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ABSTRACT

Fair machine learning aims to prevent discrimination against individuals or sub-
populations based on sensitive attributes such as gender and race. In recent years,
causal inference methods have been increasingly used in fair machine learning to
measure unfairness by causal effects. However, current methods assume that the
true causal graph is given, which is often not true in real-world applications. To
address this limitation, this paper proposes a framework for achieving causal fair-
ness based on the notion of interventions when the true causal graph is partially
known. The proposed approach involves modeling fair prediction using a Partially
Directed Acyclic Graph (PDAG), specifically, a class of causal DAGs that can be
learned from observational data combined with domain knowledge. The PDAG
is used to measure causal fairness, and a constrained optimization problem is for-
mulated to balance between fairness and accuracy. Results on both simulated and
real-world datasets demonstrate the effectiveness of this method.

1 INTRODUCTION

Machine learning algorithms have demonstrated remarkable success in automating decision-making
processes across a wide range of domains (e.g., hiring decisions (Hoffman et al., 2018), recidivism
predictions (Dieterich et al., 2016; Brennan et al., 2009), and finance (Sweeney, 2013; Khandani
et al., 2010)), providing valuable insights and predictions. However, it has become increasingly
evident that these algorithms are not immune to biases in training data, potentially perpetuating
discrimination against individual or sub-population group with respect to sensitive attributes, e.g.,
gender and race. For example, bias against female was found in a recruiting tool built by one of
Amazon’s AI team to review job applicants’ resume in a period of time (Kodiyan, 2019).

To achieve fair machine learning, various methods have been proposed with respect to different fair-
ness measures. These methods can be broadly classified into two groups. The first group focuses on
developing statistical fairness measures, which typically indicate the statistical discrepancy between
individuals or sub-populations, e.g., statistical parity (Dwork et al., 2012), equalized odds (Hardt
et al., 2016), and predictive parity (Chouldechova, 2017). The second group is grounded in the
causal inference framework (Pearl et al., 2000), which emphasizes understanding the causal rela-
tionships between the sensitive attribute and decision outcomes and treats the presence of causal
effect of the sensitive attribute on the decision as discrimination (Zhang et al., 2017; Kilbertus et al.,
2017; Kusner et al., 2017; Zhang & Bareinboim, 2018b;a; Nabi & Shpitser, 2018; Wu et al., 2019b;
Khademi et al., 2019; Chiappa, 2019; Russell et al., 2017; Zhang et al., 2018; Zhang & Wu, 2017;
Kusner et al., 2019; Salimi et al., 2019; Wu et al., 2018; Galhotra et al., 2022; Zuo et al., 2022).

Causality-based fairness notions are defined within the framework of Pearl’s ladder of causation,
which encompasses interventions and counterfactuals. Build on the highest rung and also the most
fine-grained type of inference in the ladder, counterfactual fairness (Kusner et al., 2017; Chiappa,
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2019; Russell et al., 2017; Wu et al., 2019a) requires the full knowledge of structural causal model
or the computation of counterfactuals in the sense of Pearl et al. (2000), thus posing extra challenges
compared to the one based on interventions. As the most basic and general notion of causal fairness
that is testable with observational data, the interventional fairness assesses the unfairness as the
causal effect of the sensitive attribute on the outcome on paths defined by specific attributes. In this
paper, we aim to achieve interventional fairness.

The majority of existing methods for ensuring causal fairness assume the presence of a causal di-
rected acyclic graph (DAG) (Pearl, 2009), which encodes causal relationships between variables.
However, in many real-world scenarios, it is very difficult to fully specify the causal DAG due to a
limited understanding of the system under study. One potential approach is to use causal discovery
methods to deduce the causal DAG from observational data (Spirtes & Glymour, 1991; Colombo
et al., 2014; Spirtes et al., 2000a; Chickering, 2002b; Shimizu et al., 2006; Hoyer et al., 2008;
Zhang & Hyvärinen, 2009; Peters et al., 2014; Peters & Bühlmann, 2014). However, determining
the true underlying causal graph solely based on observational data is challenging without strong
assumptions about the data generation process, such as linearity (Shimizu et al., 2006) or additive
noise (Hoyer et al., 2008; Peters et al., 2014). In general cases, causal discovery methods may pro-
duce a Markov equivalence class of DAGs that capture the same conditional independencies in the
data, represented by a completely partially directed acyclic graph (CPDAG) (Spirtes et al., 2000b;
Chickering, 2002b; Meek, 1995; Andersson et al., 1997; Chickering, 2002a). Although incorporat-
ing additional background knowledge allows for the discernment of more causal directions, resulting
in a maximally partially directed acyclic graph (MPDAG) (Meek, 1995), it is still unlikely to obtain
a unique causal DAG.

Following this line of inquiry, a natural question arises: Can we learn interventional fairness when
we only have partially knowledge of the causal graph, represented by an MPDAG? 1 Inspired by
Zuo et al. (2022), one straightforward way to achieve fair predictions for interventional fairness is
to identify the definite non-descendants of the sensitive attribute on an MPDAG (see Section 3.1).
While this approach guarantees interventional fairness, disregarding the descendants results in a no-
table decline in performance. Thus, we propose a constrained optimisation problem that balances the
inherent competition between accuracy and fairness (see Section 3.2). In our approach, to measure
interventional fairness in MPDAGs, we model the prediction as the effect of all the observational
variables. Interestingly, this modeling technique gives rise to another causal MPDAG, which allows
us to discuss the identification of interventional fairness criterion formally.

In this paper, we assume the absence of selection bias and latent confounders since causal discov-
ery algorithms themselves faces difficulties in such challenging scenarios. These assumptions align
with many recent related work (Zhang et al., 2017; Chiappa, 2019; Chikahara et al., 2021; Wu et al.,
2019a). However, we relax the assumption of a fully directed causal DAG. Based on these consid-
erations, our main contributions on achieving interventional fairness on MPDAGs are as follows:

• We propose a modeling technique on the predictor, which gives rise to a causal MPDAG
on which it is feasible to perform causal inference formally;

• We analyze the identification condition over interventional fairness measure on the
MPDAG;

• We develop a framework for achieving interventional fairness on partially known causal
graphs, specifically MPDAGs, as a constrained optimization problem.

2 BACKGROUND

2.1 STRUCTURAL CAUSAL MODEL AND CAUSAL GRAPH

The structural causal model (SCM) (Pearl et al., 2000) provides a framework for representing causal
relations among variables. It comprises a triple (U, V, F ), wherein V represents observable en-
dogenous variables and U represents unobserved exogenous variables that cannot be caused by any
variable in V . The set F consists of functions f1, ..., fn, each associated with a variable Vi ∈ V
describing how Vi depends on its direct causes: Vi = fi(pai, Ui) . Here, pai denotes the observed

1As CPDAG is a special case of MPDAG without background knowledge, we deal with MPDAG generally.
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direct causes of Vi and Ui is the set of unobserved direct causes of Vi. The exogenous Ui’s are
required to be mutually independent. The equations in F induce a causal graph D that represents
the relationships between variables, typically in the form of a directed acyclic graph (DAG), where
the direct causes of Vi correspond to its parent set in the causal graph.

DAGs, PDAGs and CPDAGs. A directed acyclic graph (DAG) is characterized by directed edges
and the absence of directed cycles. When some edges are undirected, it is referred to as a partially
directed graph (PDAG). The structure of a DAG captures a collection of conditional independence
relationships through the concept of d-separation (Pearl, 1988). In cases where multiple DAGs en-
code the same conditional independence relationships, they are considered to be Markov equivalent.
The Markov equivalence class of a DAG D can be uniquely represented by a completed partially
directed acyclic graph (CPDAG) C, often denoted as [C].
MPDAGs. A maximally oriented PDAGs (MPDAG) (Meek, 1995) can be obtained by applying
Meek’s rules in Meek (1995) to a CPDAG with a background knowledge constraint. To construct
an MPDAG G from a given CPDAG C and background knowledge B, Algorithm 1 in Perkovic et al.
(2017) can be utilized, in which the background knowledge B is assumed to be the direct causal
information in the form X → Y , indicating that X is a direct cause of Y .2 The subset of Markov
equivalent DAGs that align with the background knowledge B can be uniquely represented by an
MPDAG G, denoted as [G]. Both a DAG and a CPDAG can be viewed as special cases of an
MPDAG, where the background knowledge is fully known and unknown, respectively.

Density. A density f over V is consistent with a DAG D = (V,E) if it can be factorized as
f(v) = ∏Vi∈V

f(vi∣pa(vi,D)) (Pearl, 2009; Perkovic et al., 2017). A density f of V is consistent
with an MPDAG G = (V,E) if f is consistent with a DAG in [G].

2.2 CAUSAL INFERENCE AND INTERVENTIONAL FAIRNESS

The interventions do(X = x) or the shorthand do(x) represent interventions that force X to take
certain value x. In a SCM, this means the substitution of the structural equation X = fx(pax, Ux)
with X = x. The causal effect of a set of treatments X on a set of responses Y can be understood
as the post-interventional density of Y when intervening on X via the do operator, which can be
denoted as f(Y = y∣do(X = x)) or P (yx) Pearl (1995; 2009). In the context of an MPDAG G,
such causal effect is identifiable if it is possible to be uniquely computed. For a formal definition and
a brief review on the causal effect identification problem on MPDAG, please refer to Appendix H.

Build on the do-operator, interventional fairness criterion (Salimi et al., 2019) is defined upon ad-
missible attribute. An admissible attribute is one through which the causal path from the sensitive
attribute to the outcome is still considered fair. For example, in a construction company hiring
scenario, the attribute strength is considered as an admissible attribute as it is a valid criterion for
assessing job candidates. Despite being causally affected by the attribute gender, the causal path
‘gender → strength → hiring decision’ should not be regarded as discriminatory.

Formally, let A, Y and X represent the sensitive attributes, outcome of interest and other observable
attributes, respectively. The prediction of Y is denoted by Ŷ . We say the prediction Ŷ is interven-
tionally fair with respect to the sensitive attributes A if, for any given set of admissible attributes
Xad ⊆ X, it satisfies the following condition:

Definition 2.1 (Interventional fairness). (Salimi et al., 2019) We say the prediction Ŷ is interven-
tionally fair with respect to the sensitive attributes A if the following holds for any Xad = xad:

P (Ŷ = y∣do(A = a), do(Xad = xad)) = P (Ŷ = y∣do(A = a
′), do(Xad = xad)),

for all possible values of y and any value that A and Xad can take.

2It is worth noting that other forms of background knowledge, such as tier orderings, specific model re-
strictions, or data obtained from previous experiments, can also induce MPDAGs Scheines et al. (1998); Hoyer
et al. (2012); Hauser & Bühlmann (2012); Eigenmann et al. (2017); Wang et al. (2017); Rothenhäusler et al.
(2018).
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3 PROBLEM FORMULATION

In this section, we focus on the challenge of attaining interventional fairness in PDAGs, particular
MPDAGs that can be learnt from observational data using causal discovery algorithms (Spirtes &
Glymour, 1991; Colombo et al., 2014; Chickering, 2002a). We begin by presenting a basic implica-
tion of the definition of interventional fairness as a baseline method for achieving fairness. However,
to overcome its limitations, we formulate a constrained optimisation problem.

3.1 FAIRNESS UNDER MPDAGS AS A GRAPHICAL PROBLEM

A simple but important implication in achieving interventional fairness is the following:

Lemma 3.1. Let G be the causal graph of the given model (U, V, F ). Then Ŷ will be interventionally
fair if it is a function of the admissible set Xad and non-descendants of A.

Zuo et al. (2022) propose a graphical criterion and algorithms for identifying the ancestral relation-
ship between two vertices on an MPDAGs which we review in Appendix D.1. These findings form
the basis for learning (exactly) interventionally fair predictions as indicated by Lemma 3.1. How-
ever, we claim that by including descendants, the prediction accuracy is possible to be improved.
We propose a constrained optimisation problem that balances the inherent competition between ac-
curacy and fairness.

3.2 ϵ-APPROXIMATE INTERVENTIONAL FAIRNESS

We first establish an approximation to interventional fairness to address the problem of learning a
fair prediction on an MPDAG.

Definition 3.1 (ϵ-Approximate Interventional Fairness). A predictor Ŷ is ϵ-approximate interven-
tionally fair with respect to the sensitive attribute A if for any value of admissible set Xad = xad,
we have that:

∣P (Ŷ = y∣do(A = a), do(Xad = xad)) − P (Ŷ = y∣do(A = a
′), do(Xad = xad)∣ ≤ ϵ

for any a
′
≠ a.

Objective. Our objective is to train a model hθ mapping from a subset of observable variables to
Y with parameter θ so as to accurately predict Y while simultaneously achieving ϵ-approximate
interventional fairness. To accomplish this, we minimize the loss function ℓ(ŷ, y) under the fairness
constraint. Given a dataset with n observations {A(i)

,X
(i)
, Y

(i)} for i = 1, 2, ..., n, where X
(i)
ad ⊂

X
(i) represents the admissible set. For a specific intervention on Xad = xad, the objective can be

formulated as follows:

min
θ

1
n

n

∑
i=1

ℓ(ŷi, yi) + λ∣P (ŶA←a,Xad←xad
) − P (ŶA←a′,Xad←xad

)∣, (1)

where P (ŶA←a,Xad←xad
) and P (ŶA←a′,Xad←xad

) represent the post-interventional distributions
of Ŷ under do(A = a,Xad = xad) and do(A = a

′
,Xad = xad), respectively. The parame-

ter λ balances the trade-off between accuracy and fairness. In this paper, we focus on the mod-
elling and identification of the objective function for a specific intervention on Xad. If we con-
sider multiple values of Xad, the fairness term in Equation (1) can be replaced with the average of
∣P (ŶA←a,Xad←xad

) − P (ŶA←a′,Xad←xad
)∣ over different interventions on Xad.

This formulation raises two key challenges: 1) how to design the model hθ (for Ŷ ) over an MPDAG;
2) when and how P (Ŷ = y∣do(A = a,Xad = xad)) is identifiable using the observational densities
within our modeling framework.

4 INTERVENTIONAL FAIRNESS UNDER MPDAGS

As mentioned in Section 1, the underlying causal DAG D is usually unknown for real-world datasets.
At most, we can obtain a refined Markov equivalence class of DAGs represented by an MPDAG
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G from the observational data (X,A) and additional background knowledge. In this section, we
model the predictor as a function of all the other observable variables, regardless of whether they
are (possible) descendants or non-descendants of the sensitive attribute. Then we show that such
modeling technique leads to another MPDAG over (X,A, Ŷ ) which facilitates causal inference.

4.1 MODELING AND VERIFICATION

Modeling. We illustrate our modeling technique with Figure 1. Let D = (V,E) in Figure 1a be
the underlying causal DAG over the observational variables X and A, where V = X ∪ A, and f
be the consistent observational density over V, factorized as f(v) = ∏Vi∈V

f(vi∣pa(vi,D)). We
model the fair predictor Ŷ as a function hθ(x,a) of x and a with parameter θ. Under Pearl’s SCM
framework, our modeling technique implies

1. An underlying causal DAG D∗ over X, A and Ŷ which includes additional edges from V

to Ŷ for any V ∈ V compared with the DAG D, as depicted in Figure 1b;

2. The density f over V∪Ŷ , denoted as f(v, ŷ) = f(ŷ∣v)f(v), is consistent with D∗, where
ŷ = hθ(x,a);

3. The density f(v) is consistent with any MPDAG G, where D ∈ [G], and the density
f(v, ŷ) is consistent with any MPDAG G∗, where D∗

∈ [G∗]. Figure 1c and Figure 1d
are two examples of G and G∗, respectively.

A

X[1] X[2]

X[3]

(a) DAG D

A

X[1] X[2]

X[3]

Ŷ

(b) DAG D∗

A

X[1] X[2]

X[3]

(c) MPDAG G

A

X[1] X[2]

X[3]

Ŷ

(d) MPDAG G∗

Figure 1: (a) is an underlying causal DAG D with three variables X[1], X[2] and X[3] in X; (b) is
a causal DAG D∗ under modeling on Ŷ ; (c) is an example MPDAG G such that D ∈ [G]; (d) is an
example MPDAG G∗ such that D∗

∈ [G∗].

Next, we introduce Definition 4.1 to formalize such modeling strategy.

Definition 4.1 (Augmented-G with Ŷ ). For a partially directed graph G = (V,E), let G∗ augment
G by (i) adding an additional vertex Ŷ ; (ii) adding the edge V → Ŷ for each node V ∈ V in G. The
resulting graph is denoted as G∗

= (V∗
,E

∗), where V
∗
= V ∪ Ŷ , E∗

= E ∪ {V → Ŷ ∣V ∈ V}.
We call G∗ the augmented-G with Ŷ .

Although directly learning an MPDAG from X, A and Ŷ is not feasible due to the unobservability
of Ŷ , Theorem 4.1 implies that once we obtain the MPDAG G from the observational data (X, A)
with background knowledge B, the augmented-G with Ŷ , G∗, is exactly an MPDAG technically
such that D∗

∈ [G∗]. Therefore, the density f(v, ŷ) is consistent with G∗.
Theorem 4.1. For a DAG D = (V,E), let G be an MPDAG consistent with the background knowl-
edge B such that D ∈ [G]. Let D∗ be the augmented-D with Ŷ and G∗ be the augmented-G with Ŷ .
Then the graph G∗ is an MPDAG consistent with the background knowledge B ∪ {V → Ŷ ∣V ∈ V}
such that D∗

∈ [G∗].

Theorem 4.1 is verified by exploring the property of Meek’s rules. For more detail, please refer to
Appendix B.2. Theorem 4.1 may be of independent interest as it establishes a general modeling
method applicable to any problem. The theorem implies that we can directly model Ŷ on any
MPDAG G and remarkably, the resulting augmented-G with Ŷ remains an MPDAG consistent with
the given background knowledge. This augmented graph enables various causal inference tasks.
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4.2 IDENTIFICATION OF FAIRNESS CRITERIA

We denote the augmented MPDAG G = (V,E) with Ŷ , where V = X∪A, by G∗. In this section,
we discuss the identification of the causal quantity P (Ŷ = y∣do(A = a), do(Xad = xad)) in
Equation (1) on G∗: when and how we can uniquely express such a causal quantity by the observable
densities f(v) over G and f(ŷ∣v) over G∗. We start with the general identification problem P (Ŷ =

y∣do(S = s)), where S ⊆ V.

Perkovic (2020, Theorem 3.6) establishes the condition and formula for the identification of causal
effect P (Ŷ = y∣do(S = s)) in an MPDAG G∗ with density f(v, ŷ). Here, under our modeling
strategy on Ŷ , we present such graphical condition over the MPDAG G and represent the identifica-
tion formula based on f(v) in G and f(ŷ∣v) in G∗ in Proposition 4.1. We first provide the notion
of partial causal ordering as a preliminary.

Partial Causal ordering Perkovic (2020). Let G = (V,E) be an MPDAG. Since G may include
undirected edges (−), it is generally not possible to establish a causal ordering of a node set V′

∈ V

in G. Instead, a partial causal ordering, <, of V′ of G is defined as a total causal ordering of pairwise
disjoint node sets V1, ... Vk, k ≥ 1, ∪k

i=1Vi = V
′ that satisfies the following condition: if Vi < Vj

and there is an edge between Vi ∈ Vi and Vj ∈ Vj in G, then Vi → Vj is in G.

Perkovic (2020) develops an algorithm for decomposing a set of nodes as partial causal orderings
(PCO) in an MPDAG G. We provide it in Algorithm 2 in Appendix A, which acts as an important
component for Proposition 4.1. We denote the parents of the node W in a graph G as pa(W,G).

Proposition 4.1. Let S be a node set in an MPDAG G = (V,E) and let V′
= V\S. Furthermore,

let (V1, ...,Vk) be the output of PCO(V,G). The augmented-G with Ŷ is denoted as G∗. Then for
any density f(v) consistent with G and the conditional density f(ŷ∣v) entailed by G∗, we have

1. f(v, ŷ) = f(ŷ∣v)∏Vi⊆V
f(vi∣pa(vi,G)),

2. If and only if there is no pair of nodes V ∈ V
′ and S ∈ S such that S−V in G, f(v′∣do(s))

and f(ŷ∣do(s)) are identifiable, and

f(v′∣do(s)) = ∏
Vi⊆V

′

f(vi∣pa(vi,G)) (2)

f(ŷ∣do(s)) = ∫ f(ŷ∣v)f(v′∣do(s))dv′
= ∫ f(ŷ∣v) ∏

Vi⊆V
′

f(vi∣pa(vi,G))dv′ (3)

for values pa(vi,G) of Pa(vi,G) that are in agreement with s.

The proof of Proposition 4.1 is based on Perkovic (2020, Theorem 3.6) and Theorem 4.1. The
detailed proof is provided in Appendix B.3.

Example. We provide a simple example to illustrate Proposition 4.1. Consider the MPDAG G and
G∗ in Figure 1c and Figure 1d, where G∗ is the augmented-G with Ŷ . The partial causal ordering of
X ∪ A on G is {{A}, {X}}. f(x, a) is a density consistent with G, G∗ entails a conditional density
f(ŷ∣x, a). Then, by Proposition 4.1 we have f(x, a, ŷ) = f(ŷ∣x, a)f(x∣a)f(a) in G∗. Since there
is no pair of nodes A and X ∈ X such that A − X is in G, we have f(x∣do(a)) = f(x∣a) and
f(ŷ∣do(a)) = ∫ f(ŷ∣x, a)f(x∣a)dx in G∗. For more example, please refer to Appendix C.

Dealing with non-identification. In cases where the causal effect of S on Ŷ is not identifiable, we
can list MPDAGs corresponding to all valid combinations of edge orientations for edges V − S,
where V ∈ V

′ and S ∈ S. In this case, the causal effect in each MPDAG can be identified as a
unique functional relationship of the observable density. To address our constrained optimisation
problem, we can replace the unfairness term in Equation (1) with the average of unfairness over
different MPDAGs. The experimental analysis on unidentifiable cases is provided is Appendix G.11.

Identification of P (Ŷ = y∣do(A = a), do(Xad = xad)) in the fairness context. Under the
modeling technique that ŷ = hθ(x,a), Proposition 4.1 implies that the causal effect of A ∪ Xad

on Ŷ is identifiable for a given set of admissible attributes Xad ⊂ X if and only if there is no

6



Published as a conference paper at ICLR 2024

pair of nodes X ∈ A ∪ Xad and V ∈ V\(A ∪ Xad) such that X − V is in G. In such case,
f(ŷ∣do(a), do(xad)) = ∫ f(ŷ∣v)∏Vi⊆V

f(vi∣pa(vi,G))dv′ for values pa(vi,G) of Pa(vi,G)
that are in agreement with a and xad, where V

′
= V\(A ∪Xad), (V1, ...,Vm) = PCO(V′

,G).

4.3 SOLVING THE OPTIMISATION PROBLEM

Addressing the optimisation problem stated in Equation (1) requires measuring the discrepancy
between distributions P (Ŷ = y∣do(A = a,Xad = xad)) and P (Ŷ = y∣do(A = a

′
,Xad = xad)).

Here, we employ Maximum Mean Discrepancy (MMD) (Gretton et al., 2007), but other measures
can also be utilized. On the other hand, as evident from the identification formula Equation (3), we
need to estimate the stable conditional density f(vi∣pa(vi,G)) and design the model ŷ = h(x,a)
to approximate f(ŷ∣v). However, computing the MMD of two distributions entailed by a model h
is intractable. As a result, we resort to Monte Carlo sampling to approximate the integrals involved
in the identification formula. For convenience, we estimate f(vi∣pa(vi,G)) using a conditional
multivariate normal distribution, but other conditional density estimation approaches can also be
employed. Then we generate the interventional data for v under each intervention do(A = a,Xad =

xad). Finally, a neural net can be trained for h(x,a). For more on the MMD formulation and its
application in our context, please refer to Appendix E.

4.4 APPLICABILITY TO OTHER CAUSAL FAIRNESS NOTIONS

Causal fairness notions are defined on different types of causal effects, such as interventional fairness
on interventional effects, path-specific fairness on nested counterfactual queries, and counterfactual
fairness on counterfactual effects. Their identifiability depends on the identifiability of these causal
effects. Our proposed method is directly applicable to other interventional-based fairness notions
but not to path-specific causal fairness or counterfactual fairness due to the ongoing challenge of
(nested) counterfactual identification over MPDAGs. For more details on the related fairness notions
and applicability, please refer to Appendix F.

5 EXPERIMENT

In this section, we illustrate our approach on both synthetic and real-world datasets. We measure
prediction performance using root mean squared error (RMSE) or accuracy and assess interventional
unfairness by MMD. Here, we focus on the scenario where the admissible variable set is empty.
Additional experiments involving non-empty admissible variable sets can be found in Appendix G.6.

Baselines. We consider three baselines: 1) Full model makes predictions using all attributes, in-
cluding the sensitive attributes, 2) Unaware model uses all attributes except the sensitive attributes,
and 3) IFair is a model mentioned in Section 3.1 which makes predictions using all definite non-
descendants of the sensitive attribute in an MPDAG 3. Our proposed method is ϵ-IFair, which
uses all attributes and implement the constrained optimization problem in Section 3.2.

5.1 SYNTHETIC DATA

We first randomly generate DAGs with d nodes and s directed edges from the graphical model Erdős-
Rényi (ER), where d is chosen from {5, 10, 20, 30} and the correspongding s is {8, 20, 40, 60}. For
each setting, we generate 10 graphs. For each DAG D′, we consider the last node in topological
ordering as the outcome variable and we randomly select one node from the graph as the sensitive
attribute. The sensitive attribute can have two or three values, drawn from a Binomial([0,1]) or
Multinomial([0,1,2]) distribution separately. The weight, βij , of each directed edges Xi → Xj in
the generated DAG, is drawn from a Uniform([−1,−0.1]∪[0.1, 1]) distribution. The synthetic data
is generated according to the following linear structural equation:

Xi = ∑
Xj∈pa(Xi)

βijXj + ϵi, (4)

3Proposition 4.1 and Theorem D.2 indicate that when the total effect of singleton A on Ŷ is identifiable in
the augmented MPDAG G∗, the ancestral relationship between A and any other attribute is definite.

7



Published as a conference paper at ICLR 2024

where ϵi are independent N(0, 1). Then we generate a sample with size 1000 for each DAG as the
observational data. The proportion of training, validation and test data is split as 8 ∶ 1 ∶ 1.

We consider the DAG D over all of the variables, excluding the outcome. As the simulated DAG
is known, the CPDAG can be obtained from the true DAG without running the causal discovery
algorithms. 4 Once we obtain the CPDAG C, where D ∈ [C], we randomly generate the direct
causal information S → T as the background knowledge from the edges where S → T is in DAG
D, while S − T is in CPDAG C. Combining with the background knowledge that is necessary to
identify fairness, we can obtain the corresponding MPDAG G. We show a randomly generated DAG
D, the corresponding CPDAG C and MPDAG G as an example in Figure 10, see Appendix G.1.

To measure the unfairness, we generate 1000 interventional data points XA←a under different inter-
ventions on A according to the identification formula. To approximate each term f(vi∣pa(vi,G))
in the formula, we fit a conditional multivariate Gaussian distribution using observational data. The
generation of vi is based on the fitted density and follows the partial causal ordering. The propor-
tion of training and validation for interventional data is split as 8 ∶ 2. Besides, we generate 1000
interventional data from the ground-truth SCM for different interventions on the sensitive attribute
for test. Then we fit all models with the data. The λ in our optimisation problem is [0, 0.5, 5,
20, 60, 100]. For additional experiments on nonlinear structural equations and varying amounts of
background knowledge, please refer to Appendix G.7 and Appendix G.8, respectively. We also ana-
lyze the model robustness experimentally when the graph is learnt by causal discovery algorithms in
Appendix G.9. The model robustness on fitting of conditional densities is provide in Appendix G.10.

Results. For each graph setting, we report the average unfairness and RMSE achieved on 10 causal
graphs in the corresponding trade-off plots in Figure 2. Obviously, both Full and Unaware meth-
ods exhibit lower RMSE but higher unfairness. The IFair method achieves nearly 0 unfairness
but at the cost of significantly reduced prediction performance. However, our ϵ-IFair approach
allows for a trade-off between unfairness and RMSE with varying λ. For certain values of λ, we
can even simultaneously achieve low unfairness comparable to IFair model and low RMSE com-
parable to Full. Exemplary density plots of the predictions under two interventional datasets are
shown in Figure 3. The degree of overlap in the distributions indicates the fairness of the predictions
with respect to the sensitive attribute. The more the distributions overlap, the fairer the predictions
are considered to be. More discussion on the accuracy-fairness trade-off is included in Appendix I.
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Figure 2: Accuracy fairness trade-off.
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0.0

0.1

0.2

0.3

−2.5 0.0 2.5 5.0
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Figure 3: Density plots of the predicted YA←a

and YA←a′ in synthetic data.

5.2 REAL DATA

5.2.1 THE UCI STUDENT DATASET

Our first experiment with real-world data is based on the UCI Student Performance Data Set (Cortez
& Silva, 2008), which contains information about students performance in Mathematics. The dataset
consists of records for 395 students, with 32 school-related features. In this dataset, we consider the

4With an ample sample size, existing causal discovery algorithms have demonstrated high accuracy in re-
covering the CPDAG from simulated data Glymour et al. (2019).
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attribute sex as the sensitive attribute. We create the target attribute Grade as the average of grades
in three tests. Our experiments are carried out on the MPDAG G in Figure 11c. Due to the space
limit, Figure 11c is provided in Appendix G.2. For details on graph learning, interventional data
generation and model training, please refer to Appendix G.3.

We measure interventional fairness and accuracy using a similar approach as described in Sec-
tion 5.1. The trade-off plot is shown in Figure 4a. The model Full and Unaware exhibit higher
unfairness. The model IFair achieves interventionally fairness at the cost of increased RMSE. On
the other hand, our ϵ-IFair model strikes a balance between unfairness and RMSE by tuning the
values of λ. Since the test set only contains 19 interventional data for do(sex = female) and 20 inter-
ventional data for do(sex = male), the unfairness measure may not be highly accurate. Therefore,
we also provide the trade-off plot on the training set in Figure 4b, where the unfairness approaches
zero for the IFair model and ϵ-IFair model with stricter penalties on unfairness. Furthermore,
the distribution of predictions on the two interventional datasets follows a similar trend as the syn-
thetic data, as depicted in Figure 5.

3.52

3.54

3.56

3.58

0.16 0.20 0.24 0.28 0.32
Unfairness

R
M

S
E

Full ε−IFair IFair Unaware

(a) Test set.

2.7

2.8

2.9

3.0

3.1

0.00 0.02 0.04 0.06
Unfairness

R
M

S
E

Full ε−IFair IFair Unaware

(b) Train set.

Figure 4: Accuracy fairness trade-off.

 ŶA←a  ŶA←a'
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Figure 5: Density plot of the predicted YA←a

and YA←a′ in Student data.

5.2.2 CREDIT RISK DATASET

The task of credit risk assessment involves predicting the likelihood of a borrower defaulting
on a loan. For our experiment, we utilize the Credit Risk Dataset, which contains 11 features
related to the repayment capability of 32,581 borrowers. In this dataset, we consider the at-
tribute Age as the sensitive attribute and the target variable is Loan status, which is a binary
variable indicating default (1) or no default (0). We focus on two specific age groups: 23 and
30, representing the first and third quantiles, respectively. Our experiments are based on the
MPDAG G in Figure 13a. Due to the space limit, it is provided in Appendix G.4. For details
on graph learning, interventional data generation and model training, please refer to Appendix G.5.
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Figure 6: Results on Credit Risk dataset.

Given that the target variable Loan status is bi-
nary, we measure unfairness using the absolute
difference in the means of predictions for the
interventions on Age = 23 and Age = 30. Pre-
diction performance is evaluated by accuracy.
Since there is no non-descendant of Age, we do
not have the model IFair for this dataset. The
trade-off plot is presented in Figure 6a and the
distribution of predictions for the two interven-
tional datasets is depicted in Figure 6b. Both of
them follow a similar trend as previous.

6 CONCLUSION

This paper presents a framework for achieving interventional fairness on partially known causal
graphs, specifically MPDAGs. By leveraging the concept of interventions and modeling fair pre-
dictions as the effect of all observational variables, the proposed approach addresses the limitations
of existing methods that assume a fully known causal DAG. Through the analysis of identification
criteria and the formulation of a constrained optimization problem, the framework provides a prin-
cipled approach to achieving interventional fairness while maximizing data utility. Experimental
results on simulated and real-world datasets demonstrate the effectiveness of the proposed frame-
work. The limitation of this work is that it assumes no selection bias or latent confounders. Future
work can focus on extending the proposed framework and addressing these challenges.
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A PRELIMINARIES

Graph and Subgraphs. Let G = (V,E) denote a graph, where V = {X1, ..., Xp} represents a set
of nodes (variables) and E represents a set of edges. In our consideration, the graphs can include
both directed (→) and undirected (-) edges, with at most one edge allowed between any two nodes.
An induced subgraph of G denoted by GV′ = (V′

,E
′) is a subgraph where V

′
⊆ V and E

′
⊆ E

where E
′ consists of all the edges in E that connects nodes in V

′.

Path. In the graph G, a path p from S to T is defined as a sequence of distinct nodes ⟨S, ..., T ⟩ where
each consecutive pair of nodes is connected by an edge. Let p = ⟨S = V0, ..., Vk = T ⟩ represents
a path in a graph G, we say p is a causal path from S to T if the direction of the edges follows a
pattern Vi → Vi+1 for all 0 ≤ i ≤ k − 1. On the other hand, if no edge Vi ← Vi+1 exists in G, then p
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is a possibly causal path from S to T . If there exists an edge Vi ← Vi+1 in G, p is considered a non-
causal path in G. A cycle in the graph can be categorized as a causal cycle, possibly causal cycle, or
non-causal cycle, depending on whether it represents a causal, possibly causal, or non-causal path
from a vertex to itself. A path from S to T is said to be proper with respect to S if only its first node
is a member of S.

Colliders, Skeleton and Pattern. If, in a path p = ⟨X = V0, ..., Vk = Y ⟩, there exists a node Vi

such that Vi−1 → Vi and Vi ← Vi+1, then we say Vi is a collider on the path p. If Vi−1 and Vi+1
are not adjacent, then the triple ⟨Vi−1, Vi, Vi+1⟩ is called a v-structure collided on Vi, and Vi can
be called unshielded collider. For a graph G, the skeleton of G is the undirected graph obtained by
replacing the directed edges in G with undirected edges. The skeleton of G with unshielded colliders
is the skeleton of G with the edges resulting unshielded colliders directed. 5

MPDAGs Construction. Algorithm 1 mentioned in (Perkovic et al., 2017) summarizes, the process
of constructing the maximal PDAG G ′ from the given maximal PDAG G and backgroud knowledge
B. This construction utilizes Meek’s rule shown in Figure 7. Specifically, the background knowledge
B is assumed to be the direct causal information in the form S → T , indicating that S is a direct
cause of T . If Algorithm 1 does not return FAIL, then it implies that the background knowledge B
and returned maximal PDAG G ′ are consistent with the input maximal PDAG G.

Algorithm 1 Construct MPDAG (Perkovic et al., 2017; Meek, 1995)

1: Inputs: MPDAG G and Background knowledge B.
2: Output: MPDAG G ′ or FAIL.
3: Let G ′

= G;
4: while B ≠ ∅ do
5: Select an edge {S → T} in B;
6: B = B\{S → T};
7: if {S − T} OR {S → T} is in G ′ then
8: Orient {S → T} in G ′;
9: Orienting edges in G ′ following the rules in Figure 7 until no edge can be oriented;

10: else
11: FAIL;

R1 R2

R3 R4

Figure 7: Meek’s orientation rules: R1, R2, R3 and R4 (Meek, 1995). In each rule, if the graph on
the left-hand side is an induced subgraph of a PDAG G, the undirected edge in that subgraph should
be oriented according to the direction indicated on the right-hand side.

Undirected Connected Set. In a graph G, a set of nodes S is considered an undirected connected
set, if for any two distinct nodes Si and Sj in S, there exists an undirected path from Si to Sj in G.

Bucket. Let D be a node set in an MPDAG G = (V,E). If B is a maximal undirected connected
subset of D in G, we call B a bucket in D.

A.1 EXISTING RESULTS

Lemma A.1. (Perkovic et al., 2017, Lemma B.1) Let p = ⟨V1, ..., Vk⟩ be a b-possibly causal definite
status path in an MPDAG G. If there is a node i ∈ {1, ..., n−1} such that Vi → Vi+1, then p(Vi, Vk)
is a causal path in G.

5In some paper, the skeleton of a DAG D with unshielded colliders is also called the pattern of D.
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Lemma A.2. (Perkovic et al., 2017, Lemma 3.6) Let S and T be distinct nodes in an MPDAG G. If
p is a b-possibly causal path from S to T in G, then a subsequence p∗ of p forms a b-possibly causal
unshielded path from S to T in G.
Corollary A.1 (Bucket Decomposition). (Perkovic, 2020, Corollary 3.4) Let D be a node set in
an MPDAG G = (V,E). Then there is a unique partition of D into B1, ...,Bk, k ≥ 1 in G, where
B1, ...,Bk are buckets in G. That is

• D = ⋃k
i=1 Bi, and

• Bi ∩Bj = ∅, i, j ∈ {1, ..., k}, i ≠ j, and

• Bi is a bucket in D for each i ∈ {1, ..., k}.
Lemma A.3. (Perkovic, 2020, Lemma 3.5) Let D be a node set in an MPDAG G = (V,E) and let
(B1, ...,Bk), k ≥ 1, be the output of PCO(D,G) which is presented in Algorithm 2. Then for each
i, j ∈ {1, ..., k}, Bi and Bj are buckets in D and if i < j, then Bi < Bj in G.

Algorithm 2 Partial causal ordering (PCO) (Perkovic, 2020, Algorithm 1)

1: Inputs: Node set D in MPDAG G = (V,E).
2: Output: An ordered list B = (B1, ...,Bk), k ≥ 1 of the bucket decomposition of D in G.
3: Let ConComp be the bucket decomposition of V in G;
4: Let ConComp be an empty list;
5: while B ≠ ∅ do
6: Let C ∈ ConComp;
7: Let C̄ be the set of nodes in ConComp that are not in C;
8: if all edges between C and C̄ are into C in G then
9: Remove C from ConComp;

10: Let B∗ = C ∪D;
11: if B∗ ≠ ∅ then
12: Add B∗ to the beginning of B;

Perkovic (2020) introduces a necessary criterion, referred to as amenability by (Perković et al.,
2015; Perkovic et al., 2017), for the identifiability of causal effects in MPDAGs. This criterion is
summarized in Proposition A.1.
Proposition A.1. (Perkovic, 2020, Proposition 3.2) Let X and Y be disjoint node sets in an
MPDAG G = (V,E). If there is a proper possibly causal path from X to Y that starts with an
undirected edge in G, then the causal effect of X on Y is not identifiable in G.

In Perkovic (2020), it is shown that the condition stated in Proposition A.1 is not only necessary,
but also sufficient for the identification of causal effects in MPDAGs. This result is established in
Theorem A.1.
Theorem A.1. (Perkovic, 2020, Theorem 3.6) Let X and Y be disjoint node sets in an MPDAG
G = (V,E). If there is no proper possibly causal path from X to Y in G that starts with an
undirected edge, then for any density f consistent with G we have

f(y∣do(x)) = ∫
k

∏
i=1

f(bi∣pa(bi,G))db

for values pa(bi, G) of Pa(bi, G) that are in agreement with x, where (B1, ...,Bk) =

PCO(An(Y,GV\X),G) and B = An(Y,GV\X)\Y.
Corollary A.2 (Factorization and truncated factorization formula in MPDAGs). (Perkovic, 2020,
Corollary 3.7) Let X be a node set in an MPDAG G = (V,E) and let V′

= V\X. Furthermore,
let (V1, ...,Vk) be the output of PCO(V,G). Then for any density f consistent with G we have

1. f(v) = ∏Vi⊆V
f(vi∣pa(vi,G)),

2. If there is no pair of nodes V ∈ V
′ and X ∈ X such that X − V is in G, then

f(v′∣do(x)) = ∏
Vi⊆V

′

f(vi∣pa(vi,G))dv′
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for values pa(vi,G) of Pa(vi,G) that are in agreement with x.

Property 1. (Katz et al., 2019, Property 1) If a node v is involved in any of the four Meek rules and
if the node v does not have an outgoing edge in the original causal DAG, then the oriented
edge (in the right hand side of any of the four rules in Figure 7) is incident to v.

Theorem A.2 (Orientation completeness). (Meek, 1995, Theorem 3) The result of applying rules
R1, R2 and R3 in Figure 7 to a pattern of a DAG is a CPDAG.

Theorem A.3 (Orientation completeness w.r.t background knowledge). (Meek, 1995, Theorem 4)
Let B be a set of background knowledge consistent with a pattern of a DAG. The result of applying
rules R1, R2, R3 and R4 (and orienting edges according to B) to the pattern is an MPDAG with
respect to B.

B DETAILED PROOFS

B.1 PROOF OF LEMMA 3.1

Proof. Let W be any non-descendant of A in G. Then P (W ∣do(A = a)) = P (W ∣do(A = a
′)) =

P (W ) (according to the Rule 3 of the do-calculus (Pearl, 2009)). Since WA←a and WA←a′ have
the same distribution, for any sensitive attribute, the distribution of Ŷ as a function of the non-
descendants of A and the intervened admissible variable Xad is invariant.

B.2 PROOF OF THEOREM 4.1

According to the definition of MPDAG, G can be induced from the Markov equivalence class of
DAG D = (V,E) with background knowledge B. By exploring Meek’s rules, specifically, Property
1., we show that G∗ is an MPDAG that can be derived from the DAG D∗ with background knowledge
B ∪ {V → Ŷ ∣V ∈ V}. We provide the details in checking with Meek’s rules in this section.

B.2.1 TECHNICAL LEMMAS

In this section, we introduce some lemmas that are useful in the proof of Theorem 4.1.

Lemma B.1. For a DAG D = (V,E), let D∗ be the augmented-D with Ŷ . The CPDAG of D and
D∗ are denoted as C and C∗, respectively. Then, compared with C, newly directed edges in C∗ only
contain V → Ŷ for some V ∈ V.

Proof. As discussed in Meek Meek (1995), deducing the CPDAG from a DAG consists of two
phases:

• Phase I. Find the skeleton of the DAG with unshielded colliders.

• Phase II. On the returned graph by phase I, orient every edge that can be oriented by suc-
cessive applications of Meek’s rules R1, R2 and R3.

So here, before identifying the difference between two CPDAGs C and C∗, we first identify the
difference between two skeletons with unshielded colliders K and K∗, where K and K∗ are the
corresponding skeletons of the DAG D and D∗ with unshielded colliders, respectively.

Phase I. Compared with D, the new v-structures in D∗ are edges in {V → Ŷ ∣V ∈ V} that form
unshielded colliders on Ŷ . Therefore, it is obvious that compared with K, the newly directed edges
in K∗ are edges in {V → Ŷ ∣V ∈ V} that form unshielded colliders on Ŷ in D∗.

Phase II. Suppose the application of Meek’s rules to K results the CPDAG C. Next, we apply Meek’s
rules on K∗. Since the application of Meek’s rules checks one edge per time, orienting edges on K∗

is equivalent to the following recursive two-step procedure:

S1. Check and orient edges that can be oriented between any V ∈ V;
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S2. Check and orient edges that can be oriented between any V ∈ V and Ŷ on the returned
partially directed graph from the step S1;

S3. Go to S1 until no more edges can be oriented.

Clearly, compared with the CPDAG C oriented from K, newly directed edges in C∗ only contain
V → Ŷ for some V ∈ V if and only if any directed edge in C gets directed in C∗ and the step S1,
S2 and S3 in the above does not orient more edges except V → Ŷ for some V ∈ V compared with
C.

We first prove that all directed edges in C get directed in C∗ by step S1 and step S1 cannot orient
more edges except V → Ŷ for some V ∈ V compared with C. Suppose that the CPDAG C is
obtained by applying Meek’s rules on K in the sequence seq. We denote the partially directed
acyclic graph obtained by applying Meek’s rules in the same sequence seq on K∗ as C∗

I . Since the
induced subgraph of K∗ over V is exactly the graph K, therefore, the induced subgraph of K∗ over
V will be oriented exactly as the CPDAG C. Then we check the possibility of the further orientations
on edges between any V ∈ V considering the edge directions between any V ∈ V and Ŷ . Property
1. implies that no more edges between any V ∈ V can be oriented. The returned partially directed
acyclic graph from this step is C∗

I . Property 1. also implies that step S2 does not orient more edges
except V → Ŷ for some V ∈ V compared with C. The returned partially directed acyclic graph
from step S2 is denoted as C∗

II . Then we move onto step S3 and show that no more edge can be
oriented in C∗

II any more. Due to the same reason as in step S1 that there is no edge directed out of
Ŷ in D∗, no more edges between any V ∈ V can be oriented. Therefore, the application of Meek’s
rules on K∗ stops here. According to the orientation completeness presented in Theorem A.2, the
returned graph C∗

II is exactly the CPDAG C∗.

Lemma B.2. For a DAG D = (V,E), let D∗ be the augmented-D with Ŷ , C and C∗ be the CPDAG
of D and D∗, respectively. Given additional background knowledge BC that is consistent with C, we
denote the returned MPDAG as G when applying Algorithm 1 on C and BC and as G∗ when applying
Algorithm 1 on C∗ and BC . Then, compared with G, newly directed edges in G∗ only contain V → Ŷ
for some V ∈ V.

Proof. The proof is similar to the proof of Lemma B.1. According to Lemma B.1, compared with
C, the newly directed edges in C∗ only contain V → Ŷ for some V ∈ V. The application of
Algorithm 1 to C and BC results the MPDAG G. Next, we apply Algorithm 1 on C∗ and BC . Since
the application of Meek’s rules checks one edge per time, orienting edges on C∗ is equivalent to the
following recursive two-step procedure:

S1. Check and orient edges that can be oriented between any V ∈ V;

S2. Check and orient edges that can be oriented between any V ∈ V and Ŷ on the returned
partially directed graph from the last step;

S3. Go to S1 until no more edges can be oriented.

Clearly, compared with the MPDAG G oriented from C given the background knowledge BC , newly
directed edges in G∗ only contain V → Ŷ for some V ∈ V if and only if any directed edge in G gets
directed in G∗ and the step S1, S2 and S3 in the above does not orient more edges except V → Ŷ
for some V ∈ V compared with G.

We first prove that all directed edges in G get directed in G∗ by step S1 and the step S1 cannot orient
more edges except V → Ŷ for some V ∈ V compared with G. According to Lemma B.1, the
induced subgraph of C∗ over V is exactly the same as the graph C. Suppose that the MPDAG G
is obtained by applying Meek’s rules on C with the sequence seq. We denote the partially directed
acyclic graph obtained by applying Meek’s rules with the same sequence seq on C∗ as G∗

I . Since
the induced subgraph of C∗ over V is exactly the graph C, therefore, the induced subgraph of C∗

over V will be oriented exactly as the MPDAG G. Then we check the possibility of the further
orientation on edges between any V ∈ V with considering the directions between any V ∈ V and
Ŷ . Property 1. implies that no more edges between any V ∈ V can be oriented. The returned

19



Published as a conference paper at ICLR 2024

partially directed acyclic graph from this step is G∗
I . Property 1. also implies that step S2 does

not orient more edges except V → Ŷ for some V ∈ V compared with G. The returned partially
directed acyclic graph from step S2 is denoted as G∗

II . Then we move onto step S3 and show that
no more edge can be oriented in G∗

II any more. Due to the same reason as in step S1 that there is
no edge directed out of Ŷ in D∗, no more edges between any V ∈ V can be oriented. Therefore, the
application of Meek’s rules on C∗ stops here. According to the orientation completeness presented
in Theorem A.3, the returned graph G∗

II is exactly the MPDAG G∗.

Lemma B.3. For a DAG D = (V,E), let D∗ be the augmented-D with Ŷ , C and C∗ be the CPDAG
of D and D∗, respectively. Given additional background knowledge BC that is consistent with C, we
denote the returned MPDAG as G when applying Algorithm 1 on C and BC . Given the additional
background knowledge BC∗ = BC ∪ {V → Ŷ ∣V ∈ V} that is consistent with C∗, the corresponding
MPDAG is denoted as G∗. Then, the MPDAG G∗ is exactly the augmented-G.

Proof. Algorithm 1 can be used to construct the MPDAG from the CPDAG and background knowl-
edge, by leveraging Meek’s rules. Since Algorithm 1 checks one background knowledge per time,
applying Meek’s rules to C∗ and BC∗ is equivalent to the following two-steps procedures:

S1. Select the background knowledge in BC and check and orient every edge that can be ori-
ented in C∗. The returned partially directed graph is denoted as G∗

I .

S2. Select the background knowledge in {V → Ŷ ∣V ∈ V} and check and orient every edge
that can be oriented on G∗

I .

After the step S1, according to Lemma B.2, compared with G, newly directed edges in G∗
I only

contain V → Ŷ for some V ∈ V. Then we will show that in the step S2, after orienting V → Ŷ for
any V ∈ V in C∗

I , no more edges in V − V
′ for any V, V

′
∈ V can be oriented.

According to Property 1., since there is no such edge directed out of Ŷ in D∗, no more edge between
any V ∈ V can be oriented. According to the orientation completeness presented in Theorem A.3,
the returned graph from this step is the MPDAG G∗, which is exactly the augmented-G defined by
Definition 4.1.

B.2.2 PROOF OF THEOREM 4.1

Proof. Figure 8 shows how all lemmas fit together to prove the Theorem 4.1. Suppose the MPDAG
G can be constructed from the Markov equivalence class of the DAG D = (V,E) with the back-
ground knowledge B. Denote the augmented-D with Ŷ by D∗ and the augmented-G with Ŷ by G∗.
Following from Lemma B.1, Lemma B.2 and Lemma B.3, we can see that G∗ can be constructed
from the Markov equivalence class of the D∗ with the background knowledge B∪{V → Ŷ ∣V ∈ V}
by leveraging Meek’s rules. Therefore, the graph G∗ is still an MPDAG and D∗

∈ [G∗].
Theorem 4.1Lemma B.3Lemma B.2Lemma B.1

Figure 8: Proof structure of Theorem 4.1

B.3 PROOF OF PROPOSITION 4.1

We first show in Proposition B.1 a sufficient and necessary condition and the formula for the identi-
fication of P (Ŷ = y∣do(S = s)) in an MPDAG G∗ based on the consistent density f(v, ŷ). Then,
utilizing the relationship between the MPDAG G and G∗, we derive Proposition 4.1.

B.3.1 TECHNICAL LEMMAS

Proposition B.1. Let S be a node set in an MPDAG G = (V,E) and let V′
= V\S. Furthermore,

let (V1, ...,Vk) be the output of PCO(V, G). The augmented-G with node Ŷ is denoted as G∗.
Then for any density f(v, ŷ) consistent with G∗, we have
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1. f(v, ŷ) = f(ŷ∣v)∏Vi⊆V
f(vi∣pa(vi,G

∗)),

2. If and only if there is no pair of nodes V ∈ V
′ and S ∈ S such that S − V in G∗,

f(v′∣do(s)) and f(ŷ∣do(s)) are identifiable, and

f(v′∣do(s)) = ∏
Vi⊆V

′

f(vi∣pa(vi,G
∗))

f(ŷ∣do(s)) = ∫ f(ŷ∣v)f(v′∣do(s))dv′
= ∫ f(ŷ∣v) ∏

Vi⊆V
′

f(vi∣pa(vi,G
∗))dv′

for values pa(vi,G
∗) of Pa(vi,G

∗) that are in agreement with s.

Proof. Since in the MPDAG G∗, there is the directed edge V → Ŷ for any V ∈ V, the output of
PCO(V∪ Ŷ , G∗) is (V1, ...,Vk, Ŷ ). The parent of ŷ is v. The first statement then follows from
the first statement in Corollary A.2.

For the second statement, PCO(An(V′
,G∗

V′∪Ŷ),G
∗) = PCO(V′

,G∗). We first prove the sufficiency.
That there is no pair of nodes V ∈ V

′ and S ∈ S such that S − V is in the MPDAG G∗ means S
and V cannot be in the same bucket. Therefore, some of the buckets Vi, i ∈ {1, ..., k} in the bucket
decomposition of V will contain only nodes in S. Hence, obtaining the bucket decomposition of
V

′ is the same as leaving out buckets Vi that contain nodes in S from V1, ...,Vk. Following from
Theorem A.1 when taking Y = V

′, we have f(v′∣do(s)) = ∏Vi⊆V
′ f(vi∣pa(vi,G

∗)). Then
f(ŷ∣do(s)) can be identified directly. Next, we show the necessity. According to Proposition A.1,
the necessary condition for f(v′∣do(s)) to be identifiable is that there is no pair of nodes V ∈ V

′

and S ∈ S such that S − V in G∗. The necessary condition for f(ŷ∣do(s)) to be identifiable is
that there is no proper possibly causal path from S to Ŷ that starts with an undirected edge in G∗.
Since V → Ŷ for any V ∈ V, this necessary condition is equivalent to the condition that there is no
proper possibly causal path from S to V

′ that starts with an undirected edge in G∗. This completes
the proof of Proposition 4.1.

B.3.2 PROOF OF PROPOSITION 4.1

Proof. For any density f(v) consistent with the MPDAG G, there exists a DAG D ∈ [G] such
that f(v) is consistent with D. Then the density f(v, ŷ) factorized as f(v, ŷ) = f(ŷ∣v)f(v) is
consistent with the DAG augmented-D with Ŷ , denoted by D∗. Theorem 4.1 implies that f(v, ŷ)
is consistent with the MPDAG augmented-G with Ŷ , denoted by G∗. Therefore, two statements
in Proposition B.1 applies here. Besides, we have f(vi∣pa(vi,G

∗)) = f(vi∣pa(vi,G)) for any
Vi ⊆ V

′; if there is no pair of nodes V ∈ V
′ and S ∈ S such that S − V is in G∗, there is no pair of

nodes V ∈ V
′ and S ∈ S such that S − V is in G. Modifying the condition for second statement in

Proposition B.1 and replacing f(vi∣pa(vi,G
∗)) with f(vi∣pa(vi,G)) leads to Proposition 4.1.

C AN ILLUSTRATION EXAMPLE FOR PROPOSITION 4.1

Consider the MPDAG G = (V,E) in Figure 9a, where V = (A,B,C,D,E,R,L,M,N).
Figure 9b is the augmented-G with Ŷ , denoted as G∗. The partial causal ordering of V
on G is {{B,C}, {A,E}, {M,L}, {D}, {R}, {N}}. f(v) is a density consistent with G and
G∗ entails a conditional density f(ŷ∣v). Then, by Proposition 4.1, we have f(v, ŷ) =

f(ŷ∣v)f(n∣a,m, l, r)f(r∣e)f(d∣b, e)f(m, l)f(a, e)f(b, c) in G∗. Let S = {A,E} and V
′
=

V\S. Since there is no pair of nodes S ∈ S and V ∈ V such that S − V is in
G, we have f(v′∣do(s)) = f(n∣a,m, l, r)f(r∣e)f(d∣b, e)f(m, l)f(b, c) and f(ŷ∣do(s)) =

∫ f(ŷ∣v)f(n∣a,m, l, r)f(r∣e)f(d∣b, e)f(m, l)f(b, c)dv′ in G∗.
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Figure 9: (a) is an MPDAG G; (b) is the extended-G with Ŷ , denoted as G∗.

D FAIRNESS UNDER MPDAGS AS A GRAPHICAL PROBLEM

In this section, we first review the graphical criterion and algorithms presented in Zuo et al. (2022)
for identifying ancestral relations in an MPDAG. Then as a complementary finding to (Zuo et al.,
2022, Proposition 5.2), we present a sufficient and necessary graphical criterion that establishes the
condition under which any ancestral relationship with regards to a specific vertex in an MPDAG can
be definitively determined.

D.1 IDENTIFYING ANCESTRAL RELATIONS IN AN MPDAG

We first clarify the types of ancestral relations in an MPDAG. With respect to a variable S, a variable
T can be either

• a definite descendant of S if T is a descendant of S in every equivalent DAG,
• a definite non-descendant of S if T is a non-descendant of S in every equivalent DAG,
• a possible descendant of S if T is neither a definite descendant nor a definite non-

descendant of S.

Perkovic et al. (2017) state that T is a definite non-descendant of S in an MPDAG G if and only
if there is no possibly causal path from S to T in G. Zuo et al. (2022) propose a sufficient and
necessary graphical criterion to identify whether T is a definite descendant of S in an MPDAG in
Theorem D.1.

We first introduce some terms as a preliminary. In the graph G, a chord of a path refers to any edge
that connects two non-consecutive vertices on the path. Conversely, a chordless path is a path that
does not contain any such edges. A graph is considered complete if every pair of distinct vertices in
the graph is adjacent to each other. Consider an MPDAG denoted as G. Let S and T represent two
distinct vertices in G. The critical set of S with respect to T in G consists of all adjacent vertices of
S that lie on at least one chordless, possibly causal path from S to T .
Theorem D.1. (Zuo et al., 2022, Theorem 4.5) Let S and T be two distinct vertices in an MPDAG
G, and C be the critical set of S with respect to T in G. Then T is a definite descendant of S if and
only if either S has a definite arrow into C, that is C∩ ch(S,G) ≠ ∅, or S does not have a definite
arrow into C but C is non-empty and induces an incomplete subgraph of G.

Based on Theorem D.1, Zuo et al. (2022) propose Algorithm 3 to identify the type of ancestral
relation between two vertices. The set of definite descendants, possible descendants and definite
non-descendants of the sensitive attribute can be identified by leveraging Algorithm 3 on each pair
of sensitive and any other attribute. In this way, we can select the definite non-descendants to make a
counterfactually (and also interventionally) fair prediction or use both definite non-descendants and
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possible descendants of A to increase the prediction accuracy at the cost of a violation of counter-
factual (and also interventional) fairness.

Algorithm 3 Identify the type of ancestral relation of S with respect to T in an MPDAG (Zuo et al.,
2022, Algorithm 2)

1: Input: MPDAG G, two distinct variables S and T in G.
2: Output: The type of ancestral relation between S and T .
3: Find the critical set C of S with respect to T in G by Algorithm 4.
4: if ∣C∣ = 0 then
5: return T is a definite non-descendant of S.
6: if S has an arrow into C or C induces an incomplete subgraph of G then
7: return T is a definite descendant of S.
8: return T is a possible descendant of S.

Algorithm 4 Finding the critical set of S with respect to T in an MPDAG (Zuo et al., 2022, Algo-
rithm 1)

1: Input: MPDAG G, two distinct vertices S and T in G.
2: Output: The critical set C of S with respect to T in G.
3: Initialize C = ∅, a waiting queue Q = [], and a set H = ∅,
4: for α ∈ sib(S) ∪ ch(S) do
5: add (α, S, α) to the end of Q,
6: while Q ≠ ∅ do
7: take the first element (α, ϕ, τ) out of Q and add it to H;
8: if τ = T then
9: add α to C, and remove from S all triples where the first element is α;

10: else
11: for each node β in G do
12: if τ → β or τ − β then
13: if τ → β or ϕ is not adjacent with β or τ is the endnode then
14: if β and S are not adjacent then
15: if (α, τ, β) ∉ H and (α, τ, β) ∉ Q then
16: add (α, τ, β) to the end of Q,
17: return C

D.2 ADDITIONAL IDENTIFICATION RESULTS

In Zuo et al. (2022), the authors discuss that in the root node case (when the sensitive attribute do
not have any parent in an MPDAG), any ancestral relationship between the sensitive attribute and
other attribute is definite in an MPDAG. Here, we claim that the root node assumption is sufficient
but not necessary and provide a complete graphical criterion under which any ancestral relationship
with regards to a specific vertex is definite on an MPDAG in Theorem D.2.

We first introduce a technical lemma in Lemma D.1 that is useful in the proof of Theorem D.2
Lemma D.1. Let X and W be two distinct vertices in an MPDAG G = (V,E). The ancestral
relationship between X and W is definite if there is no proper chordless possibly causal path from
X to W in G that starts with an undirected edge.

Proof. Suppose for a contradiction that W is a possible descendant of A, then there is a possibly
causal path p from A to W . By Lemma A.2, a subsequence p

∗ of p forms a chordless possibly
causal path from A to W . Suppose p

∗
= ⟨A = V0, ..., Vk = W ⟩. As there is no proper chordless

possibly causal path from A to W starts with undirected edge, node A must be directed towards V1

as A → V1. By Lemma A.1, p∗ is a causal path from A to W in G. Therefore, W is a definite
descendant of A. The ancestral relationship between X and W is definite.

Theorem D.2. Let A be a vertex in an MPDAG G = (V,E). The ancestral relationship between
A and any other vertex is definite if and only if there are no undirected edges connected to A in G.
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Moreover, an arbitrary attribute W is a definite descendant of A if and only if there is a causal path
from A to W in G.

Proof. First, we prove the sufficiency. If there is no undirected edges connected to A in an MPDAG
G, for any vertex W , there is no proper chordless possibly causal path from A to W that starts with
an undirected edge. According to Lemma D.1, the ancestral relationship between A and any other
vertex is definite. Next, we prove the necessity. If there is an undirected edge connected to A, such
as A −W , in G, then there exists a DAG D1 ∈ [G] with A ← W so that W is the non-descendant
of A in D1. Meanwhile, there exists a DAG D2 ∈ [G] with A → W so that W is the descendant of
A in D2. In this way, the ancestral relationship between A and the vertex W is not definite.

E MMD IN THE FAIRNESS CONTEXT

The MMD (Maximum Mean Discrepancy) is used to measure the distance between two data distri-
butions. It is accomplished by mapping each sample to a Reproducing Kernel Hilbert Space (RKHS)
using the kernel embedding trick firstly and then comparing the samples using a Gaussian kernel. In
our context, let ŷa = (ŷ1a, ..., ŷNa

a ) and ŷa′ = (ŷ1a′ , ..., ŷ
Na′

a′ ) be the prediction of the samples under
intervention do(A = a,Xad = xad) and do(A = a

′
,Xad = xad), respectively, where Na and Na′

are number of the generated interventional samples under two interventions respectively. Then we
can express the MMD2 between predictions across different interventions as

MMD2(ŷa, ŷa′) =
ÂÂÂÂÂÂÂÂÂÂ

1

Na

Na

∑
i=1

φ(ŷia) −
1

Na′

Na′

∑
j=1

φ(ŷj
a′)

ÂÂÂÂÂÂÂÂÂÂ

2

,

where φ(⋅) represents the mapping function to RKHS. After substituting the kernel functions for
the inner products, then the squared MMD is:

1

(Na)2
Na

∑
i=1

Na

∑
j=1

k(ŷia, ŷja) +
1

(Na′)2
Na′

∑
i=1

Na′

∑
j=1

k(ŷia′ , ŷ
i
a′) − 2

NaNa′

Na

∑
i=1

Na′

∑
j=1

k(ŷia, ŷ
j

a′),

where k(⋅) is a kernel function. The widely used one is the Gaussian RBF kernel k(x, x′) =

exp(− 1
σ
∥x, x

′

∥2), with bandwidth σ.

F APPLICABILITY TO OTHER FAIRNESS NOTIONS

Our proposed method is directly applicable to other interventional-based fairness notions, such as
ones defined on total effect (TE) and controlled direct effect (CDE) (Pearl, 2009) and no proxy
discrimination (Kilbertus et al., 2017). In this section, we provide a detailed review of the related
fairness notions and examine the applicability or inapplicability of the proposed identification cri-
teria to these notions. Similar to the main text, let A, Y and X represent the sensitive attributes,
outcome of interest and other observable attributes, respectively. The prediction of Y is denoted
by Ŷ . Besides, as in Section 4.2, we denote the augmented MPDAG G = (V,E) with Ŷ , where
V = X ∪ A, by G∗. TE of A on Ŷ corresponds to when Xad = ∅. It is identifiable if and only
if no pair of nodes A ∈ A and V ∈ V\A such that A − V is in G. CDE of A on Ŷ corresponds
to Xad = X. It is always identifiable under our modeling strategy 6. The causal query in no proxy
discrimination, P (Ŷ ∣do(P = p)), where P is the proxy, corresponds to A = P and Xad = ∅.

More specifically, we start with the total causal effect (TE), which is defined as follows:

Definition F.1 (Total causal effect). (Pearl, 2009) The total causal effect of the value change of A
from a to a

′ on Ŷ = ŷ is given by

TE(a,a′) = P (Ŷ = ŷ∣do(A = a)) − P (Ŷ = ŷ∣do(A = a
′)).

6This meets CDE identification criterion on an MPDAG proposed by Flanagan (2020, Theorem 5.4).

24



Published as a conference paper at ICLR 2024

The fairness criterion defined on total causal effect claims that the prediction Ŷ is fair with re-
spect to the sensitive attribute A if P (Ŷ = ŷ∣do(A = a)) = P (Ŷ = ŷ∣do(A = a

′)) holds
for all possible values of ŷ and any value that A can take. This notion corresponds to the no-
tion of interventional fairness where Xad = ∅. Under the proposed modelling technique on Ŷ ,
Proposition 4.1 implies that the term P (Ŷ = ŷ∣do(A = a)) is identifiable if and only if no
pair of nodes A ∈ A and V ∈ V\A such that A − V is in G. In this case, total causal ef-
fect can be expressed as f(ŷ∣do(a)) = ∫ f(ŷ∣v)∏Vi⊆V

f(vi∣pa(vi,G))dv′, where V
′
= V\A,

(V1, ...,Vm) = PCO(V′
,G), with pa(vi,G) representing values of Pa(vi,G) that agree with a.

Definition F.2 (Controlled direct causal effect). (Pearl, 2009) The controlled direct effect of the
value change of A from a to a

′ on Ŷ = ŷ, while fixing all the other variables X to x is given by

CDE(a,a′,x) = P (Ŷ = ŷ∣do(A = a,X = x)) − P (Ŷ = ŷ∣do(A = a
′
,X = x)).

The fairness criterion defined on controlled direct causal effect claims that the prediction Ŷ is fair
with respect to the sensitive attribute A if P (Ŷ = ŷ∣do(A = a,X = x)) = P (Ŷ = ŷ∣do(A =

a
′
,X = x)) holds for all possible values of ŷ and any value that A and X can take. This notion

corresponds to the notion of interventional fairness where Xad = X. Proposition 4.1 implies that it
is always identifiable under our modeling strategy and is given by f(ŷ∣do(a), do(x)) = f(ŷ∣a,x).

Definition F.3 (No proxy discrimination). (Kilbertus et al., 2017) A predictor Ŷ exhibits no proxy
discrimination based on the proxy P if for any value that P can take,

P (Ŷ = ŷ∣do(P = p)) = P (Ŷ = ŷ∣do(P = p
′)).

This fairness criterion corresponds to the interventional fairness where A = P and Xad = ∅. Under
the proposed modelling technique on Ŷ , Proposition 4.1 implies that the term P (Ŷ = ŷ∣do(P = p))
is identifiable if and only if there exists no pair of nodes P ∈ P and V ∈ V\P such that
P − V is in G. In this case, the causal query f(ŷ∣do(p)) can be expressed as f(ŷ∣do(p)) =

∫ f(ŷ∣v)∏Vi⊆V
f(vi∣pa(vi,G))dv′, where V

′
= V\P, (V1, ...,Vm) = PCO(V′

,G), with
pa(vi,G) representing values of Pa(vi,G) that agree with p.
Definition F.4 (Path-specific causal effect). (Avin et al., 2005) Given a causal path set π, the π-
specific effect of the value change of A from a to a

′ on Ŷ = ŷ through π is given by

PEπ(a,a′) = P (Ŷ = ŷ∣do(A = a
′∣π), do(A = a∣π̄)) − P (Ŷ = ŷ∣do(A = a)),

where P (Ŷ = ŷ∣do(A = a
′∣π), do(A = a∣π̄)) represents the post-intervention distribution of Ŷ

where the effect of intervention do(A = a
′) is transmitted only along π while the effect of interven-

tion do(A = a) is transmitted along the other paths.

The fairness criterion defined on path-specific causal effect claims that a predictor Ŷ achieves path-
specific causal fairness with respect to the sensitive attribute A and the path set π if PEπ(a,a′) = 0

holds for all possible value of ŷ and any value that A can take. However, the term in PEπ(a,a′),
P (Ŷ = ŷ∣do(A = a

′∣π), do(A = a∣π̄)), also known as a nested counterfactual query, cannot be
identified by the formula in Proposition 4.1 on MPDAG. Similarly, our proposed method cannot
deal with the counterfactual fairness or path-specific counterfactual fairness defined below. That is
because the ongoing challenge of the identification of the counterfactual queries in these notions on
MPDAGs, specifically, P (ŶA←a′(U) = y∣X = x,A = a) and P (ŶA=a′∣π,A=a∣π̄∣O = o).
Definition F.5 (Counterfactual fairness). (Kusner et al., 2017, Definition 5) We say the prediction
Ŷ is counterfactually fair if under any context X = x and A = a,

P (ŶA←a(U) = ŷ∣X = x,A = a) = P (ŶA←a′(U) = ŷ∣X = x,A = a),
for all possible value of ŷ and any value attainable by A.
Definition F.6 (Path-specific counterfactual fairness). (Chiappa, 2019; Wu et al., 2019b) Given a
factual condition O = o where O ⊆ {A,X, Ŷ } and a causal path set π, predictor Ŷ achieves the
path-specific counterfactual fairness if

P (ŶA=a′∣π,A=a∣π̄ = ŷ∣O = o) = P (ŶA=a = ŷ∣O = o),
for all possible value of ŷ and any value attainable by A.
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G SUPPLEMENTARY EXPERIMENTAL RESULTS

G.1 CAUSAL GRAPHS FOR ONE SIMULATION
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Figure 10: (a) is one of the generated DAG D′ with 10 nodes and 15 directed edges. The randomly
selected sensitive attribute is represented by A and the outcome attribute is Y ; (b) is the subgraph
of D′ over all of the observable variables except Y , denoted by DAG D; (c) is the corresponding
CPDAG C such that D ∈ [C]; (d) With the background knowledge {A → B,A → C,A → D,A →
N}, we can obtain the MPDAG G, such that D ∈ [G]. The definite non-descendant of A can be
found to be {E} by leveraging Algorithm 3; (e) is the extended-G with Ŷ , denoted as G∗.
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G.2 CAUSAL GRAPHS FOR THE UCI STUDENT DATASET

The causal graphs for the UCI Student Dataset is provided in Figure 11. The attribute in-
formation can be found at https://archive.ics.uci.edu/ml/datasets/Student+
Performance.
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(b) MPDAG G ′.
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(d) An arbitrary DAG D in Markov equivalence class of G.

Figure 11: The causal graphs for Student dataset. (a) is the CPDAG C learnt from the observational
data; (b) Given the background knowledge that the age is the parent of schoolsup and school, we
can have the MPDAG G ′ by leveraging Meek’s rule; (c) Considering the additional background
knowledge constraint that the sensitive attribute that cannot have any parent in the graph, we can
obtain the MPDAG G; (d) is an arbitary DAG D in the Markov equivalence class of G.

G.3 MORE EXPERIMENTAL DETAILS ON THE UCI STUDENT DATASET

We employ the GES structure learning algorithm (Chickering, 2002a) implemented in TETRAD
(Ramsey et al., 2018), a general causal discovery software, to learn the CPDAG from the dataset, ex-
cluding the target attribute Grade. After uploading the preprocessed data, we can learn the CPDAG
C. The evolution of the CPDAG to MPDAG is shown in Figure 11 in Appendix G.2. Our experi-
ments are carried out on the MPDAG G in Figure 11c. In this dataset, the definite descendants of
sex can be identified as {Walc, goout,Dalc, studytime} and all the other nodes are definite non-
descendants of sex.
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The dataset is divided into three sets: training, validation, and test, in an 8:1:1 ratio. Interven-
tional data on sex = female and sex = male in the test set is obtained via splitting the test data
by different values of sex. On the other hand, the interventional data for training and valida-
tion sets are generated according to the causal identification formula. To generate interventional
data, we first apply Algorithm 2 to the MPDAG G in Figure 11c. This gives us an ordered
list of the bucket decomposition of vertices in G: {{age}, {schoolsup}, {school}, {address},
{internet}, {traveltime}, {sex}, {Walc}, {studytime}, {Dalc}, {goout}, {Mjob,Medu,Fedu},
{Fjob}, {reason}, {famsup,paid,higher}, {guardian}, {activities}, {famsize}, {romantic},
{famrel}, {Pstatus}, {freetime}, {nursery}, {health}, {absences}}. For each pair of buckets
and its parents, we fit a conditional multivariate distribution using mixture density networks Bishop
(1994) for continuous variables and probability contingency tables for discrete variables. For ex-
ample, Figure 12 demonstrates the fitting performance on the attributes school, address, internet
and traveltime. Based on the fitted conditional distribution, we generate 395 interventional
data points for sex = female and sex = male, respectively. The proportion for training and val-
idation interventional data is 8:2. Additionally, in our ϵ-IFair model, the λ is set to be
[0, 1, 40, 100, 130, 175, 250]. For each model, we run it 20 times with different seeds and report
the average results in the main section.
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Figure 12: The fitting performance on the attributes school, address, internet and traveltime in
the Student dataset. ‘Real’ represents the observational data where sex = male, while ‘Gener’ rep-
resents the generated interventional data on sex = male with the fitted conditional density. To better
show the fitting performance, a very small amount of noise is added to discrete variables.
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G.4 CAUSAL GRAPHS FOR THE CREDIT RISK DATASET

The causal graphs for the Credit Risk Dataset is provided in Figure 13. The attribute information can
be found at https://www.kaggle.com/datasets/laotse/credit-risk-dataset.
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(b) An arbitrary DAG D in Markov equivalence class of G.

Figure 13: The causal graphs for the Credit Risk dataset. (a) is the learned MPDAG G from the ob-
servational data with tier ordering constraint: Age is placed in the first tier, while all other variables
are in the second tier; (b) is an arbitrary DAG D in the Markov equivalence class of G.

G.5 MORE EXPERIMENTAL DETAILS ON THE CREDIT RISK DATASET

To obtain an MPDAG over all variables except Loan status, we utilize the GES structure learning
algorithm (Chickering, 2002a) implemented in TETRAD. When learning the graph, we consider the
tier ordering as background knowledge, where Age is placed in the first tier while all other variables
are in the second tier. The resulting MPDAG G is depicted in Figure 13a in Appendix G.4. Since
there are no definite non-descendants of Age in this dataset, an IFair model is not applicable.
The process of interventional data generation and model training follows a similar approach as
Section 5.2.1.

After preprocessing, we focus on two specific age groups: 23 and 30. The age group of
23 consists of 3,413 records, while the age group of 30 has 1,126 records. We divide the
whole dataset of 4539 records into three sets: training, validation, and test, using an 8:1:1
ratio. Interventional data for the test set is obtained by splitting the test data by Age = 23
and Age = 30. Similarly, the interventional data for training and validation sets are gener-
ated according to the causal identification formula. To generate interventional data, we first
apply Algorithm 2 to the MPDAG G in Figure 13a. This provides us with an ordered list of
the bucket decomposition of vertices in G: {{Age}, {Historical Length}, {Loan Intent},
{Income,Home Status,Employment Length}, {Interest Rate}, {Loan Grade},
{Historical Default}, {Loan Amount}, {Loan Percent Income}. For each pair of buckets
and its parents, we fit a conditional multivariate distribution using mixture density network Bishop
(1994) for continuous variables and probability contingency tables for discrete variables. As an
example, Figure 14 demonstrates the fitting performance on the attribute Loan Percent Income
and its parents Income,Loan Amount,Home Status,Historical Default. Based on the fitted
conditional distribution, we generate 4539 interventional data points for age = 23 and age = 30,
respectively. The proportion for training and validation interventional data is 8:2. Additionally, in
our ϵ-IFair model, the λ is set to be [2, 4, 6, 10, 15, 150]. For each model, we run it 10 times with
different seeds and report the average results in the main section.
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Figure 14: The fitting performance on the attribute Loan Percent Income and its parents Income,
Loan Amount, Home Status, Historical Default in the Credit Risk dataset. ‘Real’ represents the
observational data where Age = 30, while ‘Gener’ represents the generated interventional data on
Age = 30 by the fitted conditional density. To better show the fitting performance, a very small
amount of noise is added to discrete variables.
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G.6 EXPERIMENTS INVOLVING NON-EMPTY ADMISSIBLE VARIABLE SET

For graphs with node d = {5, 10, 20, 30} and the corresponding edge s = {8, 20, 40, 60}, with the
same basic settings and evaluation metrics as Section 5.1, we randomly choose one, one, two and
three admissible variables for each graph setting respectively. The admissible variable is intervened
to be the mean of that variable in the observational data. The accuracy fairness trade-off plot is
shown in Figure 15. We can see that it follows a similar trend as Section 5.1. For certain values
of λ, we can simultaneously achieve low RMSE comparable to Full model and low unfairness
comparable to IFair.
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Figure 15: Accuracy fairness trade-off for the case involving non-empty admissible variable set.

G.7 EXPERIMENTS BASED ON MORE COMPLICATED STRUCTURAL EQUATIONS

To demonstrate the generality of our method, we generate each variable Xi based on a non-linear
structural equation given by:

Xi = fi(pa(Xi) + ϵi), i = 1, ..., n, (5)

where the causal mechanism fi is randomly selected from functions such as linear, sin, cos, tanh,
sigmoid, and their combinations. The noise term ϵi is sampled from Gaussian distribution. With
the same basic settings and evaluation metrics as described in Section 5.1, we present the accu-
racy fairness trade-off plot in Figure 16 in solid line. We can see that it follows a similar trend as
Section 5.1. For some λ, we can simultaneously achieve low RMSE comparable to Full model
and low unfairness comparable to IFair. Additionally, we also include the results obtained when
the interventional data is generated from the ground-truth structural equations in dotted line. The
discrepancy between the two lines reflects the bias introduced by the approximation of conditional
densities. The minimal discrepancy observed in Figure 16 suggests that the conditional densities are
well fitted. Specifically, we analyze model robustness on the approximation of conditional densities
on the linear data in Appendix G.10.

G.8 EXPERIMENTAL ANALYSIS ON MODEL PERFORMANCE WITH VARYING AMOUNT OF
GIVEN DOMAIN KNOWLEDGE

The performance of baseline models Full and Unaware remain unaffected by the amount of back-
ground knowledge. When all ancestral relations between the sensitive attribute and other variables
are definite, the performance of IFair model remains consistent regardless of the additional back-
ground knowledge. On the other hand, for the ϵ-IFairmodel, once the causal effect on an MPDAG
is identifiable, additional background knowledge does not theoretically impact the performance at a
given λ since the same causal identification formula can be applied. However, in practical experi-
ments, slight variations may arise due to the error in fitting of different conditional densities. To vary
the amount of given background knowledge, we adjust the proportion of the undirected edges’ true
orientation in a CPDAG that is considered as the background knowledge. In the ‘10nodes20edges’
setting, we increase the proportion from 0.1, 0.3, 0.6 to 1.0. The ‘BK (%)’ value quantifies the
proportion of the undirected edges’ true orientation that is considered background knowledge. The
trade-off plots in Figure 17 illustrate this relationship between the amount of background knowledge
and the resulting tradeoff between fairness and accuracy.
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Figure 16: Accuracy fairness trade-off plots for the non-linear synthetic data. The solid line (‘Gene’)
depicts the results when the interventional data is generated by the fitted conditional densities, while
the dotted line (‘Real’) depicts the results when the interventional data is generated by the ground-
truth structural equations.
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Figure 17: Accuracy fairness trade-off plots with varying amount of given background knowledge
on the graph setting ‘10nodes20edges’.

G.9 EXPERIMENTAL ANALYSIS ON MODEL ROBUSTNESS ON CAUSAL DISCOVERY
ALGORITHMS

In Section 5.1, we derive the ture CPDAG directly from the known DAG without utilizing any causal
discovery algorithm. However, in practical scenarios where the true DAG is unknown, the CPDAG
can only be obtained from causal discovery algorithms. To assess the robustness of our model
with respect to causal discovery algorithms, we employed the Greedy Equivalence Search (GES)
procedure Chickering (2002a) to learn the corresponding CPDAG from the synthetic data. Under
the ‘10nodes20edges’ graph setting, Figure 18a provides a comparison between the results obtained
when the CPDAG is derived from the true DAG and when it is learned from the observational data
using the GES algorithm. Both sets of results exhibit a similar trend, indicating that our model
is robust to the GES algorithm for causal discovery. Additionally, for reference, we show each
case with the scenario where the interventional data is generated from the ground-truth structural
equation in Figure 18b and Figure 18c respectively. Similarly, we obtain analogous results for the
‘20nodes40edges’ graph setting, which are displayed in Figure 18d, Figure 18e and Figure 18f.
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Figure 18: Accuracy fairness trade-off plots analyzing model robustness on causal discovery algo-
rithms on the graph settings ‘10nodes20edges’ and ‘20nodes40edges’. In (b),(c),(e) and (f), the solid
line (‘Gene’) depicts the results when the interventional data is generated by the fitted conditional
densities, while the dotted line (‘Real’) depicts the results when the interventional data is generated
by the ground-truth structural equations.

G.10 EXPERIMENTAL ANALYSIS ON MODEL ROBUSTNESS ON CONDITIONAL DENSITIES
APPROXIMATION

Using the same experimental setting as described in Section 5.1, we present the accuracy fairness
trade-off plot for linear synthetic data in Figure 19 in a solid line. In order to analyze the extent to
which bias is introduced by approximating conditional densities, we also include the results obtained
when the interventional data is generated from the ground-truth structural equations in Figure 19
in dotted line. The discrepancy between the two lines reflect the bias introduced by fitting the
conditional densities. The minimal discrepancy observed in Figure 19 suggests that the conditional
densities are well fitted.

G.11 EXPERIMENTAL ANALYSIS ON MODEL PERFORMANCE ON UNIDENTIFIABLE CASES

Under the graph setting ‘10nodes20edges’, utilizing the same data generation process as in Sec-
tion 5.1, we conduct experiments under a scenario where no explicit background knowledge is added
for fairness identification. In cases where the MPDAG is unidentifiable, we apply the methodology
proposed in Section 4.2. We select four exemplar unidentifiable MPDAGs, encompassing 2, 4, 2 and
9 valid MPDAGs separately. Figure 20 shows the prediction and fairness results for each of them,
which is denoted as ’Unidentifiable’. Additionally, we compare these results with ones trained on
the ground-truth MPDAGs, wherein the causal effect from A to Ŷ is identifiable, which is denoted
by ’Identifiable’. As depicted in Figure 20, we can see that the trade-off between accuracy and fair-
ness persists in these unidentifiable cases. Interestingly, compared with the prediction learnt solely
on the ground-truth identifiable MPDAG, the prediction learnt on all possible MPDAGs does not
necessarily deteriorate when achieving equivalent levels of unfairness. This could be attributed to
the fact that they are penalizing different measures on fairness.
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Figure 19: Accuracy fairness trade-off plots analyzing model robustness on the approximation of
conditional densities for the linear synthetic data. The solid line (‘Gene’) depicts the results when
the interventional data is generated by the fitted conditional densities, while the dotted line (‘Real’)
depicts the results when the interventional data is generated by the ground-truth structural equations.
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(a) Example 1.
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(b) Example 2.
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(c) Example 3.
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(d) Example 4.

Figure 20: Accuracy fairness trade-off plots analyzing model performance on four exemplar uniden-
tifiable cases, which is denoted as ’Unidentifiable’. ’Identifiable’ denotes the results learnt solely
from the ground-truth MPDAG with identifiable results. The solid line (‘Gene’) depicts the results
when the interventional data is generated by the fitted conditional densities, while the dotted line
(‘Real’) depicts the results when the interventional data is generated by the ground-truth structural
equations.

H ADDITIONAL RELATED WORK ON CAUSAL EFFECT IDENTIFICATION ON
MPDAGS

Identifying causal effects from a causal graph that represents observational data under the assump-
tion of causal sufficiency is a fundamental problem. When the causal DAG is known, it is possible
to identify and estimate all causal effects from the observational data (see e.g. Pearl (1995); Pearl
& Robins (1995); Robins (1986); Galles & Pearl (1995). In this study, we focus on identifying
causal effects in the context of an MPDAG G. We consider a causal effect to be identifiable in an
MPDAG G if the interventional density of the response can be uniquely computed from G. The
precise definition of identifiability of causal effects is provided in Definition H.1.
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Definition H.1 (Identifiability of Causal Effects). (Perkovic, 2020, Definition 3.1) In an MPDAG
G = (V,E), let X and Y be disjoint node sets. The causal effect of X on Y is identifiable in G if
f(y∣do(x)) is uniquely computable from any observational density consistent with G.

Hence, there exist no two DAGs D1 and D2 in [G] such that

1. f1(v) = f2(v) = f(v), where f is an observational density consistent with G, and

2. f1(y∣do(x)) ≠ f2(y∣do(x)), where f1(⋅∣do(x)) and f2(⋅∣do(x)) are interventional den-
sityies consistent with D1 and D2 respectively.

In recent years, there has been extensive research focused on the identification of causal effects in
MPDAGs. One notable contribution in this field is the generalized adjustment criterion proposed
by Perković et al. (2015); Perkovic et al. (2017); Perkovi et al. (2018), which provides a sufficient
condition for identifying causal effects. However, it is important to note that this criterion is not
necessary for causal effect identification. To address this limitation, Perkovic (2020) introduces
a graphical criterion that is both necessary and sufficient for the identification of causal effects in
MPDAGs. In addition to the above developments, IDA algorithms and joint-IDA Maathuis et al.
(2009); Nandy et al. (2017); Perkovic et al. (2017); Witte et al. (2020); Fang & He (2020); Liu et al.
(2020) have been proposed for identifying the total effect of a variable A on the response Y in an
MPDAG G. These algorithms consider the orientation configurations of edges connected to variable
A and enumerate a set of MPDAGs where the total effect is identified. Specifically, Guo & Perkovic
(2021) provide a characterization of the minimal additional edge orientations required to identify a
given total effect.

I DISCUSSION ON ACCURACY-FAIRNESS TRADE-OFF

The trade-off between accuracy and fairness has been highlighted in numerous studies on algo-
rithmic fairness (Martinez & Bertran, 2019; Zhao & Gordon, 2019; Menon & Williamson, 2018;
Zliobaite, 2015; Chen et al., 2018; Wei & Niethammer, 2022). These studies highlight that im-
proving fairness measures often comes at the cost of reduced accuracy in machine learning models.
However, it is important to note that the existence of an accuracy-fairness trade-off is not universal
and depends on the specific data setting. Several recent works have challenged the notion that ac-
curacy must always decrease as fairness increases (Dutta et al., 2020; Friedler et al., 2021; Yeom
& Tschantz, 2018). For instance, in the synthetic dataset discussed in Section 5.1, we observed an
accuracy fairness trade-off, where improving fairness measures resulted in a decrease in accuracy.
However, such a trade-off was not apparent in Figure 15d. The authors in (Wick et al., 2019; Sharma
et al., 2020; Dutta et al., 2020) provide theoretical and empirical insights into when the trade-off ex-
ists and when it does not. These findings suggest that the trade-off relationship between accuracy
and fairness is context-dependent. It highlights the need for further research to better understand the
conditions under which the accuracy fairness trade-off arises and identify strategies to mitigate or
overcome it.
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