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Abstract

We study acceleration for distributed sparse regression in high-dimensions, which
allows the parameter size to exceed and grow faster than the sample size. When
applicable, existing distributed algorithms employing acceleration perform poorly
in this setting, theoretically and numerically. We propose an accelerated distributed
algorithm suitable for high-dimensions. The method couples a suitable instance
of accelerated Nesterov’s proximal gradient with consensus and gradient-tracking
mechanisms, aiming at estimating locally the gradient of the empirical loss while
enforcing agreement on the local estimates. Under standard assumptions on the
statistical model and tuning parameters, the proposed method is proved to globally
converge at linear rate to an estimate that is within the statistical precision of the
model. The iteration (i.e., gradient oracle) complexity scales as O(v/k), while

the communications per iteration are at most O(logm/(1 — p)), where & is the
restricted condition number of the empirical loss, m is the number of agents, and
p € [0,1) measures the network connectivity. As by-product of our design, we
also report an accelerated method for high-dimensional estimation over master-
worker architectures, which is of independent interest and compares favorably with
existing works.

1 Introduction

Consider a multiagent system composed of m machines, connected throughout a fixed, undirected
graph—we will refer to such networks as mesh networks, in contrast to centralized topologies such as
master-worker architectures, where there exists a node connected to all the others. The ultimate goal
is to solve the stochastic (quadratic) optimization (learning) problem
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Each of the m agents has access to n i.i.d observations, drawn from the unknown, common distribution
P on Z C RP, and collected in the set S;. The associated local empirical estimate of f reads
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where z; € R? is the vector of predictors and y; € R the associated response. The overall Empirical
Risk Minimization (ERM) over the network is then

fc argmin {f(9) 2 %Z fz-<6>} : 3)

0eQ:R(0)<R

where R is a (convex) regularizer (with R > 0) and € is some (convex) subset of R?.
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We study estimators under high-dimensional scaling, meaning that the ambient dimension d exceeds
(and grows faster than) the total sample size N = m - n. The desired parameter 6* is assumed to
lie in a smaller subset of € or is well approximated by a member of it—such structural constraints
are enforced by the regularizer R in (3). Examples include sparse linear models with ¢; regularizers,
low-rank matrix recovery via nuclear norm, and matrix regression with soft-rank constraints [1].

The goal is to compute an estimate of 8* by solving the ERM (3) that is within the statistical error

of the model ||§ — 6*||. We target first-order methods. Despite the vast literature of distributed
optimization (see Sec. 1.1), only very recently such guarantees have been established on mesh
networks for the LASSO problem in the projected form [26] [as (3)] and in the Lagrangian form [11].
The benchmark is the scheme in [26], termed NetLASSO: under restricted notions of strong convexity
and smoothness of f (see Sec. 2)-which hold with high probability for a variety of data generation
models—as well as slogd/N = o(1)-a condition necessary for statistical consistency in s-spare
linear regression—the iterates generated by NetLASSO reach an e-neighborhood of a statistically
optimal solution in

~/ logm
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where x > 1 is the condition number of f in (3) restricted to sparse directions, and p € [0, 1) measures

the connectivity of the network—the smaller the more connected the graph ((5 hides log-factors on
optimization parameters). This shows linear rate up to statistical precision, whose dependence on x
matches that of the centralized Projected Gradient Algorithm (PGA) [1].

Since the bottleneck in distributed systems is often represented by the cost of communications (in
comparison with local computations) [6, 15], a key question is whether the communication complexity
(4) is improvable while still preserving the same statistical guarantees and local computational
complexity (first-order methods). This is particularly sensible when dealing with ill-conditioned
population losses, resulting in very large values of . To improve the dependency on x, a natural
approach is to employ some form of acceleration. Despite the vast literature of accelerated methods
in distributed optimization, this remains an open problem in high-dimensions, as elaborated next.

1.1 Distributed acceleration in high-dimensions: Challenges and open problems

Accclerating first-order methods over mesh networks (undirected graphs) has received attention in
the last few years; distributed schemes in the primal domain include [22, 32, 33, 14, 12, 24] while
[25, 28, 13] are accelerated dual or penalty-based methods. They are suitable to solve distributed,
unconstrained, smooth optimization problems, with the exception of [33], which decentralizes the
accelerated proximal-gradient method, and thus is applicable also to the constrained ERM (3).

Albeit different, when applied to the minimization of a L ;-smooth and j-strongly convex loss
f=1/mY ", fi, with each f; being L;-smooth and ji;-strongly convex, they all provably achieve
linear convergence to the minimizer of f, some [25, 13, 14, 12, 28] with communication complexity
scaling with /¢ (k¢ = max; L;/ min; y; is the local condition number) while others [32, 33, 24]
with \/k fp=1L /1 is the condition number of f). Note that in general x; < kg; hence, the latter
group is preferable to the former. For weakly convex losses f;’s, convergence is certified at sublinear
rate, the optimality gap on the objective value vanishes as O(1/t2), where  is the iteration index.

When applied to the constrained ERM (3) in high-dimensions, these convergence results are unsatisfac-
tory. First, they are of pure optimization type, and do not provide any statistical guarantee—computing
below the statistical noise would result in a waste of resources. Second, for fixed d and NV, withd > N
(high-dimensions), they would certify sublinear convergence rates, as the empirical loss f is convex
but not strongly convex globally—the d x d Hessian matrix V2 f has rank at most N. This provides
pessimistic, non-informative predictions, which contrast with (4), proving instead that linear rates up
to the statistical precision are achievable by nonaccelerated distributed methods. Third, under the scal-
ing d/N — oo (d growing faster than N)-the typical regime in high-dimensions [29, 1]-convergence
analyses in the aforementioned papers break down; they all require global smoothness of the local f;’s
and global f losses, a property that does not hold when d/N — oo. If fact, for commonly used designs
of predictors z;’s, the Lipschitz constant of V f grows indefinitely with d/N [29]. Fourth, if never-
theless simulated, the only distributed accelerated scheme applicable to the constrained ERM (3), that
is DPAG [33], performs poorly in high-dimensions, as Fig. 1 shows. In the figure we plot the average



estimation error, defined as (1/m) Y i, ||6% —6*||?, versus the iterations indexed by ¢, where 6! is the
estimate of 6* from agent ¢ at iteration ¢ generated by DPAG solving a projected LASSO over a mesh
network (a special instance of (3) with R(0) = ||#||1), and 6* is the population s-sparse minimizer
in (1). We contrast DPAG with the new distributed accelerated method proposed in this paper. As
benchmark, we also plot the estimation error generated by NetLASSO (non-accelerated method) [26].
Despite the good performance of DPAG in low-
dimensions (i.e., N > d) [33], the figurc shows that
acceleration as in DPAG is no longer effective in high-
dimensions (d > N); DPAG achieves estimates of 6*
that are worse than those achievable by non accelerated
schemes, yielding estimation errors that are much larger
than centralized statistical ones. Further, in our exper-
iment we observed that this gap grows with d/N. In
contrast, the proposed distributed acceleration exhibits
linear convergence up to centralized statistical precision,
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at a rate faster than the nonaccelerated NetLASSO.

We conjecture that the unsatisfactory performance of
DPAG [33] is due to the following facts: (i) the empir-
ical loss of LASSO is strongly convex only over sparse
vectors (see Sec. 2). Hence, fast convergence is expected

Iteration ¢
Figure 1: Projected LASSO: Average estimation error
vs. iterations. Existing distributed accelerations (DPAG)
may not work in high-dimension! The proposed acceler-
ated method outperforms nonaccelerated distributed schemes
(NetLASSO) while achieving centralized statistical accuracy.
See Section A.2 for details

only when traveling such a curved region of the land-

scape; (ii) the scheme [33] can be interpreted as a decentralization of the accelerated proximal
gradient based on the Nesterov’s first method [21]; as such, it does not implement any mechanism
enforcing the trajectory at which gradients are evaluated to be (approximately) sparse. This suggests
that acceleration in the distributed high-dimensional setting needs to be rethought-new designs and
convergence analyses are needed. This is what this paper is about.

1.2 Main contributions

Algorithm design: We propose a distributed algorithm for high-dimensional estimation achieving
acceleration provably. The method decentralizes Nesterov’s accelerated proximal gradient (form III)
[20] via consensus dynamics and a gradient tracking mechanism [7, 30, 19], the former enforcing an
agreement on the agents’ estimates and the latter aiming at tracking locally the gradient of f.

The rationale to hinge on Nesterov’s third scheme rather than form I, as used instead so far in all
accelerated distributed algorithms, is to enforce feasibility (with respect to the norm ball constraint
R(0) < R) of the momentum-sequence generated by the algorithm, the one over which gradients are
evaluated. For instance, when solving a constrained LASSO (i.e., R(6) = ||0]|1), this yields sequences
that are approximately sparse, thus traveling the landscape of an “almost” strongly convex and smooth
loss. In fact, our analysis shows that this is the key enabler to retain fast, linear convergence to
statistically optimal solutions in high-dimension, where f is no longer strongly convex globally.

Statistical-computational guarantees: Under standard notions of restricted strong convexity and
smoothness of the empirical loss, which hold with high probability for a variety of statistical models,
and proper algorithm tuning, the iterates generated by the proposed scheme converge at linear rate
to a limit point that is within a fixed tolerance from the unknown 6*. When customized to specific
statistical models—including sparse linear models with ¢; regularization, low-rank matrix recovery
with nuclear norm, and matrix completion—the tolerance becomes of the order of the statistical error

6 — 6*||. Specifically, for such models and arbitrary network connectivity p, the iterates generated
by the algorithm enter an e-neighborhood of a statistically optimal estimate of 6* after

@) (\/E log 1/5) and O (\/E 110ng; log 1/5) 5)

numbers of iterations (gradient evaluations) and communications, respectively, where O hides log-
factors on optimization parameters (recall « is the restricted condition number). This improves on
the communication complexity (4) of NetLASSO [26] applied to /;-constrained LASSO, showing
the more favorable square-root scaling on «, typical of accelerated methods in low-dimension.
Furthermore, the rates in (5) are showed to be invariant under high-dimensional scaling d/N — oo,

as long as the statistical error || — 6* || remains constant.



A special case: A by-product of the proposed method is its customization to master-worker architec-
tures, which is of independent interest and compares favorable with existing accelerated centralized
designs [16, 31], proposed for ¢;-least squares (in Lagrangian form); they are double-loop methods,
combining the accelerated proximal gradient method [27, 5, 20] with homotopy continuation.

2 Setup and Background

This section states the main assumptions on the ERM (3) and the network underlying our derivations.

¢ RSC & RSM: We anticipated that, in high-dimension, f in (3) is not strongly convex uniformly
(as d > N). However, strong convexity and smoothness hold along a restricted set of directions, for
a variety of statistical estimations [29], which is enough to employ fast convergence and favorable
statistical guarantees of the PGA [1]. Here we postulate the same properties for the landscape of f.

Assumption 1 (Global RSC & RSM [1]). The loss function f in (3) satisfies
(i) Restricted Strong Convexity (RSC) with respect to R with (positive) parameters (p/2, 1,,) over 2:

F@) = ) = (VE@).o —y) = Lo —yl3 - 2R @ —y), Vayeo ©)
(ii) Restricted Smoothness (RSM) with respect to R with (positive) parameters (2L, T1,) over ):

J@) = J) = (Vi).e -y) < Ll —yl3 + TR@-y). VeyeQ ()
The restricted condition number is defined as k = L/ and it is assumed r > 1.

In the distributed setting, the RSM property is required to hold also locally.

Assumption 2 (local RSM). Each loss function f; satisfies local RSM with respect to R with (positive)
parameters (27, T¢) over §):

Ji@) = 1) = (Vily)w —y) Sulle 3+ SR @ —y), Veye  ®

e Decomposable regularizer R: This notion plays a key role for statistical consistency of 6 in high-
dimension [1]. Decomposability is defined with respect to two subspaces of €2, namely: M, known as
the parameter subspace, capturing constraints from the model (e.g., vectors with a particular support
or a subspace of low-rank matrices); and M-, referred as perturbation subspace, representing the
deviations from the model subspace M. We also require Lipschitz continuity of R over M.

Assumption 3. (i) The regularizer R : Q — R is a norm, with §) C R4 convex and 0 € Q without
loss of generality. Furthermore, given a subspace pair (M, M=), such that M C M:

(ii) R is (M, ML)-decomposable, that is, R(x +y) = R(z) + R(y), forallx € M andy € M*;
(iii) When M # {0}, R is U(M)-Lipschitz over M with respect to some norm || e ||: ¥(M) £
supge w1y {0y R(O)/1|0]- If M = {0}, we ser ¥({0}) = 0.

Regularizers sharing the above properties over certain pairs (M, M) are ubiquitous in M-estimation
problems [29]; examples include the ¢; norm, the (overlap) group norm, and the nuclear norm.

o Statistical models: RSC and RSM properties can be certified with high probability by a variety
of random data generations. Here, we consider the following widely used statistical models, which
cover a variety of estimation tasks, such as sparse linear models with ¢; regularization, low-rank
matrix recovery with nuclear norm, and matrix regression with soft-rank constraints [17, 1, 29].

Assumption 4. The random predictors x; € R are i.i.d. and fulfill one of the following conditions:
(i) x; ~N(0,X) and are i.i.d., for some 3. = 0;
(ii) x; are (172,%)—sub-Gaussian and i.i.d., with 3> = 0;

(iii) x; = e; where j ~ uniform[1,d] and i.i.d.



Lemma 1. Under Assumption 4(i), there exist universal constants cgy,c1,co > 0 such that, with
probability at least 1 — cg exp(—c1 N + logm), N > 10, Assumptions 1 hold with parameters

= Amin(2), 7. =ER*(z)]?/N and L= M\pax(X), 71 = cE[R*(x;)]*/N,

and so does Assumption 2 with parameters vy = (2m + 1)A\pax(2) and 7, = co(E[R*(2;)]?)/n,
where R* is the dual norm of R. When R(-) = || - ||, (E[R*(z;)])? < 9(max;(X),;)log(d).

The proof of Lemma 1 follows from that of [1, Prop. 1]. Similar results under Assumptions 4(ii)-(iii)
can be found in the supplementary material, see Appendix A.7.

e On the network: Agents are connected throughout a communication network, modelled as an
undirected graph G = {V, £}, where the vertices V = [m] 2 {1,...,m} correspond to the agents
and €& is the set of edges of the graph; (i, j) € £ if and only if there is a communication link between
agents i and j. The set of neighbors of each agent i is denoted by \; £ {j € V : (i,5) € £} U {i}.
In the proposed algorithms, agents will average neighbouring information using weights as below.

Assumption 5 (Gossip matrices). Define W = [w;;]{}_,; the following hold: (i) W is G-congruent,
that is, w;; > 0, if (1,7) € E; otherwise w;; = 0; furthermore, w;; > 0, for all i € [m]; (ii)
W =W and W1 = 1 (stochastic); and (iii) there holds p = |W — J||a < 1, where J £ 117 /m.

Assumption 5 is quite standard in the literature of distributed algorithms and is satisfied by several
weight matrices; see, e.g., [18]. Note that p < 1 by construction, as long as G is connected. Roughly
speaking, p measures how fast the network mixes information; the smaller p, the faster the mixing.

3 Algorithm Design

At the core of our distributed accelerated algorithm there is an instance of Nesterov’s acceleration
proximal gradient method, which we identified to be suitable for high-dimensional estimation. We
begin presenting this method in the centralized setting, along with its statistical guarantees (Sec. 3.1);
we then proceed to design and analyze a suitable decentralization to mesh networks (Sec. 3.2).

3.1 Warm-up: A Nesterov’s acceleration (form III) for high-dimensional estimation

Consider (3) in the centralized setting (e.g., master-worker systems). Assumption 1 shows that f is
strongly convex and smooth only along a restricted set of directions. To enable fast convergence, the
algorithm design should produce trajectories (approximately) traveling such portions of the landscape
of f. To handle this situation while achieving acceleration we propose to use Nesterov’s method
written in form III [9, Algorithm 11] equipped with the projected operator to enforce feasibility of all
the sequences generated by the algorithm. This ensures that gradients are always evaluated at feasible
points of (3), which we prove unlock linear convergence (up to a tolerance) at accelerated rate.

Given feasible #° and v°, the main iterate {6, v, 2} of the algorithm reads: for any t = 0, 1, ...,

e L B
C=Eril e
vt = Honrw)<r ((1 — Bt 4 Bt — %Vf(zt)) : (€

g+ = pouttt 4 (1 - B)e".

where o€ (0,1) and 3 € (0, 1) are parameters to tune, and IIonz ()<r(®) denotes the Euclidean
projection (of its argument) onto the convex set {6 € 2 : R(v) < R}; for specific estimators such
as ¢1-constrained or Lagrangian LASSO, this projection has a closed form expression [8, 11]. Notice
that, under feasibility of §° and v?, the sequences {6'}, {v'} and {6'} are feasible, for all t.

A wide variety of accelerated methods exists in the centralized setting (see, e.g., [9] for a recent
overview), and most variants settle the infeasibility of the z* sequence using two projection (proximal)
operations per iteration (see, e.g., [3]). The algorithm in (9) performs instead one projection per
iteration. Variations of the theme can be found in a number of references, including [2, 9, 27, 10].
Existing analyses however are not adequate to capture the behaviour of these methods in high-
dimensions, including (9); as discussed in Sec. 1.1 for distributed implementations, they would



provide pessimistic predictions and break down under the scaling d/N — oco. As a by-product
of our novel convergence analysis in the distributed setting, Theorem 1 below establishes, under
RSC and RSM properties (Assumption 1), global convergence of the algorithm in (9) at linear
(accelerated) rate to a fixed tolerance. This result is of independent interest, and complements existing
accelerated schemes for ¢;-least squares estimations (LASSO in Lagrangian form) [16, 31]. These
are double-loop methods, combining accelerated proximal gradient with a homotopy continuation
mechanism.

Leveraging Assumptions 1, 3, let us introduce the tolerance A2 and the initial optimality gap V°:

A%£ (2R (s (6)) +2R(A%) + TM)[A%])*, VO 2 7(6°) — £@) + Gll* 0], (10)

where A* £ 0* — § is the satistical error, I, denotes the Euclidean projection onto the orthogonal

complement of the subspace M, and ¥ (M) is defined in Assumption 3. Convergence is stated next.

Theorem 1. Given the ERM (3), suppose (i) f satisfies the RSC/RSM conditions (Assumption 1); (ii) R
is a decomposable regularizer with respect to chosen pair of subspaces (M, M) (Assumption 3); and
(iii) (M, M) and RSC/RSM parameters (u,7,) and (L, 1) are such that V(M) max {1, 7, } <
Co, for some constant Co > 0. Let {0'};>1 be the sequence generated using Algorithm (9), with

tuning o = 2L and B = \/1/(8k). Then, for any solution 0 of (3) for which R(8) = R, we have

t
ot —apz < 2 (1 - i) VO+ 0 (T’”L—TLAQ) . (11)
" 16k m

This proves linear convergence at the accelerated rate 1 — /1 /(16x), up to a fixed tolerance. As it will
be showed directly in the distributed setting (see Sec. 4), when considering specific statistical models
under U?(M) max {77,7,} = o(1)-a condition necessary for statistical consistency [1, 29]-the
residual error in (11) becomes smaller than the statistical precision, proving thus convergence to
statistically optimal solutions. This improves the convergence rate of the PGA [1], with Algorithm
(9) gaining acceleration while retaining the same statistical precision and computational complexity.

Finally, we remark that, while Theorem 1 has been stated for quadratic ERM, the same conclusions
hold for nonquadratic losses, satisfying RSC/RSM conditions as in Assumption 1.

3.2 Distributed accelerated proximal gradient method for high-dimensional estimation

Equipped with Algorithm (9), we are ready to introduce our accelerated method for distributed
high-dimensional estimations in the form (3), as given in Algorithm 1 below, and discussed next.

What prevents (9) from being implemented on mesh networks is the lack of knowledge of V f at
the agents’ sides. Agents’ losses f;’s are decoupled by introducing local estimates 6;, controlled
(updated) by the intended agent, along with the associated sequences z; and v;, which play the same
role of z and v as in (9): first, they are locally updated as the related ones in (9), followed by the
consensus step (16), enforcing agreement among the momentum sequences and local estimates.
The update of the v-variables, as per (9) would require the knowledge of V f from each agent, an
information that is not available. Hence, V f is replaced by a local estimate ¥; [see (13)]; the tracking
of V f via each y; is employed by the dynamic consensus mechanism (a.k.a. gradient-tracking)
[7, 30, 19] in (14). In fact, it is not difficult to to check that the average of the y;’s tracks the average
of the local gradients V f;(z!), i.e.,

Iem , 1o .
=D vi= D Vi, (12)
=1 =1
Assuming that consensus on the z;’s and the y;’s variables is asymptotically achieved, i.e., || 2} —z§ | —

0and [ly; — v}l = Oast — oo, forall4, j = 1,...m (a fact that will be proved), (12) would yield
the desired gradient tracking property ||V f(z!) — y!|| = O ast — oo, foralli = 1,...,m.

4 Statistical-Computational Guarantees

This section studies convergence of Algorithm 1. Our first result (Theorem 2) is of deterministic
type: We establish conditions for the estimation error (1/m)."", ||#¢ — 6||? to shrink linearly



Algorithm 1

Data: Set 09 = o) = 27! =0andy~! = V£,(0) forall i € [m]; o > 2L and 8 € (0, 1);
Iteratet = 0,1, ...
[S.1]: Consensus and gradient-tracking: Each agent i performs

1 B
o= wy <—«9t- + vt-> , (13)
je_/\/’i ﬁ‘i‘l J 1_|_ﬂ J
v =Y wi (U + V(ED - VAEETY) (14)
JEN;

[S.2]: Local Optimization and updates: Each agent ¢ performs

) o
Uf+1 = lonrw)<r ((1 - ﬁ)”f + Bzf - Ellf> ) (15)

g = Bol T+ (1-p)8;. (16)

up to a tolerance. These conditions hold with high-probability for a variety of statistical models
(Assumption 4), proving linear convergence (at accelerated rate) within minimax statistical rates.

Theorem 2. Consider the ERM (3) over mesh networks, under the same assumptions (i)-(iii) as in
Theorem 1; furthermore, (iv) suppose f; satisfies the local RSM condition (Assumption 2), for all
i € [m]. Let {(0})ic(m)}t>1 be the sequence generated by Algorithm 1, with tuning oo = 2L and

B = \/1/(8k), and weight matrix W satisfying Assumption 5, with p such that

—1
pSC’lmin{\/ﬁ—l Lr }, 17

"m3/2 (v + W2(M) (10 4 71))

where Cy > 0 is a universal constant (see Theorem 3 in Appendix A.4).

Then, for any solution @\of (3) for which R(é\) = R, we have: for some Cy > 0,

t
e ~5 8 1
e AP <= (15 ) Bro A2 +WﬁpA2). (18)
m = W 32K 0 W
centralized precision network error

where LY € (0, 00) captures the initial optimality gap and dependence on optimization and RSC/RSM
parameters (its expression can be found in Theorem 3, Appendix A.4).

This shows linear convergence at rate 1 — y/1/(32x) up to a tolerance. The first term of this tolerance
matches that achieved in the centralized setting (see (11)) while the second term is an extra error due
to the decentralization of the estimation process—it vanishes when p = 0 (fully connected network).
In the next section, we will show that for the statistical models captured by Assumption (i), the
overall tolerance can be made of a higher-order of the centralized statistical error. The condition on
p in (17) calls for a sufficiently connected network. When it is not satisfied by the given network
and gossip matrix W, it can be enforced running multiple rounds of communications, affecting the
total communication complexity by log-factor terms. More specifically, given W with associated
p = ||W — J||2 larger than what required in (17), one can build another matrix W = W and choose

the positive integer number K so that p 2 [|W — J||o = p¥ satisfies (17); it is sufficient to set
K- log (C1sm?5(1 4+ C3/L))
— =,

The use of W instead of W in Algorithm 1 corresponds to employing K rounds of communications
(consensus and tracking updates) per iteration ¢, each one using the weights .

4.1 Statistical Guarantees

We apply now Theorem 2 to specific statistical models, establishing convergence and statistical
guarantees with overwhelming probability. Corollary 1 studies the case of sparse linear regression,



under both strong and weak sparsity. Corollary 2 addresses the low-rank matrix recovery problem.
Sub-Gaussian linear regression (Corollary 3) and matrix completion (Corollary 4) are discussed in
the supporting material (Appendix A.3).

e Sparse regression: Suppose 0* in (1) is sparse, ie., [|0*|, < Ry, with ¢ € [0,1] (¢ = 0
corresponds to hard-sparsity, while ¢ > 0 models weak sparsity). The regression model at agent 7 is:
yj = ij9* +wj, j € S;, where |S;| = n, w; ~ N(0,0?%), and z; satisfies Assumption 4(i). Define

max; ([]s;) logd\ ™% B
WS R, i , q€10,1] and Ry = s.

1>

XN

Corollary 1. Consider the ERM 3 solving the linear regression problem above, with R(:) = || - |1,
16]1 < R = |81, and Q = R%; let N = Q((nsRy)V/ 1=/ logd). Let {(6%)7}i>0 be the
sequence generated by Algorithm 1 with tuning as in Theorem 2, where (17) becomes

P

< Cymi e
P ”mn{ " (1t Cu/L)

} , forsome Cy, Co > 0. (19)

Then, with probability at least 1 — ¢y exp (—c1 N + log(m)) , for some co, ¢1 > 0, it holds

m t -
! E 9] 8 1 logd 2
m 2 =0 < s—s [ 1y L°+0 R, | — AF|? 20
m i=1 || ‘ H o Amin(z) < 32K> + XN q N + H || ) ( )

where L° >0 depends on the the initial optimality gap and statistical parameters (see Appendix A.6)

A few comments are in order. (i) Linear convergence at rate 1 — O(x~1/2) is certified, up to a
tolerance that, under the sample-size N = Q((nsR,)"/(1=9/2) log d), is of a higher order than the

centralized statistical error || A*||2. In fact, the additional term R, (*%24)'~4/2, due to the statistical
nonidentifiability of linear regression over the £,-ball and thus not improvable, is no larger than
||A*||? with high-probability. (ii) The aforementioned scaling on N is unavoidable, as it matches that
necessary for any (centralized) method to be statistically consistent over £,-ball [23]. This proves
that statistically optimal estimates are achievable over mesh networks even when the local sample
size n violates information theoretical lower bounds (as long as N satisfies so). This is possible
thanks to the network mixing local information at sufficiently fast rate, as required by (43). (iii) As
anticipated, condition (43), when not implicitly satisfied, can be met running multiple rounds of
communications/iteration; it can be shown that O(log m/(1 — p)) are enough, resulting in an overall
communication complexity as in (5) to reach an e-neighborhood of a statistically optimal estimate.

o Low-rank matrix recovery: We consider the compressed sensing version of the matrix regression
over meshed networks, as formulated next. Let ©* in (1) satisfy ||©*||, < R,, with ¢ € [0, 1] and
R4 > 0. In that the case ¢ = 0 corresponds to matrices with rank at most r; we will have Ry = r.
The case ¢ > 0 results in approximately low-rank of ©*. Consider observations y; = (X, ©*) +wj,
j € Si, |Si| = n, where X; € RP*? is such that vec(X;) satisfies Assumption 4.(i), w; ~ N(0,0?)
are i.i.d. and independent of X ;. Define

1>

- maxi([E]ii)Rq (p )1—%

)\min N

Corollary 2. Consider the ERM (3)Asolving the low-rank matrix regression problem above with
R(O) = [|O]|1, [|©*]1 < R = ||0]l1, and Q@ = RP*P; let N = Q (p(nsRy)/=9/2) . Let
{(6)7, }i>0 be the sequence generated by Algorithm 1 with tuning as in Theorem 2, including

(17) for some C1,Cy > 0. Then, with probability at least 1 — coexp (—c1 N + log(m)), for some
co, 1 > 0, it holds:

t
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where L° >0 depends on the the initial optimality gap and statistical parameters (see Appendix A.6).
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Figure 2: Algorithm 1 (dotted-lines) vs. NetLASSO (solid-lines). (a) Linear convergence vs iterations up to
statistical precision (dashed) A2 for s,d, N growing, such that A? ~ 0.2. (b) Estimation error vs iterations for
different values of . (¢) Estimation error vs iterations for growing m such that p = (’)(m‘”). (d) Same as (c)
but with p =~ 0.2. (e)-(f): eyedata data set, (e) training error vs. iterations, (f) testing error vs. iterations.
Although quantitative aspects of the sample rates are different, Corollary 2 is analogous to Corollary 1,
which we refer to for specific comments. As therein, also here the final tolerance is of a higher-order
of the statistical error of the model.

Overall the above statistical guarantees (along with those discussed in the supporting material for
other estimation problems, see Appendix A.3) complement [1], matching those therein but over
meshed networks while improving convergences rate of the PGA gaining acceleration.

5 Numerical Results

Numerical results are presented in this section validating our theoretical findings on synthetic and
real data. Simulations are performed on a computer with an Intel i17-8650U CPU @ 1.9 GHz using
16 GB RAM.

Synthetic data: We simulate the sparse linear regression model as in Corollary 1, with ¢ = 0.
We set Ry = s, 02 = 0.25 and R = ||0*||2. The covariates z; € R? are generated as in [1]
Tij = %4 + w1, with 1,1 = z; 1, where each z; ; ~ N(0,1) and i.i.d. This implies that
p>p 2 (1+w2and L < L' 2 2((1 + w)?(1 +w))~L. We will denote A? £ (slogd)/N,
which is of the order of the statistical precision of the model. The network is generated using an
Erd6s-Rényi graph, with m agents and link activation probability p. The specific values of each of
the parameters is given in each specific experiment. All curves are averaged over 10 independent
Montecarlo simulations. We now proceed to verify the different aspects of Corollary 1.

1) Linear convergence to optimal estimates: Fig 2.(a) plots the normalized estimation error
>, 1108 — 6%||2/]16*||* versus iterations, generated by Algorithm 1 (dashed-lines) and NetLASSO
[26] (solid lines), solving the regression problem, with w = 0.5 (yielding ¢ = 0.44 and L = 5.33);
different curves refer to different values of s, d, IV, with d growing faster than N, such that A% ~ 0.2,
and m = 5. In both algorithms we set the stepsize o = 2L’; the momentum parameter 3 is set to
B = (8u//L')~1/2. Condition (43) is enforced via T' = 41 rounds of communications/iteration for
both algorithms. In Fig. 2.(b) we plot the same quantities now for different condition numbers x,
obtained choosing w € {0.1,0.2,0.5}. The following comments are in order: (i) As predicted by (20),
Algorithm 1 convergences at linear rate to statistically optimal estimates; although it has the same
computational cost per iteration of the nonaccelerated NetL ASSO, it is much faster, especially when
. is ill-conditioned (large x), which proves the advantages of acceleration also in high-dimensions.



(ii) As d and N increase, as long as AZ is constant, the rate and reached statistical accuracy remain
roughly invariant. (Fig. 2.(a)), which is a resirable property.

2) On the scaling of p with m as in (43): Fig. 2.(c)-(d) plots the same quantities as in Fig. 2(a),
now with fixed d = 5000, s = [vV/d], N = n - m = 2500, and varying m € {50, 625,1250}. The
random graph is generated so that in plot (c) p ~ O(m~2:%) (this is achieved setting p = 0.8) while
in plot (d) p & 0.2 for all m (achieved setting p € {0.7,0.4,0.22} for the associated values of m).
The number of communications/iteration is set to 7 for both algorithms. The two plots show that p
should decrease with m if one wants to achieve centralized statistical consistency; p &~ O(m~=29), as
predicted by (43), seems to be sufficient. On the other hand, a p constant with m breaks down the
performance of both distributed algorithms.

(B) Real data: We test here NetLASSO and Algorithm 1 on the data set eyedata in the
NormalBetaPrime package [4]; d = 200 and N = 120. We generated W for m = 10 and
p = 0.9. To achieve the required connectivity we set W = W7. The data set is split between test-
and training-data, corresponding to Niest = 40 and Nyain = 80, respectively. Both data sets are
equally distributed across m = 10 agents. In Fig. 2.(e) we display quantitites relevant to the training
phase. Specifically, we plot the objective function value along the iterates generated by NetLASSO
and Algorithm 1. We observe that both schemes achieve a similar final objective function value and
converge linearly, with Algorithm 1 at much faster rate. Fig. 2.(f) shows the performance on the
test data. We implemented the following procedure. Denote by y the output of the test-set and by
X the test covariates. We build predictors y! = X0, i € [m], where 6! is the estimate of 6* from
agent ¢ at time ¢, generated by the two algorithms when running on the training set. The figure plots
(Niestm) ™1 >0 |ly — yt||3 versus iterations, for NetLASSO and Algorithm 1. The dashed line

corresponds to (Neesem) ||y — §||2, where § = X8 and 6 denotes the estimator obtained via the
PGA. The performance on test-data are consistent with what observed already on training-data.

6 Conclusions

We proposed a decentralized accelerated algorithm to solve quadratic high dimensional estimation
problems over mesh networks whose empirical losses are neither strongly convex nor Lipschitz
smooth globally. To employ acceleration in this setting, the design hinges on careful considerations
regarding the directions traversed by the schemes, enforcing sparsity of the iterate and momentum
sequences. Global convergence to statistically optimal solutions is proved at liner rate, proportional
to y/r, with a communication cost per iteration at most O (logm/(1 — p)). It is unclear whether
this communication cost is improvable, for instance, whether the log-dependence on the number of
agents and the transmission of all d gradient/iterate components can be relaxed. This is left to future
investigations.
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