic in Section 4.

Recall that k is specified in Assumption 3, and let h = λ1/(2k). The following

theorem gives the convergence rate of θ̂n,λ.

Theorem 1. Suppose that Assumptions 1–6 are satisfied. As n → ∞, if the

conditions n−1/2h−(a+1)−((2k−2a−1)/4m)(log n)2(log log n)1/2 = o(1), n−1/2h−1 =

o(1), and h = o(1) hold, we have

‖θ̂n,λ − θ0‖ = Op((nh)−1/2 + hk). (3.7)

The convergence rate in (3.7) is a nonparametric rate, which is commonly

seen in the smoothing spline literature (Gu (2013)). However, γ and β are sup-

posed to be estimated at parametric and nonparametric rates, respectively. The

parametric convergence rate of γ̂n,λ is carried out under some mild additional

conditions in Theorem 3.

We are now able to establish the joint Bahadur representation for both the

functional and the scalar estimators. Let Sn,λ(θ) denote the first Fréchet deriva-

tive of `n,λ(θ) with respect to θ.

Theorem 2. Under the conditions in Theorem 1, if log(h−1) = O(log n) as
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n→∞, then we have

‖θ̂n,λ − θ0 − Sn,λ(θ0)‖ = Op(an), (3.8)

where an = n−1/2h−(4ma+6m−1)/4mrn(log n)2(log log n)1/2 + Clh
−1/2r2n, rn =

(nh)−1/2 + hk, and Cl = supu∈U E{supa∈R |`′′′a (Y ; a)||U = u}.

We obtain the same rate an as that in Shang and Cheng (2015),while also

allowing for scalar estimators. Hence, the Bahadur representation for general-

ized functional linear models is extended to generalized partial functional linear

models. Such an extension benefits from the additional Assumptions 4 and 6,

but it requires greater effort to derive the theoretical properties. Specifically,

Assumptions 4 and 6 contribute to representing E{I(U)Z
∫ 1
0 X(t)β(t)dt} via the

inner product defined in (2.5). In particular, the rate an can be of order o(n−1/2)

under the following specific conditions: a = 1, k = m + 1 with m > 2, and

h = O(n−1/(2k)).

The Bahadur representation greatly facilitates the study of the joint limit

distribution for the scalar estimators and the estimator of the functional part.

We define a linear operator R by

〈Ru, θ〉 = z>γ +

∫ 1

0
x(t)β(t)dt for any u ∈ U and θ ∈ H. (3.9)

Theorem 3 derives the joint limit distribution of γ̂n,λ and
∫ 1
0 x0(t)β̂n,λ(t)dt

for any x0 ∈ L2(I). Define x̃0 = x0 · σx0

−1, where σ2x0
=
∑∞

v=1 |x0v|2/(1 + λρv)
2

and x0v =
∫ 1
0 x0(t)ϕv(t)dt.

Theorem 3. Suppose that the conditions in Theorem 2 are satisfied. Assume

‖Ru∗‖ = O(1) for any u∗ = (z̃, x̃0), where z̃ ∈ Rp, and E{exp(s∗|ε|)} < ∞ for

some s∗ > 0. In additon, there exists b ∈ ((2a+ 1)/2k, a/k + 1] satisfying∑
v

|V (β̃j , ϕv)|2ρbv <∞ for any j = 1, . . . , p. (3.10)

Futhermore, if na2n = o(1), nh4k = o(1), and nh2a+1(log n)−4 → ∞ hold, and

β0 =
∑

v bvϕv satisfies the condition
∑

v b
2
vρ

2
v <∞, then as n→∞, we have( √

n(γ̂n,λ − γ0)√
n

σx0

(∫ 1
0 x0(t)β̂n,λ(t)dt−

∫ 1
0 x0(t)β0(t)dt

)) d−→ N(0,Ψ),
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where

Ψ =

(
Ω−11 0

0 1

)
.

Condition (3.10) is essential to obtaining the asymptotic independence be-

tween the scalar estimators and the estimator of the functional part. It is also

vital to guaranteeing the
√
n-consistency of the parametric estimators. It con-

trols the decay rates of the coefficients for the projection G(X). Specifically,

because ρv � v2k, the coefficients V (β̃j , ϕv) are required to converge to zero at a

faster rate than v−kb. Including whole curves rather than points is a nontrivial

extension to the results in Cheng and Shang (2015).

Theorem 3 helps to construct the joint confidence interval for the scalar esti-

mates and the estimate of the functional part by constructing marginal estimates,

and simplifies the construction of the prediction interval for a new response with

given new covariates.

4. Hypothesis Testing

In this section, we develop a novel test to investigate the effects of functional

and scalar covariates on the response, such as testing the significance of a given

model, testing the effect of the functional covariate on the response, and testing

the effects of the scalar covariates on the outcome.

Consider the following hypothesis:

H0 : θ = θ0 vs. H1 : θ ∈ H − θ0.

Without loss of generality, let θ0 = (γ0, β0) = 0. This corresponds to testing the

significance of the model. We propose the follwing penalized likelihood ratio test

for the hypothesis:

TP = −2n{`n,λ(θ0)− `n,λ(θ̂n,λ)}, (4.1)

where θ̂n,λ is the maximizer of `n,λ(θ) over H. The following theorem states the

null limit distribution of the proposed test statistic.

Theorem 4. Assume that the conditions in Theorem 2 are satisfied, and that as

n→∞, h satisfies the following conditions:

nh2k+1 = O(1), nh→∞, n1/2an = o(1), nr3n = o(1),
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n1/2h−(a+1/2+(2k−2a−1)/(4m))r2n(log n)2(log log n)1/2 = o(1),

n1/2h−(2a+1+(2k−2a−1)/(4m))r3n(log n)3(log log n)1/2 = o(1).

In addition, there exists a positive constant M4 > 0, such that E{ε4|U} ≤ M4

a.s., and condition (3.10) holds. Then, under H0, as n→∞, we have

σ2TP
d−→ N(un + pσ2, 2un + 2pσ2),

where un = h−1σ41/σ
2
2, σ2 = σ21/σ

2
2 and σ2l = h

∑
v(1 + λρv)

−l, for l = 1, 2.

The proof of Theorem 4 relies on the Bahadur representation and the in-

ner products defined in (2.5) and (2.6). Except for similar assumptions about h

and n in Shang and Cheng (2015), extra conditions on Z and the relationship

between Z and X(t) are included to derive the null limit distribution. Specif-

ically, Assumptions 4 and 6 play an important role in deriving the Bahadur

representation. Here, condition (3.10) is used to to guarantee that the pro-

jection G(X) can be approximated by an inner product 〈A, τ(X)〉1 satisfying

E{I(U)(Z − 〈A, τ(X)〉1)X} = 0, where A and τ(X) are defined in Assumption

6.

By observing the mean and variance of the null limit distribution, we find

that σ2TP is approximately distributed as a chi-squared distribution χ2
un+pσ2 .

The degree of freedom pσ2 + un is different from the degree of freedom un in

Shang and Cheng (2015). Note that pσ2 is caused by the scalar covariates. In

practice, we can construct the eigensystem (ρ̂v, ϕ̂v) using procedures similar to

those in Section S.5 of Shang and Cheng (2015), and can then estimate σ2l using

the leading O(h−1) eigenvalues.

Testing the associations between the covariates and the response offers a

comprehensive way to decide whether a given variable should be involved in the

model. In addition to testing H0 : β = 0 and γ = 0, two other tests, H0 : β = 0

and H0 : γ = 0, are often of interest. These correspond to testing the significance

of the functional variable and that of the scalar covariates, respectively. The test

statistic can be modified to

TP = −2n{`n,λ(θ̂0)− `n,λ(θ̂n,λ)}, (4.2)

where θ̂0 is the maximizer under the null hypothesis. We present the null limit

distributions of the penalized likelihood ratio test statistic for the two cases in

the following corollary.



INFERENCE FOR FUNCTIONAL REGRESSION 1389

Corollary 1.

(a) For H0 : β = 0, if the conditions in Theorem 4 hold, then σ2TP
d→ χ2

un
.

(b) For H0 : γ = 0, given the same conditions as in Theorem 3, we have TP
d→ χ2

p.

The results in Corollary 1 can be easily verified. The null limit distribution

derived in (a) can be obtained using procedures similar to those in Shang and

Cheng (2015). The null limit distribution in (b) can be derived directly from

Theorem 3. It is easy to extend the result of (b) to assess the effects of some

selected p1 covariates from the p covariates, which results in p1 degrees of freedom.

5. Simulation Studies

In this section, we investigate the finite-sample performance of the proposed

method based on three commonly used testing problems: testing the significance

of a given model, testing the effect of the functional covariate, and testing the

effects of the scalar covariates.

Simulated data are generated from two widely used models. The first is the

partial functional linear model (PFLM)

Y = Z>γ +

∫ 1

0
X(t)β0(t)dt+ ε,

and the second is the partial functional logistic regression model (PFLGRM)

P (Y = 1|X,Z) =
exp(Z>γ +

∫ 1
0 X(t)β0(t)dt)

1 + exp(Z>γ +
∫ 1
0 X(t)β0(t)dt)

,

for Y ∈ {0, 1}. We adopt a generalized cross-validation (GCV) to select the

roughness penalty parameter λ. The nominal significance level is chosen to be

5%. A sample size n ∈ {100, 500} and 1,000 replications are considered for each

case throughout the simulation studies.

Case 1: Testing H0 : β = 0 and γ = 0. For t ∈ [0, 1], the functional

process Xi(t) =
∑100

j=1

√
λjηijVj(t) is a Brownian motion, where ηij ∼ N(0, 1),

λj = (j − 0.5)−2π−2, and Vj(t) =
√

2 sin((j − 0.5)πt). Each Xi(t) is generated

at 200 evenly spaced points on [0, 1]. The true functional parameter is chosen in

the same way as in Hilgert, Mas and Verzelen (2013), where

βB,ξ0 (t) =
B√∑∞

k=1 k
−2ξ−1

100∑
j=1

j−ξ−0.5Vj(t).



1390 LI AND ZHU

Table 1. Sizes and powers when testing H0 : β = 0 and γ = 0.

n ξ = 0.1 ξ = 0.5

(γ1, γ2) B = 0 B = 0.1 B = 0.5 B = 1 B = 0.1 B = 0.5 B = 1

PFLM 100 (0.0,0.0) 5.5 8.5 19.8 64.4 9.6 56.9 99.3

(0.1,0.1) 20.7 23.5 36.5 72.6 21.7 64.5 99.1

(0.2,0.2) 65.9 63.4 75.7 91.7 65.7 86.7 99.6

(0.3,0.3) 93.9 95.5 96.5 98.8 94.4 98.6 100

500 (0.0,0.0) 5.2 9.4 72.9 100 16.7 99.6 100

(0.1,0.1) 75.6 74.9 96.9 100 79.3 100 100

(0.2,0.2) 100 100 100 100 100 100 100

(0.3,0.3) 100 100 100 100 100 100 100

PFLGRM 100 (0.0,0.0) 5.2 4.7 7.1 14.7 5.8 11.3 42.4

(0.1,0.1) 7.8 7.3 9.1 19.2 8.2 15.2 46.4

(0.2,0.2) 15.1 15.2 19.0 27.5 15.6 26.6 57.9

(0.3,0.3) 31.7 31.6 34.7 43.3 31.4 42.2 65.1

500 (0.0,0.0) 5.1 5.2 18.8 66.8 6.9 58.2 99.8

(0.1,0.1) 19.8 20.5 36.1 79.4 20.8 69.7 100

(0.2,0.2) 69.6 69.9 80.0 95.7 69.1 94.0 100

(0.3,0.3) 97.6 97.6 98.6 99.6 97.8 99.7 100

Note that B and ξ represent the signal strength and the smoothness, respectively.

The two parameters are set to B ∈ {0, 0.1, 0.5, 1} and ξ ∈ {0.1, 0.5}. Each

element of Zi ∈ R2 is generated from the standard normal distribution N(0, 1).

The true value of γ = (γ1, γ2) is chosen as (0, 0), (0.1, 0.1), (0.2, 0.2), or (0.3, 0.3).

When the data are generated by the PFLM, we generate additional εi ∼ N(0, 1),

for i = 1, . . . , n.

Note that when B = 0 and (γ1, γ2) = (0, 0), we obtain the sizes. Table 1

presents the empirical rejection rates under the PFLM and PFLGRM settings.

The results show that the proposed test is valid in terms of achieving desirable

sizes, and that its power increases with the signal strength, smoothness of the

functional parameter, and sample size. Furthermore, the power approaches one

at n = 500.

Case 2: Testing H0 : β = 0. In this case, we compare our test with applicable

methods of Kong, Staicu and Maity (2016) and Su, Di and Hsu (2017) in terms of

their size and power under the PFLM setting. The methods proposed by Kong,

Staicu and Maity (2016) are based on an FPCA. In addition, the number of
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functional components is selected such that the cumulative percentage of variance

(PVE) explained is 95%. Su, Di and Hsu (2017) introduced the percentage of

association-variance explained (PAVE) to order and select principal components

after fitting a model with a high PVE. We set the PVE to be 99% in the pre-

fitting step, and choose the PAVE to be 95% in order to select the principal

components later. Samples are generated in the same way as in Case 1. Because

the results have similar patterns for different values of (γ1, γ2), we report the sizes

and powers when (γ1, γ2) = (0.3, 0.3) only, for the sake of a concise presentation.

Recall that TP denotes the proposed penalized likelihood ratio test. Let

TS , TW , TL, and TF denote the score test, Wald test, modified likelihood ratio

test, and F test in Kong, Staicu and Maity (2016), and let T ∗W denote the test

method of Su, Di and Hsu (2017). Table 2 summarizes the results for the two

generative models. Under the PFLM setting, it is obvious that TP performs best

in nearly all considered setups. The methods all have comparable sizes around the

nominal significance level of 5%. However, the proposed test outperfoms the other

tests with larger powers in general, especially for weak signals. This is mainly

because the roughness penalty controls the model complexity in a continuous

way, whereas the truncation parameter of the FPCA may yield imprecise control

of the model complexity. Under the PFLGRM setting, the proposed test also

shows reasonably good performance. The sizes are around 5%, and we have

larger powers for stronger signals and larger sample sizes.

Case 3: Testing H0 : γ = 0. In this case, we apply the proposed test to test

the effects of the scalar covariates. For comparison, the method of Yu, Zhang and

Du (2016), based on FPCA approach, and denoted as Tn, is considered in the

context of the PFLM setting. The number of functional components is selected

such that the cumulative PVE explained is 95%.

We adopt similar data settings to those in Yu, Zhang and Du (2016). Specifi-

cally, each Xi(t) =
∑50

k=1 ξkvk(t) is generated at 200 evenly spaced points on [0, 1],

where ξk ∼ N(0, σ̃2k), with σ̃2k = ((k − 0.5)π)−2 and vk(t) =
√

2 sin((k − 0.5)πt).

The scalar covariate Z ∈ R1 is generated from N(0, 1). The error terms are

also taken from N(0, 1) under the PFLM setting. The scalar coefficient γ ∈
R1 takes value from {0, 0.5, 1, 2, 4, 6}/

√
n and the true functional coefficient is

β0 =
√

2 sin(7πt/2) + 3
√

2 sin(9πt/2). The correlations between Z and ξk are

Corr(Z, ξj) = ρ|j−5|+1, for j = 2, . . . , 8. We set ρ = 0 and 0.2.

Table 3 contains the sizes and powers under H0 : γ = 0. For the two models,

the sizes of the proposed test are close to the nominal level of 5%, and the powers

approach one as the sample size and the signal strength increase. The table also
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Table 2. Sizes and powers when H0 : β = 0.

ξ = 0.1 ξ = 0.5

n B = 0 B = 0.1 B = 0.5 B = 1 B = 0.1 B = 0.5 B = 1

PFLM 100 TP 5.6 21.1 44.7 89.9 21.6 81.9 99.7

TS 5.1 5.8 19.0 58.7 6.6 52.0 98.9

TW 5.5 6.2 19.7 59.2 7.2 53.4 99.2

TL 5.5 6.3 19.9 59.3 7.2 53.7 99.2

TF 4.9 5.6 18.4 58.1 6.2 51.6 98.8

T ∗
W 5.7 5.8 15.0 50.8 5.5 44.9 97.2

500 TP 5.4 23.9 91.2 100 35.2 100 100

TS 5.4 7.2 73.8 100 14.2 100 100

TW 5.6 7.3 74.1 100 14.4 100 100

TL 5.6 7.3 74.1 100 14.4 100 100

TF 5.4 7.0 73.5 100 14.1 100 100

T ∗
W 4.8 5.9 64.2 100 11.5 99.7 100

PFLGRM 100 TP 5.1 5.2 7.7 22.1 5.6 17.1 55.2

500 TP 5.2 5.4 26.5 78.4 8.8 71.5 100

Table 3. Sizes and powers when testing H0 : γ = 0.

PFLM C =
√
nγ PFLGRM C =

√
nγ

ρ n 0 0.5 1 2 4 6 0 0.5 1 2 4 6

0 100 TP 4.8 8.0 16.7 50.2 96.5 100 5.3 6.2 8.5 15.9 46.7 78.4

Tn 4.9 8.0 16.9 51.0 96.4 100 - - - - - -

500 TP 4.9 7.3 15.3 53.2 98.6 100 4.9 6.3 8.9 17.3 46.6 82.5

Tn 5.1 7.2 14.8 51.5 98.0 100 - - - - - -

0.2 100 TP 5.5 8.0 17.9 48.8 96.0 100 5.4 6.9 9.7 21.2 53.1 82.5

Tn 6.0 11.0 23.9 57.8 97.5 100 - - - - - -

500 TP 5.2 8.2 17.0 52.0 97.2 100 5.7 7.4 10.6 22.6 59.8 88.9

Tn 8.8 17.0 31.0 70.5 99.3 100 - - - - - -

shows that higher correlations between X and Z inflate the Type-I errors of Tn,

whereas the sizes of TP remain around 5%.

In general, the above simulation results show that the sizes of the proposed

test are reasonably controlled around the nominal level, and that the powers
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increase with the sample size and the signal strength, which confirms our theo-

retical results. Moreover, to explore the effects of the observation errors of the

functional trajectory numerically, we also conduct simulation studies when X(t)

is observed with measurement errors; see Section S5 of the Supplementary Mate-

rial. If the errors are small, and dense measurements are available on each curve,

the sizes and powers behave similar to when X(t) is fully observed.

6. Application to Air Pollution Data

We apply our method to determine the effects of PM2.5 and other scalar

factors on the nonaccidental mortality rate across different cities in the United

States. The data set is obtained from the National Mortality, Morbidity, and Air

Pollution Study, which contains air pollution measurements and mortality counts

from U.S. cities, collected during the census in 2000. Similarly to Kong et al.

(2016), the scalar covariates are the proportion of the urban population (Purban),

proportion of the population with at least a high school diploma (Phigh), propor-

tion of the population with at least a university diploma (Pdeg), proportion of

the population below the poverty line (Ppoverty), proportion of household own-

ers (Powner), land area per individual (perland), and water area per individual

(perwater). We focus on the daily concentration measurements of PM2.5 from

April 1 to August 31, 2000. The response of interest is the log-transformed to-

tal nonaccidental mortality rate in the following month, September 2000, among

individuals of age 65 and older, who account for the majority of nonaccidental

deaths. A total of 60 cities are included in the study, after removing those with

more than 10 consecutive missing measurements for PM2.5. We consider the

partial functional linear regression model

Y = Z>γ +

∫ Aug.31th

Apr.1st
X(t)β(t)dt+ ε, (6.1)

where Y is the log-transformed total nonaccidental mortality rate, X(t) denotes

measurements of PM2.5, and Z ∈ R7 contains the scalar covariates.

We first investigate the significance of model (6.1) by testing H0 : γ = 0 and

β = 0, and obtain a p-value 0.0001 for TP . This implies that the proposed model

is significant at the 95% nominal level.

For the null hypothesis H0 : γ = 0, we include the test procedure Tn in-

troduced by Yu, Zhang and Du (2016) for comparison purposes. The resulting

p-value of TP is 0.0004 and that of Tn is 0.0003. This suggests that there are
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Table 4. Estimates and p-values when testing the effects of the scalar variables. TP
denotes the proposed test, and Tn is the method of Yu, Zhang and Du (2016).

Purban Phigh Pdeg Ppoverty Powner perland perwater

TP Estimate -0.0576 0.5929 -0.5949 0.4924 0.2047 -0.1548 0.1261

p-value 0.5438 0.0182 0.0103 0.0528 0.5631 0.3485 0.2996

Tn Estimate -0.0859 0.5997 -0.6042 0.4795 0.1891 -0.1493 0.1492

p-value 0.3548 0.0008 0.0010 0.0044 0.3722 0.1377 0.1507

Table 5. p-values when testing the effect of PM2.5.

Method TP TS TW TL TF T ∗
W

p value 0.0264 0.0906 0.0954 0.0896 0.1051 0.0914

significant scalar variables. We then further explore the association between a

given scalar variable and the log-transformed total nonaccidental mortality rate.

The estimates and p-values are summarized in Table 4. Our method for Phigh,

Pdeg, and Ppoverty gives p-values of 0.0182, 0.0103, and 0.0528, respectively,

indicating the effects of Phigh and Pdeg on the mortality rate at the 95% nom-

inal level, and the effect of Ppoverty at the 90% nominal level. Moreover, the

results for Tn show that Phigh, Pdeg, and Ppoverty are all effective variables

on the mortality rate at the 95% nominal level. The two methods give similar

estimation and significance results.

We also apply the proposed test to explore the association between PM2.5

and the nonaccidental mortality rate. Except for the proposed TP , we implement

the score test (TS), Wald test (TW ), modified likelihood ratio test (TL), F test

(TF ) in Kong, Staicu and Maity (2016), and the test method of Su, Di and

Hsu (2017) (T ∗W ). Table 5 presents the p-values of the aforementioned methods,

demonstrating a significant effect of PM2.5 on the nonaccidental mortality rate.

This coincides with the findings of Kong et al. (2016). Specifically, the p-value

of the proposed test is 0.0264, whereas those of all the other competing methods

are around 0.1.

We conclude that PM2.5, Phigh, Pdegree, and Ppoverty have significant

effects on the mortality rate of the elderly in U.S. cities.

7. Discussion

In this study, we proposed a penalized likelihood ratio test for generalized

partial linear models based on a Bahadur representation for both functional and
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scalar estimators. We also showed that the scalar estimators are asymptotically

independent of the estimator of the functional part. A primary advantage of the

proposed test is that it allows for simultaneous testing, as well as separate tests

for the functional and scalar parameters. The empirical analysis of the proposed

test shows that it behaves well by respecting sizes and having good powers.

Our methodology and theoretical results are based on the assumption that

X(t) is smooth and fully observed without noise. A natural but nontrivial ex-

tension is to deal with intermittent and noisy curves. When X(t) is observed

with measurement errors, a popular approach is to obtain an estimate of X(t)

using a nonparametric method, and to then treat the estimate as the fully ob-

served functional variable. Refer to Hall et al. (2006) for more details about the

procedure. In practice, the pre-smoothing step can be applied to the considered

problem, especially when the variance of the measurement errors is small and

dense measurements are available on each curve; see additional simulations in

Section S5 of the Supplementary Material.

Although the effects of measurement errors on functional linear models based

on FPCA have been addressed in the literature (Zhang and Chen (2007); Li,

Wang and Carroll (2010); Wong, Li and Zhu (2019)), to the best of our knowl-

edge, few works examine how measurement errors influence the theoretical results

under the RKHS framework. In the FPCA method, with its noisily observed

functional variables, the estimation and inference procedures are similar to those

of the parametric models after truncation. However, in all proofs of this study,

the functional parameter is represented by the eigensystem defined in Assump-

tion 3, without truncation. We obtain the theoretical results using the Fréchet

derivatives defined on the Banach space, other than the derivatives defined on

the Euclidean space in an FPCA. Moreover, the technical proofs rely on the in-

ner products defined in (2.5) and (2.6). The convergence rate and the Bahadur

representation are derived using these inner products, which involve the fully

observed trajectory, instead of the L2 norm used in an FPCA. Therefore, the

techniques applied in the FPCA method to deal with measurement errors are

not fully applicable under the RKHS framework.

In Section S4 of the Supplementary Material, we discuss the potential chal-

lenges to deriving the theory when the functional covariate is observed intermit-

tently and with errors. We pursue this direction in future work.
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Supplementary Material

Additional simulation results, calculations of some linear operators, and all

technical proofs are included in the online Supplementary Material.
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