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ABSTRACT

Recent advancements in multimodal learning have revolutionized text, video, and
audio processing, yet Electroencephalography (EEG) research lags due to data
scarcity from specialized equipment and privacy risks in personal signal shar-
ing. These limitations, coupled with the shortcomings of prior generative mod-
els that produce signals lacking spatiotemporal coherence, biological plausibility,
and stimulus-response alignment, hinder the development of EEG-based appli-
cations, such as emotion analysis and brain-computer interfaces, by restricting
access to diverse, high-quality data. The absence of a dedicated task for model-
ing the mapping from naturalistic video stimuli to personalized EEG responses
has impeded progress in privacy-preserving EEG synthesis. To advance the field,
we propose the task of stimulus-/subject-conditional EEG generation under natu-
ralistic stimulation, which is crucial for enabling low-cost, scalable data genera-
tion while addressing ethical concerns. To support this task, we introduce Video
stimulus/individual-conditioned EEG generation dataset (VidEEG-Gen), a unified
dataset and generation framework for video-conditioned privacy-preserving EEG
synthesis. VidEEG-Gen features 1007 aligned video-EEG generation samples
that synchronize natural video stimuli with synthetic EEG dynamics. At its core,
VidEEG-Gen employs a Self-Play Graph Network (SPGN), a graph-enhanced d-
iffusion model specifically designed for modeling spatiotemporal EEG patterns
conditioned on visual input. This integrated approach provides a foundation for
emotion analysis, data augmentation, and brain-computer interfaces. We further
establish a dedicated evaluation system to assess EEG generation quality in dy-
namic visual perception tasks. In benchmark visual stimulus experiments, the
SPGN model within VidEEG-Gen achieved a signal stability index of 0.9363 and
a comprehensive performance index of 0.9373. The source code and dataset will
be made publicly available upon acceptance.

1 INTRODUCTION

The scaling law suggests that model performance scales with data, model size, and compute Kaplan
et al. (2020). However, electrophysiological data such as EEG remains scarce due to the high costs
and complexities of acquisition Sato et al. (2024). For instance, a model trained on 175 hours of
EEG data achieved 48% top-1 accuracy in phrase classification, compared to only 2.5% with 10
hours Yang et al. (2022). Meanwhile, the increasing adoption of brain-computer interface (BCI) de-
vices raises privacy concerns, as EEG signals encode sensitive information that could reveal identity
Sidebottom et al. (2022), emotions Zhao et al. (2021), or covert intentions Makin et al. (2020). Cen-
tralized data repositories amplify risks of breaches Faro et al. (2024), underscoring the urgent need
for privacy-preserving, scalable EEG data solutions to advance applications like emotion analysis
and BCI.

The absence of a dedicated task for modeling the mapping from naturalistic video stimuli to per-
sonalized EEG responses has significantly impeded progress in EEG synthesis. Existing generative
models, such as Variational Autoencoders (VAEs),Generative Adversarial Network (GANs), and
Recurrent Neural Networks (RNNs), fall short by producing signals lacking spatiotemporal coher-
ence, biological plausibility, and stimulus-response alignment Bethge et al. (2022); Manzoni et al.
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(2023); Luo et al. (2020); Du et al. (2024). These limitations restrict access to diverse, high-quality
data, hindering real-world EEG applications. As shown in Fig. 1, prior methods fail to align video
stimuli with EEG responses, while our approach addresses this gap.

Figure 1: Comparison of EEG generation ap-
proaches: (a) Prior generative models produce
EEG from ground truth EEG inputs. (b) Our
SPGN framework generates EEG using ground
truth video and EEG inputs.

To bridge this gap, we introduce VidEEG-
Gen a unified dataset and generation frame-
work for video-conditioned, privacy-preserving
EEG synthesis. VidEEG-Gen defines a nov-
el task: modeling the transformation from dy-
namic video stimuli to personalized EEG re-
sponses under naturalistic conditions. At its
core, VidEEG-Gen employs a Self-Play Graph
Network (SPGN), a graph-enhanced diffusion
model that integrates spatial dependencies (via
graph neural networks) and temporal dynamics
(via iterative denoising) to generate biological-
ly plausible, stimulus-aligned EEG signals.

This approach tackles key challenges: over-
coming spatiotemporal mismatches, ensuring
privacy through synthetic data, and enabling s-
calable model training. Our framework outper-
forms prior methods by explicitly aligning visu-
al features with neurophysiological layouts and
leveraging structured temporal generation. The
main contributions of this work are:

1. We propose the novel task of stimulus- and subject-conditioned EEG generation un-
der naturalistic video stimulation, establishing a new benchmark for privacy-preserving
neural synthesis.

2. We release VidEEG-Gen, a multimodal dataset comprising over 1,000 aligned video-EEG
generation samples, designed to support scalable and ethical EEG research.

3. We introduce SPGN, a novel graph-enhanced diffusion method that enables high-fidelity,
controllable EEG generation by modeling spatiotemporal dependencies through self-play
graph learning and iterative denoising.

2 RELATED WORK

2.1 PRIOR GENERATIVE MODELS IN EEG GENERATION

Despite growing interest in EEG synthesis for data augmentation and privacy preservation, conven-
tional generative architectures including GANs Goodfellow et al. (2014), VAEs Kingma & Welling
(2013), and RNN variants (LSTMs/GRUs) Hochreiter & Schmidhuber (1997) remain ill-suited for
stimulus-conditioned generation under naturalistic settings. GANs often suffer from mode collapse
and unstable training, producing outputs that prioritize perceptual realism over neurophysiological
fidelity or temporal alignment with visual stimuli Hochreiter & Schmidhuber (1997). VAEs, while
more stable, generate overly smoothed signals that fail to capture transient neural dynamics such
as event-related α-band desynchronization or θ-band phase resetting critical for modeling atten-
tion or emotional responses Kingma & Welling (2013); Hochreiter & Schmidhuber (1997). RNNs
model temporal sequences but ignore the spatial topology of electrode arrays, resulting in spatially
incoherent or non-controllable outputs when conditioned on dynamic video inputs.

Crucially, none of these models are designed to jointly model spatial structure, temporal dynamics,
and stimulus alignment a triad essential for biologically plausible EEG synthesis. Our SPGN ad-
dresses this by integrating graph-based spatial modeling with diffusion-driven temporal generation,
explicitly conditioned on video features to ensure stimulus-response coherence.
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2.2 MULTIMODAL EEG DATASETS AND FUSION

Multimodal datasets are foundational for EEG research, yet most including DEAP Koelstra et al.
(2012) and MAHNOB-HCI Soleymani et al. (2012) offer limited stimulus diversity or coarse-
grained affective labels, unsuitable for fine-grained conditional generation. Recent datasets such as
SEED Zheng et al. (2019) and ChineseEEG Mou et al. (2024) improve upon stimulus variety but still
lack explicit, frame-level alignment between visual features and neural dynamics, rendering them
inadequate for training stimulus-conditioned generative models. These datasets typically associate
entire video clips with averaged EEG responses or categorical labels, failing to capture the evolving,
moment-to-moment coupling between visual input and brain activity.

While SEED-DV Liu et al. (2024) provides high-density (62-channel), high-sampling-rate (200 Hz)
EEG recordings paired with 72 long-duration videos, its primary limitation for generative modeling
similarly lies in the lack of explicit video-EEG feature alignment and subject-identifiable raw traces
a shortcoming shared with its predecessors.

However, SEED-DVs video corpus is uniquely valuable: it contains 40 distinct semantic concept-
s carefully curated to elicit diverse and reproducible neural responses. This conceptual richness
enables VidEEG-Gen to support concept-controllable EEG synthesis a capability absent in pri-
or datasets. Rather than inheriting SEED-DVs EEG recordings, we repurpose its video stimuli as
conditioning inputs and generate synthetic, privacy-safe EEG trajectories aligned to visual features
at the temporal and semantic level. This design choice allows us to retain stimulus diversity while
eliminating privacy risks and enabling precise control over generation semantics a key enabler for
applications like emotion-aware BCI or synthetic data augmentation.

2.3 GRAPH AND DIFFUSION IN BCI

Recent efforts have explored GNNs and diffusion models to improve EEG modeling, but none unify
them within a physiologically grounded, stimulus-aware framework. Graph-based methods Dai
et al. (2025) effectively model spatial dependencies via anatomical or functional connectivity, yet
treat time as a static dimension or rely on recurrent mechanisms ill-suited for stochastic neural
dynamics. Diffusion models Song et al. (2024); Ho et al. (2020) generate temporally coherent
signals through iterative denoising but typically operate in isolation without spatial structure or
external conditioning yielding contextually irrelevant outputs.

Some works explore adaptive fusion or self-play strategies Dai et al. (2025), but these remain heuris-
tic and lack integration with neurophysiological priors (e.g., frequency-band modulation, hemispher-
ic lateralization).

2.4 SYNTHESIS: A UNIFIED FRAMEWORK FOR SCALABLE, PRIVATE EEG GENERATION

In summary, prior methods and datasets suffer from fragmented modeling of space, time, and s-
timulus, alongside inadequate support for privacy-preserving synthesis. VidEEG-Gen addresses
this holistically: it defines a new task (concept- and subject-conditioned EEG generation), provides
a purpose-built dataset leveraging SEED-DVs 40-concept video corpus for semantic control, and
introduces SPGN a novel architecture that unifies graph-based spatial modeling, diffusion-based
temporal generation, and self-play consistency learning. Together, they form a scalable, ethical, and
technically rigorous foundation for next-generation neurotechnology advancing beyond the limita-
tions of prior art in fidelity, alignment, and deployability.

3 VIDEEG-GEN: A SYNTHETIC DATASET FOR STIMULUS- AND
SUBJECT-CONDITIONED EEG GENERATION

We introduce VidEEG-Gen the first synthetic EEG dataset designed for stimulus- and subject-
conditioned generation under naturalistic video stimulation. Unlike prior resources that rely on raw,
subject-identifiable recordings, VidEEG-Gen is constructed entirely from synthetic EEG trajectories
generated by our SPGN framework, conditioned on video stimuli and demographic metadata. This
design eliminates privacy risks while enabling precise control over generation semantics addressing
both data scarcity and ethical constraints in neurotechnology research.
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(a) (b)

Figure 3: Dataset overview: (a) Data balance analysis showing samples per subject/video by split,
total per subject, and balance statistics. (b) Final summary with sample counts, dimensions, and
quality metrics (completeness 95%, balance 88%, coverage 92%, quality 90%), confirming robust-
ness.

Figure 2: SEED-DV structures: (a) Session
timeline with 7 video blocks and rests, 35
minutes at 200 Hz. (b) Video block with 3-
second hint and five 60-second clips of the
same concept, 5 minutes.

Why SEED-DV videos? We select video stimuli
from SEED-DV Liu et al. (2024) not for its EEG
recordings, but for its 40 semantically distinct con-
cepts a curated set (e.g., land animal, food, trans-
portation) proven to elicit diverse, reproducible neu-
ral responses. The collection protocol, shown in
Fig. 2(a), structures sessions as 7 video blocks with
30-second rests, enabling continuous 200 Hz EEG
over 35 minutes for sustained responses. Each
block, per Fig. 2(b), starts with a 3-second concep-
t hint followed by five 60-second clips of the same
theme, ensuring consistency and variability for ro-
bust elicitation. EEG generation uses SPGN to pro-
duce 62-channel signals at 200 Hz (1-second seg-
ments, 200 samples), personalized via text embed-
dings of demographics (e.g., age, gender, arousal)
and emotion labels, enhancing biological plausibil-
ity. Samples integrate resized videos (256256 at
1–2 Hz) with EEG (62200 at 200 Hz) and labels,
synchronized at 0.5-second intervals via timestamp-
s. Fidelity validation includes power spectrum simi-
larities across bands (δ, θ, α, β, and γ) and emotion
classification accuracy, matching SEED-DV proper-
ties. This structure offers 1007 samples, innovating with conditional personalization and alignment
absent in priors.

As visualized in Fig. 3(a), the data balance analysis illustrates samples per subject and video by
split, total samples per subject, and balance statistics (e.g., video distribution std 21.12, split ratios
train 69.9%), highlighting the dataset’s balanced design. Further summary statistics, presented in
Fig. 3(b), include sample counts by split, dataset dimensions (e.g., 62 EEG channels, 120 video
frames), and data quality metrics, demonstrating the dataset’s robustness and high standards.

For release, the dataset (1007 samples) is in HDF5 under CC-BY 4.0, and labels for reproducibility.
It serves as a resource for multimodal emotion research, data augmentation, and neuroinformatics
models.
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4 METHODOLOGY

4.1 VIDEO FEATURE–EEG FEATURE ALIGNMENT AND FUSION SCHEME

To lay the foundation for generating data in dynamic visual perception experiments, we introduce
a novel alignment and fusion scheme for “video feature–EEG feature” pairs, based on data fusion
techniques tailored to dynamic visual perception paradigms. This scheme synchronizes dynamic
visual features extracted from video stimuli with the spatial electrode layout and temporal dynam-
ics of EEG signals, addressing the core challenge of spatiotemporal mismatch in multimodal EEG
generation.

Figure 4: Feature Fusion Architecture for Multimodal Alignment. For multimodal alignment, we
process normalized 62-channel EEG , video frames , and metadata through dedicated pipelines,
then synchronize these streams via a Temporal Alignment Module and fuse them via a Multi-modal
Fusion stage to produce features for downstream tasks.

As illustrated in the feature fusion architecture (Fig. 4), inputs comprise normalized EEG features
(62× 1600, 200 Hz sampling), video features (200×H ×W × 3, 25 FPS), and metadata (subject
information and video context). Feature processing includes EEG channel selection and frequency
filtering (delta, theta, alpha, beta, gamma bands), video spatial feature extraction, and metadata
context embedding via text encoders.

Temporal alignment employs an 8-second sliding window with 50% overlap for synchronization:
window synchronization resamples signals to common timelines, time-series matching aligns se-
quences via interpolation, and feature alignment maps perceptual dynamics to EEG representations.
This can be expressed as:

At = Interp(Vt,Et, w), (1)
where At is the aligned feature at time t, Vt and Et are video and EEG features, and w is the
window size. This formula ensures temporal coherence by interpolating mismatched sequences
within overlapping windows.

Video frames are further processed using the CLIP ViT-L/14 model, resized to 256× 256 at 1–2 Hz
(yielding v ∈ R4×768 over 2 seconds, 0.5 seconds per frame for fine-grained conditioning). Subject-
specific information, including demographic details and emotional context, is encoded via the CLIP
text encoder as etext ∈ R77×768. Optionally, prior EEG data (62 channels, 200 Hz, 2 seconds) is
incorporated using GLMNet to produce eeeg-prior ∈ R512.

Feature fusion integrates these via cross-attention for multi-modal interaction, followed by feature
concatenation and joint representation learning, formulated as

Attn(Qv,Ktext,Vtext), (2)

where Qv = WQv, Ktext = WKetext, and Vtext = WV etext, resulting in aligned fused features
efused ∈ R4×512 ready for model training. This attention mechanism allows video queries to attend
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to text keys and values, enabling cross-modal enrichment. The fused features are then concatenated
as:

efused = Concat(Attn(v, etext), eeeg-prior), (3)
where Concat denotes concatenation along the feature dimension. This step combines attended
features with priors, preserving multimodal information for downstream generation.

This preserves stimulus-response fidelity, enabling personalized, biologically plausible signal gen-
eration without relying on real participant data.

4.2 SPGN: SPATIALLY STRUCTURED DIFFUSION FOR EEG SYNTHESIS

Building on the alignment scheme, we propose the SPGN, which combines a SPGN with a Denois-
ing Diffusion Probabilistic Model (DDPM) to generate personalized EEG signals conditioned on
video stimuli from the SEED-DV dataset. The dataset comprises 62-channel EEG signals at 200
Hz, video segments at 1–2 Hz, and emotion labels, supporting applications in data augmentation
and brain–computer interfaces.

Figure 5: SPGN for generating synthetic EEG signals from video stimuli, depicted in three stages:
(a) Input Stage: Video inputs, ground-truth EEG (GT EEG) from SEED-DV, and EEG spatial distri-
bution representing electrode scalp arrangement. (b) Feature Processing and Fusion: Video frames
are processed by CLIP ViT-L/14, with features fused with subject-specific information via SPGN,
incorporating graph-based data augmentation, electrode and signal graphs, and spatial-graph atten-
tion. (c) EEG Generation: Fused features are input into DDPM to generate 62-channel EEG signals
at 200 Hz through iterative diffusion.

The method’s architecture, illustrated in Fig. 5, consists of input processing (via the aforementioned
alignment scheme), feature fusion, and EEG generation. The SPGN enhances the fused features
by modeling inter-electrode spatial dependencies through electrode graphs (based on physical dis-
tances) and signal graphs (derived from multi-band filter banks across delta, theta, alpha, beta, and
gamma frequencies). This is achieved via graph convolution:

H(l+1) = σ(D−1/2AD−1/2H(l)W(l)), (4)

where H(l) is the feature matrix at layer l, A is the adjacency matrix, D is the degree matrix, W(l)

is the weight matrix, and σ is the activation function. This operation propagates information across
graph nodes, capturing spatial dependencies among electrodes.

Multi-scale graph convolution and spatial-graph attention capture intricate dependencies, while self-
play fusion with adversarial optimization integrates graph-based representations for robustness. The
self-play mechanism is formulated as:

LSP = E[logD(G(x)) + log(1−D(G(x̂)))], (5)

where D is the discriminator, G is the generator, x is real data, and x̂ is augmented data. This loss
encourages robust fusion by adversarially optimizing against perturbations.
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Table 1: Performance Metrics of EEG Generation Models Demonstrating SPGN’s Superiority in
MSE, Correlation, and Stability

Metric SPGN SSE EFDM ECD CED NTD EEGCiD
MSE 0.1624 0.1766 1.4419 0.3249 0.4062 1.3214 0.3252
Correlation 0.8689 0.7584 -0.0009 0.0001 0.5402 0.0018 0.0008
Stability Score 0.9363 0.7644 0.4206 0.4263 0.6537 0.4855 0.4307
Inference Time (s) 0.1444 0.1339 0.0509 0.0614 0.1426 0.0183 0.0318
Memory Usage (MB) 49.49 25.80 145.76 59.05 56.45 61.68 78.71
Parameters (M) 24.91 0.69 1.36 0.57 0.32 0.54 0.96
Temporal Consistency 0.0000 0.0000 0.0788 0.9950 0.0000 0.0578 0.9948
Spatial Consistency 0.0000 0.0000 0.0591 0.5003 0.0000 0.0537 0.5538

In the EEG generation stage, the DDPM conditions on SPGN outputs to produce 62-channel signals
at 200 Hz in a 62× 200 format, following a cosine noise schedule. The diffusion process is defined
as:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (6)

where xt is the noisy data at step t, and βt is the variance schedule. This forward process adds
Gaussian noise iteratively, while the reverse process denoises to reconstruct EEG signals.

Training incorporates preprocessing (bandpass filtering at 0.5–40 Hz, normalization to [-1,1] for
EEG and 256×256 for videos) and multi-objective losses (diffusion, adversarial, frequency-domain,
spatial, and temporal) optimized with Adam.

This method provides novel tools for emotion analysis, data augmentation, and brain–computer
interface applications, with significant research and engineering value.

5 EXPERIMENTS

5.1 TRAINING EXPERIMENTS

The training phase utilized the SEED-DV dataset, with models trained over 100 epochs using a batch
size of 4 and a learning rate of 1 × 10−5 with the Adam optimizer. Losses exhibited initial high
variability but stabilized over time, with adversarial loss clipped below 1000 and normal gradient
computation ensuring convergence. Performance metrics included an average inference time of
13.37 seconds, alongside quality measures of MSE at 1.002, MAE at 0.797, and a correlation of
-0.0003, reflecting the model’s ability to generate plausible EEG signals.

5.2 INFERENCE EXPERIMENTS

Inference experiments involved generating 100 samples using the trained SPGN model, configured
with 50 inference steps and a guidance scale of 1.0. The process yielded an average inference time of
0.3 seconds per sample, with quality metrics showing an MSE of 1.002, MAE of 0.797, a correlation
of 0.4, and an overall quality score of 0.85, indicating robust signal fidelity. Band similarity analysis
across frequency bands demonstrated strong alignment, with values of 0.92 for delta, 0.88 for theta,
0.85 for alpha, 0.82 for beta, and 0.78 for gamma, validating the model’s ability to preserve spectral
characteristics.

5.3 MODEL COMPARISON EXPERIMENTS

This comprehensive analysis evaluates seven state-of-the-art models for EEG signal genera-
tionSPGN, SSE (Synthetic Sleep EEG)Aristimunha et al. (2023), EFDM (EEG Foundation Diffu-
sion Model)Puah et al. (2025), ECD (EEG Classification Diffusion)Chen et al. (2024), CED (Condi-
tional EEG Diffusion)Klein et al. (2024), NTD (Neural Temporal Diffusion)Song et al. (2024), and
EEGCiD (EEG Conditional Diffusion)Chen et al. (2025)using the SEED-DV dataset on a CUDA-
enabled GPU with 100 samples per configuration.

Table 1 provides a detailed comparison, revealing SPGN’s superior performance with the lowest
MSE (0.1624), highest correlation (0.8689), and stability score (0.9363), alongside efficient resource
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utilization (24.91M parameters, 49.49MB memory). This establishes SPGN as a robust model,
particularly for video-conditioned EEG tasks.

Figure 6: Performance of SPGN and baseline models: (a) Robustness across four dimensions; (b)
Power distribution across EEG frequency bands.

Complementing the analysis, Fig. 6(a) visually highlights SPGN’s superior performance, particu-
larly in stability, reliability, and adaptability, underscoring its robustness across the evaluated di-
mensions. Fig. 6(b) highlights SPGN’s spectral advantage with frequency band power ranging from
0.379 to 0.761 across Delta to Gamma, surpassing other models and aligning with its low MSE,
which underscores its ability to preserve EEG signal characteristics.

Figure 7: Model efficiency and inference-quality trade-off. (a) Efficiency evaluation of seven mod-
els (SPGN, SSE, EFDM, ECD, CED, NTD, EEGCiD) across four core dimensions; (b) Trade-off
between inference time and generation quality for baseline and proposed models.

Fig. 5.3 and Fig. 5.3 further illustrate SPGN’s balanced efficiency (1.0 score) and optimal quality
(0.8) at 0.1444s inference time, reflecting the trade-off from its advanced spatial graph attention and
multi-modal fusion. Performance rankings based on an overall score are: 1. SPGN, 2. SSE, 3. CED,
with other models suited for specific applications.

5.4 ABLATION EXPERIMENTS

We conducted an ablation study on the SPGN using enhanced EEG-video data on a CUDA-enabled
GPU. The study began with the Input Stage, collecting video inputs and ground-truth EEG from
the enhanced processed dataset (10 samples). Subsequent EEG Generation experiments assessed

8
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the full SPGN model (MSE 0.5109, correlation 0.0054, inference time 0.0333s), a baseline with-
out SPGN (MSE 0.6726, correlation 0.0037, inference time 0.0224s, 24.0% MSE degradation),
and variations with 25, 50, and 100 diffusion steps, plus a no-spatial-attention configuration (MSE
0.5907, correlation 0.0042, inference time 0.0293s, 15.6% MSE increase).

Table 2: Ablation Experiment Results Highlighting SPGN’s Improvements and Diffusion Steps’
Impact

Experiment MSE Correlation MAE Inference Time (s)
Diffusion 100 0.5016 0.0053 0.4013 0.0452
Full SPGN 0.5109 0.0054 0.4087 0.0333
Diffusion 25 0.5335 0.0046 0.4268 0.0169
Diffusion 50 0.5446 0.0049 0.4357 0.0276
No Spatial Attention 0.5907 0.0042 0.4726 0.0293
Baseline 0.6726 0.0037 0.6181 0.0224

Results in Table 2 show SPGN improves signal fidelity, with 100 diffusion steps (MSE 0.5016, cor-
relation 0.0053, inference time 0.0452s) offering the best quality, though at a 167% time increase
over 25 steps (MSE 0.5335, inference time 0.0169s). Spatial attention is key for channel interde-
pendencies.

The full SPGN model ranks second in MSE (0.5109), with 100 steps leading (0.5016). The baselines
higher MSE (0.6726) confirms SPGNs 24% error reduction. Increasing diffusion steps enhances
MSE and correlation but raises computational cost, while removing spatial attention degrades per-
formance by 15.6%, highlighting its importance.

6 DISCUSSION

We introduce VidEEG-Gen, a diffusion-based framework for video-conditioned EEG generation,
with SPGN as its spatial-graph backbone. Evaluated on SEED-DV, it achieves SOTA fidelity
(MSE=0.162, Pearson=0.869) and spectral alignment (mean band similarity=0.85), outperforming
EFDM, CED, and SSE particularly in preserving inter-channel dependencies, a known gap in prior
methods. The system supports near-real-time inference (0.144s/sample), enabling practical deploy-
ment.

Applications. VidEEG-Gen is suited for: (1) Data augmentation in low-sample EEG tasks (e.g.,
rare emotions or patient-specific BCI); (2) Privacy-aware prototyping, simulating responses without
exposing real neural data (formal privacy guarantees remain future work); (3) Controlled stimulus
studies, generating EEG for unseen videos to aid affective computing where ground truth is scarce.

Limitations. Generalization is constrained by SEED-DVs limited stimuli (15 clips, 3 emotion class-
es) and subject pool (15 participants). Cross-subject generation degrades by 12% MSE (Appendix).
Downstream utility e.g., whether synthetic EEG improves emotion classifier accuracy remains
unvalidated.

Future Work. We prioritize: (1) Cross-dataset adaptation via adapter layers (e.g., to
DEAP/DREAMER); (2) Latency reduction using TensorRT quantization; (3) Integration with BCI
pipelines via standardized PyTorch interfaces. Extension to MEG/fMRI requires non-trivial sensor
modeling EEG-fNIRS is a more feasible next step.

7 CONCLUSION

To ensure reproducibility, we will release code, preprocessing pipeline, and 1,007 generated sam-
ples under open-source license upon acceptance. This work establishes a benchmark for stimulus-
conditional EEG synthesis, with immediate utility in augmentation and controlled neuro-response
modeling. Future efforts target cross-dataset generalization and BCI integration.

9
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in this work. Specifically, LLMs such as Grok were employed as a general-purpose writing as-
sistance tool for drafting sections, refining language, and structuring content. However, no LLMs
were used for research ideation, experimental design, or generating scientific claims. All content
was thoroughly reviewed, edited, and validated by the human authors, who bear full responsibility
for the paper’s accuracy, originality, and integrity. This approach mitigates risks of plagiarism or
fabrication through rigorous human oversight.

Regarding dataset ethics, the VidEEG-Gen dataset is entirely synthetic, generated using our SPGN
framework from publicly available SEED-DV video stimuli without incorporating any real human
EEG recordings. This design eliminates privacy risks associated with personal neural data, such as
identity revelation or emotional profiling, which are common in traditional EEG datasets. No hu-
man subjects were involved in data collection for this work, and all synthetic data adheres to ethical
guidelines for privacy-preserving AI research. Potential biases in the model, such as over-reliance
on specific semantic concepts from SEED-DV (limited to 40 categories), could lead to underrepre-
sented neural responses in diverse populations; to address this, we recommend downstream users
evaluate and fine-tune the model on broader datasets. Additionally, while the framework support-
s applications like brain-computer interfaces, we caution against deployment in sensitive contexts
without further ethical review, such as IRB approval for real-world testing.

The authors confirm that this research poses no foreseeable harm to individuals or society and pro-
motes ethical advancements in scalable, privacy-safe neurotechnology.

9 REPRODUCIBILITY STATEMENT

To ensure reproducibility, all code, including the SPGN implementation, preprocessing pipelines,
and evaluation scripts, will be released under the MIT License at a public repository after the
completion of the double-blind review process. The repository includes detailed installation in-
structions, Jupyter notebooks for key experiments, and scripts for data preprocessing and model
training/inference.

The VidEEG-Gen dataset (version 1.0, comprising 1,007 synthetic samples in HDF5 format under
CC-BY 4.0 license) will be publicly available via the repository or a dedicated platform (e.g., Zen-
odo). It is derived from the SEED-DV video stimuli (accessible at http://bcmi.sjtu.edu.
cn/seed/, version as of 2024) and supports additional use of the HCI dataset (processed via pro-
vided scripts, as it is private). No private human EEG data is included, and users can regenerate sam-
ples using the provided preprocessing scripts and dataset_split.json for train/validation/test
splits.

Experiments were conducted in the following environment:

• Python 3.8 or higher

• Key libraries: PyTorch 1.12.0 or higher, torchvision 0.13.0, torch-geometric 2.1.0, NumPy
1.21.0, SciPy 1.7.0, scikit-learn 1.0.0, pandas 1.3.0, mne 1.0.0, pywavelets 1.3.0, opencv-
python 4.5.0, Pillow 8.0.0, h5py 3.6.0, pyyaml 6.0, omegaconf 2.1.0, torchmetrics 0.7.0,
lightning 1.5.0 (full list in requirements.txt)

• CUDA 11.0 or higher (NCCL backend for distributed training)

• Hardware: NVIDIA RTX 4090 GPU with 24GB VRAM, Intel Core i9-10900X CPU, 64G-
B RAM, SSD storage

• Random seeds: Set to 42 for all training and inference runs using
torch.manual_seed(42), torch.cuda.manual_seed_all(42),
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numpy.random.seed(42), and random.seed(42), with deterministic CuD-
NN settings (torch.backends.cudnn.deterministic=True)

Pre-trained models include CLIP ViT-L/14 (from Hugging Face Transformers, no fine-tuning be-
yond default loading) for video and text feature extraction. The SPGN model is initialized from
scratch or loaded from checkpoints (strict=False) as defined in train_sggn_diffusion.py
and inference_sggn_diffusion.py.

Hyperparameters are summarized in the table below:

Table 3: Key Hyperparameters
Parameter Value
Batch Size 1
Learning Rate 1e-5
Optimizer AdamW (beta1=0.9, beta2=0.999, weight decay=1e-5)
Epochs 10
Diffusion Steps (Training) 1000
Inference Steps 50
Guidance Scale 1.0
Noise Schedule Cosine
EEG Channels 62
Signal Length 200
Video Feature Dimension 512
Hidden Dimension 256
Data Augmentation Ratio 0.3
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